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15 Abstract

16

17 Modelling of the spatial distribution of bovine trypanosomosis prevalence in Sideradougou district

18 Burkina Faso was performed by using a combination of spatial and statistical analysis. Based on a

19 comprehensive and geographically representative census of herds and farms in the area, more than

20 2000 cattle were randomly chosen and their blood sampled during field survey. Data on livestock

21 farming practices were recorded for each farm. All data were mapped within a GIS to generate new

22 information on spatial constraints in the area.

23 Surveys results were analysed and serological prevalence data were modelled using logistic

24 regression. The model allowed identification and quantification of risk factors. In a second step the

25 statistical model was used predictively on the entire farm population in the area. This method was

26 successful in predicting the serological prevalence for each individual herd in the sample, from their

27 livestock management patterns and spatial location. Predicted prevalences were represented within

28 the GIS, taking daily movements of animals into account. Spatial distribution of prevalence would

29 illustrate specific locations at risk from an epidemiological viewpoint. It gives evidence that the

30 hydrological network and land occupation patterns in the savanna-type countryside are playing an

31 important part when structuring a so-called ‘‘trypanosomosis space’’.
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36 1. Introduction

37 Animal trypanosomoses are one of the main pathological constraints on the development

38 of animal production in sub-Saharan Africa (Hursey and Slingenbergh, 1995), and cause

39 annual losses estimated at US$ 1 billion (De Haan and Bekure, 1991). Tsetse flies are the

40 main vectors. The risk of transmission is primarily linked to the intensity of the encounters

41 between vectors and hosts, and depends on the spatial and temporal interfaces between the

42 protagonists in the pathogen system (host–vector–parasite) (Laveissière et al., 1986; De La

43 Rocque et al., 1999). High-risk areas have been identified on this basis in an agro-pastoral

44 zone of southern Burkina Faso, taking environmental and socio-economic factors into

45 account. The available data were georeferenced, included into a geographic information

46 system (GIS), and high-risk areas were identified by spatial modelling (De La Rocque et al.,

47 2001), as it was performed at the other scales (Hendrickx et al., 2001).

48 The serological prevalence of the disease (prevalence of antibodies directed against

49 trypanosomal antigens) was studied on a sample of cattle farms in the study area, to validate

50 the list of epidemiological risk areas identified. However, the data obtained were both partial

51 and spatially disjointed. The method described here was subsequently developed for

52 estimating and modelling disease spatial distribution, with a view to making the data

53 compatible with the layers of geographic data available for the study zone as a whole.

54 2. Material and methods

55 2.1. Study zone

56 The study was conducted in part (1200 km2) of the Sidéradougou agro-pastoral zone

57 south of Bobo-Dioulasso (Burkina Faso), 118N and 48W (Fig. 1). The zone has 1000–

58 1100 mm of rainfall per year, with a dry season from November to April and a rainy season

59 from May to October. It is typical of the Sudanian tropical climate zone, with bushy

60 savannas and forest stands along its watercourses. These types of riverside vegetation are

61 the preferred biotopes of the tsetse flies found in the zone, Glossina tachinoides and

62 Glossina palpalis gambiensis (Challier, 1973; Gruvel, 1975).

63 2.2. Population, sampling and diagnosis

64 The cattle in the zone were counted exhaustively, based on the dwellings by which they

65 are penned during the night (Michel et al., 1999). For each dwelling, the number of head,

66 their watering points at the end of the dry season, and information on transhumance were

67 recorded. The geographic positions of each dwelling and the watering point or points (two

68 at most) were determined by global positioning system (GPS) (GarminTM).

