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Abstract 
Question: Are there spatial structures in the composition of 
plant communities?
Methods: Identification and measurement of spatial structures 
is a topic of great interest in plant ecology. Univariate measure-
ments of spatial autocorrelation such as Moran’s I and Geary’s 
c are widely used, but extensions to the multivariate case (i.e. 
multi-species) are rare.  Here, we propose a multivariate spatial 
analysis based on Moran’s I (MULTISPATI) by introducing 
a row-sum standardized spatial weight matrix in the statisti-
cal triplet notation. This analysis, which is a generalization 
of Wartenberg’s approach to multivariate spatial correlation, 
would imply a compromise between the relations among many 
variables (multivariate analysis) and their spatial structure 
(autocorrelation). MULTISPATI approach is very flexible and 
can handle various kinds of data (quantitative and/or qualitative 
data, contingency tables). 
	 A study is presented to illustrate the method using a spatial 
version of Correspondence Analysis.
Location: Territoire d’Etude et d’Expérimentation de Trois-
Fontaines (eastern France).
Results: Ordination of vegetation plots by this spatial analysis 
is quite robust with reference to rare species and highlights 
spatial patterns related to soil properties. 

Keywords: Correspondence Analysis; Moran’s I; Multivariate 
analysis; Spatial autocorrelation; Spatially Constrained Or-
dination.

Abbreviations: CCA = Canonical Correspondence Analy-
sis; CA = Correspondence Analysis; MCA = Multiple Cor-
respondence Analysis; MULTISPATI = Multivariate spatial 
analysis based on Moran’s I; TF = Territoire d’Etude et 
d’Expérimentation de Trois-Fontaines.

Nomenclature: Tutin et al. (2001).
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Introduction

Multivariate methods have often been used to sum-
marize ecological datasets. For instance, species-by-site 
tables can be analysed by Principal Component Analysis 
(PCA, Hotelling 1933) or Correspondence Analysis (CA, 
Greenacre 1984). CA is often preferred by plant ecolo-
gists because it considers relative composition (when 
PCA is based on abundance) and it is related to unimodal 
response models (Whittaker 1967; ter Braak 1985). How-
ever, the use of CA is sometimes problematic because 
the χ2 metric (used by CA) tends to overemphasize the 
importance of rare species. Various methods can be used 
to analyse environmental variables: PCA for quantita-
tive data, Multiple Correspondence Analysis (MCA, 
Tenenhaus & Young 1985) for qualitative data, while 
alternatives are available for mixtures of quantitative 
and qualitative data (PCAMIX, Kiers 1994).

Ecological datasets are often geo-referenced; one ma-
jor question concerns the identification and explanation of 
the spatial variability of ecological structures (Cormack 
& Ord 1979). Standard multivariate techniques are often 
used on geo-referenced datasets and often successfully. 
The usual approach consists in performing multivariate 
analysis to identify the main ecological processes and 
then interpreting the spatial components of structures 
observed on the first few axes. The second step can be 
achieved by mapping the scores in geographical space 
(e.g. Goodall 1954; Kadmon & Danin 1997; Dray et al. 
2003c) or by using geostatistical tools such as spatial 
autocorrelation indices (Selmi et al. 2003). However, 
standard multivariate analyses do not directly take into 
account spatial relations in their computation and are not 
specifically designed to identify spatial structures.

The identification and measurement of the spatial 
component of a single variable has been a major issue 
in applied geography. Global indices such as Moran’s I 
and Geary’s c (Moran 1948; Geary 1954; Cliff & Ord 
1973) and their local extensions (Anselin 1995) have 
been widely used to measure the spatial dependence 
and its local variations for one quantitative variable. 
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Indices for nominal data are also well known (Krishna 
Iyer 1949). However, all these approaches focus on the 
spatial structure of a single variable and cannot be used 
in a multivariate context.

