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Abstract

 

Classical multivariate analyses are based on matrix algebra and enable the analysis
of a table containing measurements of a set of variables for a set of sites. Incomplete
mapped data consist of measurements of a set of variables recorded for the same
geographical region but for different zonal systems and with only a partial sampling
of this zone. This kind of data cannot be analysed with usual multivariate methods
because there is no common system of sites for all variables. We propose a new
approach using GIS technology and NIPALS, an iterative multivariate method, to
analyse the spatial patterns of this kind of data. Moreover, an extension of our
method is that it can be used for areal interpolation purposes. We illustrate the
method in analysing data concerning the distribution of roe deer weights over sev-
eral years in a reserve.

 

1 Introduction

 

For several years, GIS has been recognized as the best tool to store and manage com-
pilation of spatially referenced data. Analysis of these data is often made more difficult
by the fact the areal units differ among various data sets. This incompatibility arises,
for example, from the fact that data come from different sources or that studied areas
change over time (Gregory 2002). This problem is well known by GIS users and can be
solved with areal interpolation methods (Goodchild and Lam 1980), which transform
data from one system of areal units (source zones) to another (target zones). Areal
interpolation methods often “take the form of interpolating the data from the source
regions to the intersections of the source and the target regions, and then combining
these appropriately to infer the data for the target regions” (Bloom et al. 1996). This
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implies that areal interpolation requires that each areal units system covers the whole
study region. If this is not the case two problems arise: (1) when one or more source
polygons do not intersect (at all) with the target polygons, data from these polygons will
not be transferred to the target coverage, (2) when one or more target polygons is not
intersected by a source polygon, no estimation can be made for this target polygon.

Multivariate analysis is a natural tool to summarise large data sets. Standard
methods such as principal component analysis (Hotelling 1933) or spatially constrained
methods such as local or global PCA (Thioulouse et al. 1995) are commonly used with
GIS (Guisan et al. 1999, Kadmon and Danin 1997, Zhang and Selinus 1998) to identify
and represent multivariate spatial structures. Multivariate analyses are based on matrix
algebra (singular value decomposition) and data must be contained in a matrix where
each column represents a variable and each row represents a site (e.g. Greenacre 1984).
Performing multivariate analyses is then very restricting because it requires that all
sites must be sampled for all variables. If it is not the case, there are two alternatives:
(1) estimation of missing values, or (2) exclusion of variables and sites containing missing
values. From these considerations, we can easily deduce that classical multivariate ana-
lysis cannot be used directly on compilation of data sets with different areal units. If each
system of areal units covers the whole study zone, a primary step of areal interpolation
can be performed and multivariate analysis is then applied on estimated values. For
other cases (i.e. partial sampling of the study zone), it seems that there is no evident
solution to perform multivariate analysis.

The purpose of this paper is the analysis of incomplete cartographic data. This deals
with data collected for the same geographical region but for different zonal systems and
with only a partial sampling of this zone. The analysis of spatial variations of this kind
of data is not possible with usual multivariate analyses because the data cannot be
entered in a variable-by-individual matrix. We propose a new methodology based on a
joint use of GIS technology and multivariate analyses. We analyse a data set on the
distribution of roe deer weights over years in the Chizé reserve (France) to illustrate the
method. The sampling scheme adopted for this study involves that the sampling loca-
tions where the data have been collected are not considered as points (like for most
studies on spatial data) but as polygons. Indeed, in a particular capture session, people
fenced some given forestry plots with 2–5 km of nets and animals enclosed in this area were
counted and weighed. Each year, from 58 to 79% of the area of the reserve is sampled
and the sampling scheme (and so the sampling units) changes over years (Figure 1). In
our example, variables correspond to different dates and so we analyse the temporal
variations of a spatial structure.

 

2 Areal Interpolation and Changes in Support

 

2.1 Literature Review

 

It is common in geographical research that areal units for which data are available are
not necessarily the ones the analyst wants to study. An answer to this problem can be
obtained by areal interpolation (Goodchild and Lam 1980, Lam 1983) that consists of
transferring data collected originally on one set of areal units (source zones) to a differ-
ent set of areal units (target zones). This problem is well known by GIS users and
various kinds of data transfer have been proposed in the literature. The “polygon over-
lay” (Markoff and Shapiro 1973) also referred to as “areal weighting” is probably the
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simplest method and has become a major function of many GIS softwares (Bloom et al.
1996). Data for target zones are estimated as a weighted average (or weighted sum) of
data for the source zones with which they intersect. Weighting is in proportion to the
area of the zones of intersection. The “pycnophylatic interpolation” originally suggested
by Tobler (1979) improves the areal weighting method considering the values of neigh-
bouring source zones. More “intelligent” methods, taking into account other relevant
knowledge about the zones, have been developed. These methods are based on statistical
assumptions providing maximum likelihood estimates of values for the target zones.
They use the values of other ancillary variables to which the variable of interest may
be related to improve the interpolation (Flowerdew and Green 1991, 1992, 1994,
Flowerdew et al. 1991, Langford et al. 1991). Goodchild et al. (1993) present a general
framework considering many of the previously mentioned methods.