69 Over 800 dwellings, with 16,576 head, were visited. The herds were split into three

70 categories: (i) small units with one or two pairs of draught oxen; (ii) mixed units, generally

71 with fewer than 20 head, including draught oxen and a few breeders; (iii) large herds of

72 several dozen head, with transhumance often practised during the dry season. In this zone,

73 where livestock are a major component of farming systems practised, there are many small

2 J.-F. Michel et al. / Preventive Veterinary Medicine 1728 (2002) 1–14
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Fig. 1. Location of the study zone. The Sidéradougou agro-pastoral zone is located in the south of Bobo-Dioulasso (Burkina Faso), at 118N and 48W (after De La

Rocque et al., 2001).
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74 and medium-sized herds, which account for over 80% of farms but only 20% of the

75 animals. On the other hand, 80% of the cattle in the zone are owned by 17% of the farmers

76 (Table 1).

77 The herds are found in three main zones (Fig. 2): (i) an agricultural zone in which animal

78 production is closely integrated into the farming system, with medium-sized herds, in the

79 east (zone 1); (ii) a mixed agricultural and pastoral zone in the west, with small and large

80 herds (zone 2); (iii) an almost exclusively pastoral zone in the south, with large herds (zone

81 3). This distribution corresponds to the pattern for crops (De La Rocque et al., 2001). In the

82 whole study area, there are very few trading and non-trading exchanges of cattle.

83 A two-stage sampling was performed. The first sampling unit was on herd, i.e. an animal

84 management unit subject to common animal production practices. It was easily identifiable

85 in the field and corresponds to an epidemiological entity. The herds were drawn at random.

86 The second sampling unit was animals which were chosen as follows: (i) exhaustive

87 sampling in small herds (fewer than five head); (ii) 10 head at most in medium-sized herds

88 (between five and 20 head); (iii) 20 head at most in large herds (over 20 head). Within the

89 herds, the head were drawn at random, without replacement. For logistical reasons it was

90 decided to sample 2000 head spread over 15% of the herds in the zone. A questionnaire on

91 animal production practices was filled in for each herd.

92 Blood samples were taken from the jugular vein. The plasma was analysed in the

93 laboratory using three indirect ELISA systems (T. vivax, T. brucei and T. congolense),

94 revealing antibodies against Trypanosoma spp. (Desquesnes et al., 2000).

95 2.3. Available data and statistical model

96 Several types of data were used to analyse and model trypanosomosis seroprevalence in

97 the herds:

� Serological data corresponding to the variable to be explained.

� Animal husbandry data obtained from the field survey: herd size, transhumance

101 practices and the type of watering point used at the end of the dry season.

� Spatial data generated by the GIS from the geographic position of the different units:

103 distance between dwelling and watering point, and proximity of dwellings to the

104 hydrological network.
105

106 The descriptive variables were classified according to knowledge of practices (Lhoste

107 et al., 1993), and their epidemiological significance (Table 2). The type of watering point

108 was divided into springs and rivers (which are propitious to tsetse flies), and wells and

Table 1

Herd size and head number in the local population

Herd size

Under five head 5–20 head Over 20 head Total

Number of herds 476 (59%) 188 (24%) 137 (17%) 801

Number of animals 1372 (9%) 1861 (11%) 13343 (80%) 16576

4 J.-F. Michel et al. / Preventive Veterinary Medicine 1728 (2002) 1–14
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109 boreholes (which are generally found in zones not favourable to the flies). The zone classed

110 as neighbouring on the hydrographic network was set at 2 km, based on known data on the

111 tsetse fly’s ability to spread (Cuisance et al., 1985).

112 The serological prevalence for each herd was modelled using logistic regression, since

113 the response variable is a proportion and the error function is assumed to follow the binomial

114 law (McCullagh and Nelder, 1989). The link function used was the logit function, defined as

115 logitðpÞ ¼ logeðp=ð1 � pÞÞ. An over-dispersion phenomenon often appears in using gen-

116 eralized linear model with a logit link when the response variable is a proportion. Over-

117 dispersion means that the variance of the response variable exceeds the binomial variance

118 and this problem is very common in large-scale epidemiological studies (McCullagh and

119 Nelder, 1989). Taking into account the over-dispersion problem, we used a quasi-likelihood

120 approach (McCullagh and Nelder, 1989) in the place of likelihood function. This led to

121 wider confidence interval of parameters than the classical approach. For the same reasons, to

122 test the contribution of the different descriptive variables in the model, we conducted a

Fig. 2. Herds, sampled herds and agricultural distribution in the study zone. The size of the points varies

according to the loge of herd size. The herds are found in three main zones which are delineated by the

hydrographic network: (i) an agricultural zone in which animal production is closely integrated into the farming

system, with medium-sized herds, in the east; (ii) a mixed agricultural and pastoral zone in the west, with small

and large herds; (iii) an almost exclusively pastoral zone in the south, with large herds. This distribution

corresponds to the pattern for crops.