Ecological data are often multivariate and spatialized 
and their analysis is closely related to the development of 
spatial multivariate techniques, i.e. methods of multivari-
ate analysis aiming at the identification of spatial structure 
(e.g. spatial patches, regional trends). These methods, 
which require the inclusion of the spatial dependence 
between observations in multivariate analysis, are rela-
tively undeveloped although this problem is encountered 
across a wide range of fields. The first interesting attempt 
that aimed at depicting basic multivariate spatial patterns 
was due to Wartenberg (1985). Lee (2001) showed that 
Wartenberg’s approach had major drawbacks and proposed 
a bivariate spatial association measure which can be easily 
used for spatial multivariate analysis. Other methods (see 
review in Bailey & Krzanowski 2000) have been developed 
in various fields such as spatial imagery (Switzer & Green 
1984) or geosciences (Grunsky & Agterberg 1991). All these 
approaches (including Wartenberg’s method) include the 
diagonalization of a spatial covariance or correlation matrix 
to identify multivariate spatial association and are restricted 
to the case of quantitative (normalized) variables.

In this paper, we propose a new method of spatial 
multivariate analysis. Contrary to the above-cited meth-
ods that deal only with (normalized) quantitative data, 
our approach is very general. It introduces a spatial 
constraint in classical multivariate methods and allows 
users  to perform spatial CA, for example. It can be seen 
as a generalization of Wartenberg’s approach taking into 
account the pitfalls pointed out by Lee (2001). We first 
introduce some simple elements of spatial analysis and 
we then present the general framework of multivariate 
analysis using the statistical triplet notation. Next, the 
principles of a new spatial multivariate analysis are given 
and the method is illustrated on a real data set.

Measurements of spatial association

Geary’s c and Moran’s I

Let us consider x, a vector composed by the measure-
ments of a variable for n spatial units, i.e.  xt = [x1,…xn]. 
Moran’s I is given by:
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and C = [cij]  is a spatial connectivity matrix.

Geary’s c is always positive while Moran’s I can be 
positive or negative. If we consider the vector 
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The spatial weighting matrix

The matrix C = [cij] is a weighting matrix (Bavaud 
1998; Tiefelsdorf et al. 1999) which indicates the strength 
of the potential interaction between spatial units. Cliff 
& Ord (1973, p. 12), specified that “the use of a gene­
ralised weighting matrix [...] allows the investigator to 
choose a set of weights which he deems appropriate from 
prior considerations. This allows great flexibility”. The 
binary connectivity version of C (B) whose elements   
equal 1 for contiguous spatial units and 0 otherwise is 
often used. Econometricians prefer to use the row-sum 
standardized version of 
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lows easier interpretation of autoregressive models (Ord 
1975). A double standardized spatial weighting matrix is 
also often used with sum of all elements equal to 

1
2

F = 

( )∑c c

ij ij
/

( )
 or to n (nF). De Jong et al. (1984) 

provided exact lower and upper bounds for c and I for a 
given connection matrix. These extremes are given by 
the smallest and largest eigenvalues of NBN and  

N W W N N I 11+( ) ( )( )t tn2 1 (where = –  is a center-
ing operator, 1t = [1,…,1] a (1 by n) row vector and I 
the identity matrix), for the B and W weighting options 
respectively, while the eigenvectors of these matrices 
(Griffith 1996, 2000a) can be used for spatial filtering 
purposes (Griffith 2000b; Getis & Griffith 2002). This 
diagonalization is closely related to the PCNM approach 
(Borcard & Legendre 2002) as demonstrated by Dray 
et al. (2006).

The choice of the spatial weighting matrix is the most 
critical step in computing a measure of spatial associa-
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tion because it can influence the significance of the test 
(Tiefelsdorf et al. 1999). Moreover, it defines also the 
limits of autocorrelation measures.