These areal interpolation methods have been proposed in the case of two systems
of areal units covering the entire study region. There is no doubt that these methods can

Figure 1 Sampling schemes and distribution of roe deer weights in the Chizé reserve. The
number, size, shape and location of sampling areas are different among years. Weights have
been normalised by year. The reference grid that has been chosen for the analysis is also
represented on the map of forestry plots
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be easily extended to more than two zonal systems if one zonal system is chosen as the
reference. Hence, multivariate analysis could be performed on real data for the reference
zonal system and on estimation for other zonal systems. This approach is not satis-
factory and introduces biases in the analysis because there are estimation errors for
estimated data (Gregory 2002, Sadahiro 1999) and not for the real data of the
reference areal units. Moreover, areal interpolation methods fail in the case of partial
sampling because they cannot be used if there are target polygons with null intersec-
tions. To resolve these problems, we propose to operate changes in support by defining
a reference layer of spatial units that covers the whole study zone, independently of the
data. This allows preserving the symmetry of the data analysed and does not favour one
system of areal units. We adopt an approach of areal weighting but other methods could
be considered.

 

2.2 Spatial Linkage

 

We consider an area with defined boundaries. Some parts of this area are sampled
at the first date (Figure 1). For the next dates (e.g. year 2, year 3 . . . ), other sampled
areas can be different or can overlap the previous sampled areas. The first step of our
procedure is to create a reference layer of spatial units. Administrative units or some
other kinds of space partitioning can be used to define the spatial units. In this paper,
we chose to define the spatial units as the quadrats of a grid. The choice of the quadrat
size is discussed below. Then, for each year, it is easy to construct neighbouring relation-
ships between the quadrats of the reference grid and the sampling areas (Figure 2).

Let us consider, for year 

 

p

 

, that 

 

k

 

p

 

 areas have been sampled. We construct a grid of

 

n

 

 quadrats. The easiest way to establish a neighbouring relationship is to construct a
matrix 
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 with 
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This neighbourhood matrix represents the strength of the potential interaction between
quadrats and sampling areas. A more elegant and realistic way to fill this spatial weight
matrix is to take into account the area of overlap between sampling areas and quadrats.
The matrix 
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 is then filled as follows:
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. The
data reproduced in Figure 2 can be used to illustrate this statement. The link between

quadrat Q5 and sampling area P1 is simply expressed as  and as  for
Q5 and P2.

 

2.3 Construction of the Data Table

 

Let us consider a quantitative variable X measured in all sampling areas for each date.
Hence for each year 
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and result in a vector 
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p

 

 with 
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 rows. Computation of the weighted average for the 
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-
th quadrat for year 
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elements of the 
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-th row of 
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 is null) then a missing value is assigned for the 
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of vector 
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. A matrix 
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 (total number of years) columns is then
constructed in binding the 

 

N

 

 vectors 

 

Z

 

p

 

. Applying classical multivariate analysis using
singular value decomposition on table 

 

Z

 

 is not possible because of the existence of
missing values. An alternative is the use of the NIPALS algorithm (Wold 1966) instead
of singular value decomposition.

 

3 NIPALS Analysis

 

NIPALS (Nonlinear estimation by iterative partial least squares) is an algorithm, which
is at the root of PLS regression. Wold (1966) presented this algorithm under the name
of NILES (Nonlinear estimation by Iterative Least Square) in the case of PCA. NIPALS
allows performing a PCA (principal component analysis) with missing values without
deleting individuals with missing data or estimating the missing data. The algorithm
is iterative and based on successive linear regressions (Tenenhaus 1998). A general
presentation of the NIPALS algorithm is given in Wold et al. (1987). The method is shown
in schematic form in Figure 3 and the algorithm used for NIPALS analysis with missing
data is defined as follows:

Figure 2 Crossing of the reference grid and sampling area. Establishment of the neighbour-
hood matrix between quadrats and sampling area is made by computing the area of the
intersection between a quadrat and a sampling area. For example, the link between the
quadrat Q5 and the sampling area P1 is simply expressed by a1/(a1 + a2)
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Figure 3 Schematic representation of the method. Crossing the sampling areas and the
reference grid allows us to obtain a neighbourhood matrix (Ai) for each year. For year i,
measurements of variable (Xi) and neighbourhood matrix (Ai) are used to compute the aver-
age for each quadrat. A new table crossing quadrats and years is then created in binding all
vectors Zi. Table Z will be analysed using the NIPALS algorithm
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Step 2.2.2: Normalise 
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h

 

Step 2.2.3: For 

 

i

 

 

 

=

 

 1, 2, . . . , n:

Step 2.3:

In this way, NIPALS allows a user to perform PCA with missing values without estimat-
ing or deleting empty records. As for classical PCA, NIPALS allows the user to compute
row (th) and column (ph) coordinates as well as an eigenvalue for the h-th axis:

(2)

Moreover, missing values can be estimated using classical reconstitution formulae at the
h-th order (Good 1969):

(3)

A PCA of table Z with the NIPALS algorithm aims to find a row score that is a com-
promise of the different spatial patterns observed for all variables (i.e. years).

4 Application: Spatio-temporal Variation of Roe-deer Weights

This study was carried out in the 2,614 ha fenced Chizé reserve situated in western
France (46°05’N, 0°25’W). The roe deer population has been intensively monitored by
capture-mark-recapture methods since 1978 (Gaillard et al. 1993). Ten days of capture
in January and February allow 150–350 roe deer to be caught each year. In a particular
capture session, more than 100 people are involved and drive animals into 2–5 km of
nets, enclosing some given forestry plots. Most animals are released with individual
collars and the remainder is exported.

Fawns were captured between January and February and weighed using an electronic
balance. The site of capture and the sex were noted. All information was transferred into
a GIS. Sampling areas vary from one year to another (Figure 1). Male fawns are slightly
heavier than female fawns (Gaillard et al. 1996), so adjusted weights for males were
computed with an ANOVA in order to include in the analysis all individuals captured.

The reference layer was chosen as a grid of 58 quadrats measuring 800 m on a side.
We chose this size to be consistent with the scale of the data because the area of a
quadrat (0.64 km2) corresponds roughly to the average sampling area (0.654 km2). GIS
was used to compute the table of weight means crossing the 58 quadrats and the 6 years.
In this table, there is more than 6% missing values. The year 1998 was the poorest
sampled (10% missing values) and three quadrats contained only values for four years
out of the six total. Convergence was obtained in the NIPALS analysis and the decrease
of eigenvalues suggests a one-axis structure (Figure 4a). All years are positively cor-
related with axis 1 (Figure 4b) which indicates that for these years heavy roe deer are
found in the Northeast part of the reserve whereas light roe deer are found in the South
(Figure 4c). However, coordinates of years on the correlation circle indicate that some
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years (e.g. 1992) are more correlated to the common structure than others (e.g. 1998).
Reconstitution formulae (Equation 3) based on the first axis of NIPALS analysis were
used to obtain estimates of the weight distribution for all years for the 58 quadrats
(Figure 4c). We used GIS to perform areal interpolation (i.e. areal weighting) to estimate
weights for each zonal system (target zones) from the grid of quadrats (source zone).
The results are satisfying if we consider that reconstitution of the data have been made
using only one axis (Figure 5). The total sum of squares of differences between observed
data and estimation is 222.57 (Table 1). There are obvious differences in fit between
years and this can be confirmed by the values of correlation coefficients between
observed data and estimation per year (Table 2). The best fit is obtained for 1992 and
the worst for 1998. This is probably due to the fact that year 1992 is more correlated
to the common structure identified on the first axis of NIPALS analysis than 1998
(Figure 4b). Moreover, 1998 is also correlated with the second axis and it is evident that
the fit for 1998 will be greatly improved if the reconstitution is performed on the first
two axes of NIPALS analysis.

Variations of quadrat size (Tables 1 and 2) influence NIPALS analysis. With the
decrease of the size, the number of quadrats and the percentage of missing values
increase. If the number of missing values increases, then the convergence is attained with
difficulty and the number of iterations increases. Nevertheless, the use of small quadrats
induces a finer-scale study and local patterns of variations can be detected. Therefore,
the first eigenvalue increases and estimation is better adjusted with the detection of local
patterns. This is confirmed by the fact that global correlation coefficients decrease as the
quadrat size increases. Year 1992 is always the best fitted whereas lowest correlation
coefficients were produced for years 1993, 1998, and 2001. This confirms results
obtained for a size of 800 m and suggests a more sophisticated spatial structure than a
one-axis structure for these years. In our example, the influence of the quadrat size on
the results is minor because the structure observed in the roe-deer weights distribution
is simple and strong and is detected easily at each spatial scale.