J.-F. Michel et al. / Preventive Veterinary Medicine 1728 (2002) 1–14 5
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123 deviance analysis with F-test in the place of w2-test (Collet, 1991). The coefficients obtained

124 in the model were interpreted by calculating the odds ratios and their confidence interval

125 (Bouyer et al., 1995). This enabled us to quantify the risk factors associated with the levels

126 of each of the explanatory variables in relation to a reference level.

127 As the model was not spatialized, it was necessary to look for autocorrelation among

128 residuals. If the presence of autocorrelation was detected, it could imply the omission of

129 regressor variables, the presence of non-linear relationships or that the regression model

130 should have an autoregressive structure (Cliff and Ord, 1973). To test the autocorrelation,

131 we firstly established neighbourhood relationships between herds using a Delaunay

132 triangulation as proposed by Schmoyer (1994). In the second step, Geary (Geary,

133 1954) and Moran’s (Moran, 1948) statistics (see also Cliff and Ord, 1973) were computed

134 for residuals. By permuting the values of the residual map, we computed new values of

135 autocorrelation statistics and the observed value is tested by comparing to the set of values

136 obtained for the permutations. As the number of possible permutation was very large, we

137 used a Monte-Carlo (Manly, 1991) version of the test. The same procedure has been carried

138 out for observed and predicted prevalence values. This kind of procedure has been recently

139 used in Kleinschmidt et al. (2000) with the non-parametric D-statistic (Walter, 1992) to

140 measure autocorrelation of predictions from a logistic regression. When these indices were

141 applied to observed and predicted prevalence values and the residuals of the model, they

142 enabled us to test the capacity of a model to take account of the spatial nature of data.

143 The statistical model was then inverted to estimate the serological prevalence for all the

144 herds in the zone, using the explanatory variables shared with the survey, which were the

145 same than those used to generate the model.

146 All calculations were made using the R software (Ihaka and Gentleman, 1996).

147 2.4. Spatial model

148 Specific problems linked to the geographical nature of mapped objects such as herds and

149 the ‘‘in herd’’ variability of measured variables have to be considered when mapping

Table 2

Descriptive variables used for modellinga

Code Variable Levels

typew Type of watering point used in dry season Art: artificial

Nat: natural

distw Distance between farm and watering point used in dry season 1: <1000 m

2: 1000–4000 m

3: >4000 m

hrdsz Herd size 1: small (<5)

2: medium (5–20)

3: large (>20)

Hy2km Farm less than 2 km from hydrographic network No

Yes

allyr Animals kept by dwelling all year round No

Yes

a Reference levels for the model are shown in italic.

6 J.-F. Michel et al. / Preventive Veterinary Medicine 1728 (2002) 1–14
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150 seroprevalence: (i) herds are points that may be superimposed if they are close to one

151 another, hence masking information; (ii) the meaning of prevalence within a herd varies

152 with the number of head in the herd, a prevalence of 50% in a two head herd has not the

153 same significance as a prevalence of 50% in a 100 head herd; (iii) mapping only the points

154 corresponding to the pens used at night provides only a partial representation of reality as

155 animals move and occupy a continuous space; (iv) spatial information on prevalence has

156 to be compatible with the other information available in the GIS if they are to be compared.

157 To overcome these problems, a spatial model of land occupation by cattle and of disease

158 distribution was developed. All spatial object manipulations used the MapinfoTM soft-

159 ware.