When W is applied, Lee (2001) proposes a nice 
decomposition of Moran’s I into two parts using the 
concept of spatial lag (Anselin 1996). The lag vector is 
composed of the averages of neighbours weighted by the 
spatial connection matrix and is computed by:
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Anselin (1996) proposed to study spatial autocorre-
lation with a Moran scatterplot by plotting the original 
variable (x) against the spatial lag of the variable ( x ). 
The use of the weighting matrix W reduces (3) to:
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where z  = Wz. Row-sum standardization implies that 
Moran’s I is reduced to a ratio of quadratic forms which 
can be easily interpreted and it provides a sort of smooth-
ing operator (lag vector). In the case of a regular lattice, 
the number of neighbours tends to be constant and the 
use of B (or F) weights can be justified. One can think 
of a ‘spatial lag’ as c z

ij jj

n

=∑ 1  (as in eq. 3) as a sum of 
the neighbouring values. If the number of neighbours is 
not constant, these values are a function of the number 
of neighbours. This  makes sense in some contexts, but 
there are many where it doesn't. The row-standardization 
avoids this problem and creates a variable that is simply 
an average of the neighbours and thus will be comparable 
to the value of the original observations. Moreover, it 
facilitates comparisons between spatial parameters in the 
case of spatial autoregressive model. The parameter space 
(the range of allowed values) is determined by the values 
in the weight matrix. For a row-standardized weights 
matrix, the maximum is always 1. For an unstandardized 
weights matrix, the maximum depends on the values in 
the matrix: high weights yield small parameter values 
and vice versa (L. Anselin pers. comm.).

All these considerations justify the preference for 
selecting the W weighting option to compute Moran’s 
I. Another argument arises from the work of Lee (2001) 
who rewrote Moran’s I to develop a bivariate spatial 
association measure:
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As the second part of the middle element is approxi-
mately 1, Moran’s I can be regarded as the product of a 
spatial smoothing scalar (SSS) by the Pearson correlation 
between the variable and its spatial lag. Then, Lee (2001, 
p. 376) suggested that a bivariate spatial association 
measure should include a “point-to-point association 
between two variables, which requires the inclusion 
of a certain form of Pearson’s correlation between the 
two variables” and “should reflect the degrees of spatial 
autocorrelation for both variables under investigation. In 
other words, it should respond to the collective effect of 
the SSSs of the variables”. Unfortunately, his approach 
considers the correlation between the spatial lag vectors 
( r

 x y, ) but not between the original variables (rx,y), and 
he found that these two quantities ( r

 x y,  and rx,y) could 
have different signs.

A new spatial multivariate analysis: MULTISPATI 
analysis

Standard multivariate analysis is a natural tool to 
summarize large data sets. Various methods are available 
to take into account the different characteristics of the 
data (quantitative or qualitative variables, contingency 
tables…). For a review in ecology, the reader should 
consult Dray et al. (2003a). The notion of statistical 
triplet (Cailliez & Pagès 1976; Escoufier 1987) provides 
a theoretical framework and an efficient way to define 
multivariate analyses. Applying a multivariate method 
(e.g., PCA, CA, …) to a data table X corresponds to the 
analysis of a statistical triplet (X, Q, D) (see App. 1 for 
more details).

We present a new approach, Multivariate spatial 
analysis based on Moran’s I (MULTISPATI). The method 
originates in a course in French (Chessel et al. 2004a) 
and introduces the row-sum standardized weight matrix 
W in the analysis of a statistical triplet (X, Q, D). It is 
possible to extend the concept of lag vector to construct 
a lag matrix X  = WX. The two tables X  = WX and X 
are fully matched, i.e. it contains the measurements of 
the same variables for the same sites. The principle of 
MULTISPATI consists of the analysis of this pair of tables 
by the coinertia analysis (Dolédec & Chessel 1994; Dray 
et al. 2003a) of a pair of fully matched tables (Torre & 
Chessel 1995; Dray et al. 2003b). MULTISPATI seeks 
for u1 ( )with u u QuQ1

2
1 1 1= =t  maximizing the quantity 

(see App. 1 for more details):

Q t( )u a Da
1 1 1
=  (7)

This analysis maximizes the scalar product between a 
linear combination of original variables (a1 =XQu1) and 
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a linear combination of lagged variables ( a1  = WXQu1). 
Eq. (7) can be rewritten as:

Q I( )u a a
D D1 1 1

2
= ( ) (8)

This formulation shows that MULTISPATI finds coef-
ficients (u1) to obtain a linear combination of variables 
(a1 = XQu1) which maximizes a compromise between 
the classical multivariate analysis (||a1||D2) and a general-
ized version of Moran’s I (ID(a1) ). The only difference 
between the generalized ID and the classical Moran’s 
I (eq. 3) is that the first one used a general matrix of 
weights D while the second considers only the usual 

case where D I= 1
n

.