5 Discussion and Conclusions

Our approach requires that the user specify a reference layer of spatial units. These
spatial units are the statistical individuals in the NIPALS analysis. The choice of this
layer can be induced by the data but in most cases, the user must create this space
partitioning and so the simplest way is to create a grid of quadrats. The choice of the
size of quadrats has to be consistent with the spatial scale of the study. In our case, the
area of quadrat is roughly the area of sampled plots. Moreover, the size of quadrats
influences the number of missing values in the new data table. The smaller the quadrats,
the larger the number of missing values is, because the number of intersections decreases.
If there are too many missing values, convergence of NIPALS will not be attained. In the
other way, the use of large quadrats will decrease the efficiency of the method to detect local
structure and thereby the quality of the estimation. Nevertheless, it is obvious that the
choice of the size has to be decided by considering the data a priori. In our case, sam-
pling locations are polygons and so it is easy to establish the neighbourhood relationships
by considering intersection across polygons. If the sampling locations are points, the use
of buffer zones or more sophisticated methods such as tessellation (Green and Sibson
1978) can be used to assign a polygon to each sampling location and define neighbours.
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Estimations of the data by reconstitution formulae are not very satisfactory but this
is not surprising. Indeed, estimations have been made using only one axis and will be
greatly improved with more axes. However, the first aim of our method is to perform
multivariate analysis in the case of different zonal systems and partial sampling and not
to predict data for new locations. This approach allows us to identify the most import-
ant structures in the data and to obtain information on spatial patterns for the whole
study region from partial spatial data. Our method contains two steps of areal weighting
and it is evident that it can be considered for areal interpolation purposes. Nevertheless,
for this task, the estimations will be better with quadrats of small size and by using more
axes in the reconstitution formula. Estimation of the data is made on the basis of the
structures identified by the first axes of the analysis. Therefore, we estimate a year by
taking into account the global structure of all years and considering only the common

Figure 4 NIPALS analysis of roe deer weights data: (a) Eigenvalues, (b) Correlation circle,
and (c) Spatial mapping of factor scores of the 58 quadrats for the first axis
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spatial variability among years. Hence, it is evident that the fit will be improved if two
or more common structures were taken into account. In this context, the NIPALS
approach can be considered as an intelligent areal interpolation method because for
each variable, the estimation takes into account the values of other variables defining
the NIPALS axes.

In this study, GIS appears as the central part of a multidisciplinary problem. GIS
has been used to capture, manage and display the data. The representation of the data
in the GIS has motivated new biological questions. The joint use of GIS and statistical
analyses results in the elaboration of new methodology that helps with the resolution of

Figure 5 Estimated and observed roe deer weights. Estimates of weights are computed for
each quadrat using reconstitution formulae after NIPALS analysis. Then, these estimates are
used to compute the averages, weighted by area of intersection, for each sampled area.
Correlations are given in Table 2

Table 1 NIPALS analysis of roe-deer weights data with quadrats of varying size. The total
number of quadrats and the percentage of missing values is given for each quadrat size.
Moreover, the first eigenvalue and the number of iterations from NIPALS analysis are noted.
The error sum of squares (ESSQ) between observed data and estimation computed using first
axis of NIPALS analysis and GIS are given

Quadrat size (m) 100 200 400 600 800 1000 1200

Number of quadrats 2819 739 203 99 58 41 30
% of missing values 33.1 25.4 16.2 10.6 6 4.4 4.4
Number of iterations 20 17 15 13 10 12 12
First eigenvalue 3.41 3.19 3.03 2.85 2.88 2.86 2.73
ESSQ 175.37 181.35 195.45 213.99 222.57 233.14 244.60
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biological problems. So, the integration of GIS allows us to improve the statistical
methodology as well as biological knowledge. GIS users get to know spatial analysis
tools from geostatistics. Problems related to the integration of geostatistics in GIS
softwares have been discussed for some time (e.g. Anselin and Getis 1992, Goodchild
et al. 1992). These reflections have produced numerous packages linking geostatistics
and GIS (Bivand 2001), and GIS and geostatistics are now considered rightly as essential
partners for spatial analysis (Burrough 2001). In the same way, we think that the ana-
lysis of spatial data would probably benefit for the improvement of the links between
GIS and multivariate analyses.
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