160 The representation of land occupation by cattle in a zone as a whole is based on

161 modelling the daily movements of the animals in each herd. In savanna zones, water

162 availability is the main constraint at the end of the dry season, and governs movements

163 (Boutrais, 1994). Herd movements were therefore modelled by representing the direct

164 route between the night pen and the watering point or points, and drawing a buffer zone

165 around the route, corresponding to the area occupied by the cattle during the day (Michel

166 et al., 1999). This zone of daily use by the herd varies in size. The wider the herd and the

167 nearer it is to its watering point, the larger the zone of frequentation (Fig. 3). This model

168 was validated by monitoring the movements of a sample of herds.

169 The predicted prevalence for all the herds was applied to their zones of daily use. To

170 synthesize this information, which was not yet very easy to resolve due to the super-

171 imposition of polygons, it proved necessary to aggregate it so as to shift to a smaller scale.

172 This was done by projecting all the zones of use and the corresponding prevalences onto a

173 regular geographic grid of 1 km2 (Raynal et al., 1996). The cumulated distribution of

174 antibody-prevalence in the study zone was then represented by assigning to each square the

175 mean value of the prevalences for the herd polygons impinging on it, so as to produce a map

176 of average prevalence (Fig. 4). The calculated mean value of prevalence was weighted by

177 the size of herds in order to take into account for problems (ii) cited above. Smoothing by

178 two-dimensional weighted local regression (Cleveland and Devlin, 1988) on the centroids

179 of the squares in the grid made the maps more realistic.

180 3. Results

181 3.1. Sampling and observed seroprevalence

182 In total, 216 herds and 1784 head were sampled. Herd and cattle distribution in the

183 sample showed that small herds were slightly under-represented, in favour of medium-

184 sized herds (Table 3). On the other hand, small herds were over-represented near the

185 hydrographic network (Fig. 2). The differences in relation to the sample initially planned

186 can be attributed to field constraints such as herds in an out-of-the-way place or cattle

187 breeder absent or not in agreement with taking a blood sample.

188 The average serological prevalence observed among the cattle was 73.4%. The map of

189 herd prevalence, shown as points according to the corresponding dwelling, showed case

190 distribution but was difficult to interpret (Fig. 5).

J.-F. Michel et al. / Preventive Veterinary Medicine 1728 (2002) 1–14 7
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Fig. 3. Modelling of daily herd movements. Modelling herd movements consists in representing the direct route

between the night pen and the watering point or points, and drawing a buffer zone around the route,

corresponding to the area occupied by the cattle during the day. This zone of daily use by the herd varies in size.

The larger the herd and the nearer it is to its watering point, the larger the zone of frequentation is (BV: cattle)

(after De La Rocque et al., 2001).

Table 3

Herd size and head number in the sample

Herd size

Under five head 5–20 head Over 20 head Total

Number of herds 110 (51%) 70 (32%) 36 (17%) 216

Number of animals 327 (18%) 736 (41%) 721 (41%) 1784

8 J.-F. Michel et al. / Preventive Veterinary Medicine 1728 (2002) 1–14
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191 3.2. Statistical modelling: identification of risk factors

192 The deviance analysis showed that only the distance between cattle pen and watering

193 point was not significant and this variable was excluded from the model. All the other

194 variables were significant (Table 4). The dispersion parameter for the model was 2.48. The

195 relation between the numbers of observed and predicted positives (Spearman’s rank

196 correlation r ¼ 0:45, P < 0:0001) showed that the statistical model has a good fit. The

197 spatial autocorrelation tests revealed a positive correlation between observed and predicted

198 prevalences, whereas the residuals of the model were not correlated (Table 5). The

199 variables used in the model thus take account of the spatial factor. The odds ratios

200 calculated with the coefficients estimated by the model showed that proximity to the

Fig. 4. Data aggregation and spatial distribution of mean prevalence. This was done by projecting all the zones

of use and the corresponding prevalences onto a regular geographic grid of 1 km2. The cumulated distribution of

antibody-prevalence in the study zone was then represented by assigning to each square the mean value of the

prevalences for the herd polygons impinging on it, so as to produce a map of average prevalence.