In practice, it is preferable to diagonalize the Q-symmet-
ric matrix H = (1/2)(Xt (Wt D + DW) XQ) instead of 
XtDWXQ which is not symmetric. The maxima of eq. 8 
is equal and given by the first eigenvalue (λ1) of H.

In the case of the normalised PCA, MULTISPATI is 
equivalent to Wartenberg’s approach using a row-sum 
weighting scheme (more details are given in the Discus-
sion section and in App. 1).

In order to test the statistical significance of the spatial 
structure of the table X, a permutation procedure can be 
used. The statistic used is equal to trace(Xt DWXQ). 
The p-value is computed by comparing the observed 
value to those obtained by permutation of the rows of 
the table X.

The MULTISPATI approach has been implemented in 
the R software as a function of the ade4 package (Chessel 
et al. 2004b). The data set analysed in this paper is also 
available in the package under the name ‘vegtf’.

Application

Study area and data collection

Data were collected in the Territoire d’Etude et 
d’Expérimentation de Trois-Fontaines (TF), a 1360-ha 
enclosed forest. TF is situated in north-eastern France 
(48°43' N, 4°56' W) and has a continental climate, char-
acterized by cold winters and hot summers. The forest 
overstorey is dominated by Quercus sp., Fagus sylvatica 
and Carpinus betulus. The data set contains information 
about vegetation accessible to roe deer (height < 1.20 m, 
Duncan et al. 1998). This data set was collected at the 
scale of 1-m² sample plots and has been geo-referenced 
and introduced in a Geographic Information System. 
This sample technique is part of a population dynamics 
study aiming to understand relationships between roe 
deer population and their available food. On each plot, 
the abundance-dominance of all vascular plant species 

was recorded using a 7-point scale (Braun-Blanquet 
1932): absence; rare and cover < 5 %; abundant and 
cover < 5 %; 5 < cover < 25 %; 25 < cover < 50 %; 50 
< cover < 75 %; 75 < cover < 100 %. For the analysis, 
these abundance values were coded from 0 to 7. In total, 
337 plots systematically distributed on a grid (grid size 
= 333 m) were sampled and a neighbourhood graph 
was constructed using the queen definition (rectangular 
and diagonal connections). In total, 116 species were 
recorded. Only species which occur in at least four plots 
were kept for the analysis.

We applied CA and MULTISPATI-CA to the vege
tation data set (337 plots, 80 species). One property of 
CA (scaling type 1) is searching for a score of species of 
unit weighted variance (weights are relative frequency of 
species), samples are plotted at the weighted centroids of 
the species using the same weights and CA maximizes 
the weighted variance of plots (weights are relative 
frequency of plots). Interpretation of MULTISPATI-CA 
is exactly the same except that the quantity maximized 
is the product of the weighted variance of plots (criteria 
maximized in CA) and the generalized version of Mo-
ran’s I (using weights equal to the relative frequency 
of plots).

Results

A bar plot of the eigenvalues of CA (Fig 1a) showed 
a continuous decrease (4.02%, 3.72%, 3.38%, 3.24% 
and 3.07%) of the variability explained by the first five 
axes. It is then difficult to choose the number of axes to 
keep and this trend can be seen as a complete absence of 
ecological structure in the data. Subsequently, we tried to 
interpret the results using an ordination diagram of spe-
cies (Fig. 1b) and mapping of scores of plots (Fig. 1c, d) 
for the first two axes of the analysis. CA is very sensitive 
to rare species which are abundant in poor plots (e.g., 
see Table 1 in Dray et al. 2003a). This is illustrated by 
the position of the most discriminated species: Athyrium 
filix-femina. This species occurs in 12 plots and 55.8 % 
of its occurrences are in plots where richness is less than 
4 species. Species characterising (Fig. 1b) the negative 
side of the first axis of CA are essentially heliophilic 
species with low cover (Dactylis glomerata, Plantago 
sp., Trifolium sp.). 

The positive side corresponds to sciaphilic species 
with high cover (Fagus sylvatica, Ilex aquifolium, 
Fraxinus excelsior). Axis 2 of CA opposes the pole of 
neutrophilic-calcareous species (Adoxa moschatellina, 
Fraxinus excelsior) to acidicline-acidiphilic species 
(Athyrium filix-femina, Luzula pilosa, Convallaria maja-
lis) which are mostly located in the southern part of TF. 
Results of CA depict local structures and do not reveal 
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Fig. 1. Results of Correspondence 
analysis (CA). Eigenvalues (a), 
scores of species (b) and mapping 
of scores of plots on the first (c) 
and second (d) axis. The values 
of d indicates the size of squares 
of the grid. Species names: Adoxa 
moschatellina (Adomo), Anemo-
ne nemorosa (Anene), Athyrium 
filix-femina (Athfi), Carex sylva-
tica (Carsy), Convallaria majalis 
(Conma), Dactylis glomerata 
(Dacgl), Fagus sylvatica (Fagsy), 
Fraxinus excelsior (Fraex), Ilex 
aquifolium (Ileaq), Myosotis 
scorpioides (Myosc), Oxalis 
acetosella (Oxaac), Plantago 
sp. (Plasp), Pteridium aquilinum 
(Pteaq), Quercus sp. (Quesp), 
Ranunculus auricomus (Ranau), 
Ranunculus nemorosus (Ranne), 
Trifolium sp. (Trisp).

Fig. 2. Results of spatial correspondence analysis (MULTISPATI-CA). Eigenvalues (a), scores of species (b) and projections of 
the first five principal axes of CA onto the first two principal axes of MULTISPATI-CA (c). As principal axes are normalised, this 
figure represents correlations. The value of d indicates the size of squares of the grid. Species names: Adoxa moschatellina (Adomo), 
Athyrium filix-femina (Athfi), Brachypodium pinnatum (Brapi), Brachypodium sylvaticum (Brasy), (Cardi), Convallaria majalis 
(Conma), Deschampsia cespitosa (Desce), Evonymus europaeus (Evoeu), Fraxinus excelsior (Fraex), Galium aparine (Galap), 
Geranium robertianum (Gerro), Luzula pilosa (Luzpi), Mercurialis perennis (Merpe), Polygonatum multiflorum (Polmu), Quercus 
sp. (Quesp), Ranunculus auricomus (Ranau), Ranunculus ficaria (Ranfi), Salix caprea (Salca), Tilia cordata (Tilco).
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shows that MULTISPATI-CA is much less sensitive to 
rare species than CA. The positive side of the first axis 
corresponds to acidicline species (e.g. Athyrium filix-
femina, Luzula pilosa, Convallaria majalis) which are 
mainly located in the southern part of TF (Fig. 3a). Spe-
cies on the negative side of the first axis are essentially 
neutrophilous and calcareous species, with low cover 
and often demanding in terms of soil quality (Adoxa 

any clear spatial pattern (Fig. 1c, d). Maps of plots scores 
are then poorly spatially structured (Moran’s I is equal to 
0.086 and 0.080 for axis 1 and 2 respectively).

Results obtained by MULTISPATI-CA are easier to 
interpret (Figs. 2, 3). The bar plot of eigenvalues (Fig. 
2a) suggests two main structures associated to the first 
two positive eigenvalues (corresponding to positive 
spatial autocorrelation). Ordination of species (Fig. 2b) 