Table 4

Deviance analysis of the model

Degree of

freedom

Deviance Residual degree

of freedom

Residual

deviance

P(>F)

NULL – – 215 666.51 –

typew 1 17.66 214 648.86 <0.0082

hrdsz 2 37.37 212 611.49 <0.0006

allyr 1 59.07 211 552.41 <0.0001

hy2km 1 54.17 210 498.24 <0.0001

J.-F. Michel et al. / Preventive Veterinary Medicine 1728 (2002) 1–14 9
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201 hydrographic network, frequentation of natural watering points, large herd size and the fact

202 of keeping animals near dwellings all year round were all risk factors (Table 6).

203 3.3. Modelling of spatial distribution of prevalence

204 The map of predicted serological prevalences, obtained by spatial modelling on a whole

205 study zone scale, showed that mean serological prevalence is distributed along the

206 hydrographic network, with focal points of high values, and that it spreads radially into

207 the neighbouring savannas (Fig. 6).

Fig. 5. Distribution of serological prevalence among the herds sampled. The map of seroprevalence for the herds

sampled, shown as points according to the corresponding dwelling, indicated case distribution. BV: cattle.

Table 5

Spatial autocorrelation tests for the observed and the predicted prevalences and the residues of the model, using

Moran’s (I) and Geary’s (c) indexes

Variable I P-values c P-values

Observed prevalence 0.196 <0.001 0.799 <0.001

Predicted prevalence 0.542 <0.001 0.465 <0.001

Residuals of model 0.020 0.248 0.972 0.288

10 J.-F. Michel et al. / Preventive Veterinary Medicine 1728 (2002) 1–14
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208 4. Discussion

209 4.1. Observed prevalence and statistical model

210 The serological results obtained from the sample confirm the enzootic situation that had

211 already been observed for trypanosomosis in the Sidéradougou zone, with high infection

212 levels among vectors (De La Rocque, 1997). On an animal production zone scale, parasite

213 pressure can be evaluated more accurately by the number of antibody carriers than by direct

214 detection of parasites (Desquesnes et al., 2000). With serological data, the statistical model

Table 6

Odds ratios (OR) calculated from the coefficients of the serological model

Variable Lower confidence

interval (OR)

OR Upper confidence

interval (OR)

Intercept 0.53 1.08 2.19

typewnat 0.88 1.34 2.04

hrdsz2 0.38 0.67 1.16

hrdsz3 1.03 1.99 3.84

allyryes 1.69 2.70 4.31

hy2kmyes 1.94 3.43 6.07

Fig. 6. Distribution of mean serological prevalence in the zone and high-transmission-risk zones. The high-

transmission risk zones are delineated by a white outline. This map shows that mean serological prevalence is

structured linearly along the hydrographic network, with focal points of high values, and that it spreads radially

into the neighbouring savannas.

J.-F. Michel et al. / Preventive Veterinary Medicine 1728 (2002) 1–14 11
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215 proved to be of high quality, and confirmed the risk factors conventionally identified in

216 terms of animal trypanosomosis, such as spatial and temporal proximity to vector-

217 propitious biotopes and intensity of contact with tsetse flies, particularly through watering

218 practices (De La Rocque et al., 1999). The risk associated with large herds can be put down

219 to the fact that such herds use natural watering points with sufficient capacity, which are

220 generally located in preferred biotopes of tsetse flies.

221 4.2. Spatial modelling of trypanosome prevalence

222 Daily movements of cattle were modelled at the end of the dry season, since at such

223 times, animal movements centre on specific sites: dwellings and watering points. More-

224 over, the end of the dry season is a key period for bovine trypanosomosis epidemiology: it

225 is the period with the highest risk of parasite transmission (Rowlands et al., 1993). Lastly,

226 modelling was conducted with a specific aim: to study the relations between cattle

227 trypanosomosis vectors and hosts on a whole-zone scale. The model predicts the presence

228 of cattle around the crucial points of contact between cattle and tsetse flies. It would have

229 been possible to introduce spatial constraints into the model, to take account of the relief or

230 of zones occupied by crops. However, these constraints are very limited at the end of the

231 dry season, and projection onto a geographic grid would reduce its accuracy.