Fig. 3. Results of Spatial Correspondence Analysis (MULTISPATI-CA). Mapping of scores of plots on the first (a) and second (b) 
axis and of lagged score (averages of neighbours weighted by the spatial connection matrix) for the first (c) and second (d) axis. 
Representation of scores and lagged scores (e) of plots (for each site, the arrow links the score to the lagged score). Only plots 
discussed in the text are indicated by their labels. The value of d indicates the size of squares of the grid.
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moschatellina, Tilia cordata, Evonymus europaeus, 
Deschampsia cespitosa, Brachypodium sylvaticum). 
Scores of plots are positively autocorrelated (Moran’s I 
= 0.417) and their mapping reveals a north-south struc-
ture in TF. Second axis of MULTISPATI-CA opposes 
the pole of the calcareous species with Brachypodium 
pinnatum, Mercurialis perennis, Carex digitata (negative 
side) to nitrophilic species with Geranium robertianum, 
Ranunculus auricomus, Fraxinus excelsior, Adoxa mo-
schatellina and Galium aparine (positive side). Map of 
plots scores (Fig. 3b) reveals a spatial structure (Moran’s 
I = 0.417). Spatial structures detected by MUTLISPATI-
CA appear as mixture of structures obtained by CA (Fig 
2c). The first axis of MUTLISPATI-CA is negatively 
correlated with Axis 1 (– 0.431) and Axis 2 (– 0.456) of 
CA and positively correlated with Axis 3 (0.551). Sec-
ond axis of MULTISPATI-CA is correlated with Axis 1 
(– 0.253), Axis 4 (0.217) and Axis 5 (– 0.437) of CA. 
MULTISPATI-CA maximizes the product between the 
variance and the spatial autocorrelation of plots scores 
while CA maximizes only the variance. The loss of vari-
ance (due to the maximization of the product) is quite 
small: 0.405 versus 0.524 for axis 1 and 0.313 versus 
0.482 for axis 2. On the other hand, the gain of spatial 
autocorrelation (Moran’s I) is important: 0.417 versus 
0.086 for axis 1 and 0.417 versus 0.080 for axis 2.

Spatial autocorrelation can be seen as the link be-
tween one variable and the lagged vector (eq. 6). Hence, 
the spatial part of MULTISPATI-CA can be analysed 
through the link between scores and lagged scores (Fig. 
3). Each plot can be represented on the factorial map by 
an arrow (Fig. 3e, the bottom corresponds to its score, 
the head corresponds to its lagged score). A short arrow 
reveals a local spatial similarity (between one plot and 
its neighbours) while a long arrow reveals a spatial dis-
crepancy. This viewpoint can be interpreted as a local 
index of spatial association (Anselin 1995). For instance, 
plot 330 has a quite long right horizontal arrow because 
its neighbours contain at least one acidicline species 
(Athyrium filix-femina, Luzula pilosa, Convallaria 
majalis, Quercus sp.) while it does not contain any one. 
On the other hand, plot 290 which has a long left arrow 
contains only Athyrium filix-femina while there is only 
one occurrence of acidicline species (Luzula pilosa) in 
one of its eight neighbours. For the second axis, plot 229 
corresponds to a long vertical arrow because it contains 
only nitrophilic species (Geranium robertianum, Ra-
nunculus auricomus) and its neighbours do not contain 
these species. Lastly, note that lagged scores (Fig. 3c, d) 
could be used to perform a spatial classification of the 
main vegetation types, an objective of prime interest in 
wildlife management (e.g. Pettorelli et al. 2005). 

Discussion

One major objective of multivariate analysis is 
to describe the main ecological structures while the 
MULTISPATI approach aims to describe only spatial 
ecological structures. Hence, the use of MULTISPATI 
improves the description of spatial patterns but non-
spatial information is discarded. This point of view can 
be related to the comparison between ordination (e.g. CA) 
and constrained ordination methods (e.g. Canonical Cor-
respondence Analysis, CCA). In CCA, we decide to lose 
the optimality of CA in order to study species responses 
to environmental variables of interest. In MULTISPATI-
CA, we decide to lose the optimality of CA in order to 
study spatial patterns of ecological structures. This choice 
is clearly related to the objective of the study.