232 The attribution of prevalences to zones of use by cattle and their aggregation within a

233 geographic grid provides continuous information in spatial terms. The map of mean pre-

234 valences,whichtakesaccountofall thepredictedprevalences, iswellsuitedtoserologicaldata.

235 Superimposing the map of predicted prevalences and the epidemiological risks zones

236 identified elsewhere (De La Rocque et al., 2001) shows that prevalence distribution

237 corresponds roughly to the zones with a high risk of disease transmission (Fig. 6). The

238 zones in the northeast, at the foot of the Banfora Cliff and in the extreme north, which had high

239 prevalence rates among cattle, were not subjected to the high-transmission-risk site identi-

240 fication procedure. The existence of high serological prevalences well away from the

241 hydrographic network can be explained by: (i) tsetse fly dispersion during the rainy season:

242 the flies infect cattle, which may still have antibodies when the next dry season arrives

243 (Desquesnes, 1997); (ii) the assignment of prevalences to cattle use zones that stretch well into

244 the savannas. It is thus crucial to take account of animal movements and land occupation if we

245 are to obtain a realistic picture of bovine trypanosomosis prevalence distribution in the zone.

246 Projecting the land occupied by each herd onto the geographic grid enabled us to

247 improve the resolution of disease representation in the zone. The choice of the size of the

248 elementary squares in the grid is crucial, as it governs the change in scale. We chose a size

249 of 1 km, since it corresponds (i) to a reasonable scale for taking account of variations in

250 daily herd movements and (ii) to the scale of the study and integration in the GIS of the

251 other topics covered in the study of disease transmission.

252 5. Conclusion

253 By taking account of animal movements and modelling the prevalence of the disease, the

254 method described enabled us to convert specific, partial spatial information on a herd scale

12 J.-F. Michel et al. / Preventive Veterinary Medicine 1728 (2002) 1–14
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255 into continuous information on a whole-zone scale. Spatial modelling is a robust method,

256 and produces a realistic picture of disease epidemiology. It showed that the natural

257 environment and animal production practices account for structure in trypanosome

258 distribution. The data layer obtained was integrated into a GIS with a view to validating

259 the zones with a high risk of animal trypanosomosis transmission. This opens the way for

260 the identification of spatial indicators of a trypanosomal risk, such as the presence of crops,

261 the spatial structure of habitats, and soil characteristics.

262 The approach described was based on detailed field data whose acquisition is time-

263 consuming, such as exhaustive, georeferenced counts of herds and their watering points.

264 One essential improvement would be to identify simple, easy to obtain indicators of the

265 presence of cattle and their movements.

266 The spatialization of data, their integration into a GIS, the coupling of conventional

267 statistical models and spatial models, and the methods available for changing scale offer

268 new methodological and thematic prospects for studying the epidemiology of directly and

269 indirectly transmitted diseases on different scales (Hay et al., 2000; Hendrickx et al., 2001),

270 but also for understanding the interactions between animal production and the surrounding

271 environment.
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281 Principes et Méthodes Quantitatives. INSERM, Paris, 498 pp.

282 Challier, A., 1973. Ecologie de Glossina palpalis gambiensis Vanderplanck 1949 en Savane d’Afrique

283 Occidentale. ORSTOM, Montpellier, 274 pp.

284 Cleveland, W.S., Devlin, S.J., 1988. Locally weighted regression: an approach to regression analysis by local

285 fitting. J. Am. Stat. Assoc. 83, 596–610.

286 Cliff, A.D., Ord, J.K., 1973. Spatial Autocorrelation. Monographs in Spatial and Environmental Systems

287 Analysis. Pion Limited, London, 178 pp.

288 Collet, D., 1991. Modelling Binary Data. Chapman & Hall, London, 384 pp.
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312 Gruvel, J., 1975. Données générales sur l’écologie de Glossina tachinoides Westwood, 1850, dans la réserve de
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