The MULTISPATI approach is based on the introduc-
tion of the spatial weighting matrix in the statistical triplet 
notation. Hence, one can perform MULTISPATI-PCA 
for quantitative data, MULTISPATI-CA for contingency 
tables, MULTISPATI-MCA for qualitative data. As shown 
before (Eq. 1), Moran’s I is negative when negative auto-
correlation appears and our approach, which is based on 
this index, will produce negative eigenvalues. In the case 
of a high negative eigenvalue, it is important to inspect the 
associated eigenvectors which can depict local structures 
of interest (negative autocorrelation). On the contrary, 
Geary’s c is always positive (Eq. 2) and that is probably 
why the first attempts to spatial multivariate analysis are 
based on this index. Following the initial work of Lebart 
(1969), many methods have been mainly developed by 
the French school of statisticians (Le Foll 1982; Benali & 
Escofier 1990; Chessel & Sabatier 1993; Méot et al. 1993) 
and by Italians in the context of multiscale analysis (Di Bella 
& Jona-Lasinio 1996). Although these methods have the 
advantage to produce only positive eigenvalues, they have 
a major drawback in their objectives: they maximize the 
local variance (i.e. difference between neighbours) while 
often users want to minimize this quantity and maximize 
the spatial correlation.

Wartenberg (1985) was the first to develop a multi­
variate analysis based on Moran’s  I. In his work, he 
proposed to diagonalize M = XtFX, where X contains 
normed and centered variables, and presented examples 
where the connectivity matrix was based on inter-points 
distances and always symmetric. Lee (2001) criticized 
Wartenberg’s work and proved that this approach is not 
valuable with row-sum standardized weights. He shows 
that in this case, the spatial bivariate association measure 
is not correct because it is asymmetric. The derivation 
of Lee (2001) is correct but rather naïve because this 
formulation yields an asymmetric matrix M. Finding 
eigenvalues of such a matrix is difficult because they can 
be complex. The correct derivation must use (W + Wt) 
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instead of W (de Jong et al. 1984). In this case, Wart-
enberg’s (1985) approach is exactly the MULTISPATI-
(normalised) PCA. The third part of the appendix shows 
that in this case, the spatial bivariate association measure 
is symmetric and satisfies Lee’s (2001) conditions cited 
above. Moreover, it is interesting to note that this measure 
considers the correlations between one original variable 
and another one lagged variable ( r r

j k j k y y y y, ) and thus is 
intimately linked to the multivariate extension of a Mo-
ran scatterplot which plots y j  versus yk or yk versus yj 
(Anselin et al. 2002).

The MULTISPATI approach maximizes the com-
promise between the original analysis and the autocor-
relation (Eq. 8). Note that an additional constraint can 
be intoduced so that the MULTISAPTI analysis will 
maximize only the spatial part (i.e. the first part of the 
product in Eq. 8). One alternative for this purpose is to 
use the principal components of X instead of the table X. 
This corresponds to an implicit use of the Mahalanobis 
metrics (i.e. inverse of the variance-covariance matrix) 
and therefore to a previous decorrelation of the original 
variables. However, this step requires many observations 
compared to the number of variables in order to avoid 
problems of numerical instability. This special case of 
MULTISPATI on quantitative data is equivalent to the 
spatial factor analysis and their extensions (Switzer & 
Green 1984; Green et al. 1988; Grunsky & Agterberg 
1991; Bailey & Krzanowski 2000).

The two points of view (Geary’s c and Moran’s I) have 
been reconciled by Thioulouse et al. (1995) who use the 
spatial weights from B to normalize the data. Although 
this approach is very elegant in a mathematical point of 
view, it requires that the mean and the variance of the 
original variables are computed taking into account the 
spatial connectivity. As summing the elements of B by 
row will not lead usually to uniform weights, the mean 
and the variance of the original variables are not invari-
ant when permuting the rows of X. This is problematic 
because in the case of the null hypothesis (no spatial 
structure) of inferential tests, it would be required that 
all spatial units have the same weight in the computa-
tion of the mean and the variance. This problem does 
not appear in MULTISPATI test but further study is 
required in order to examine the inferential properties 
of the testing procedure.

Various methods have been proposed in ecology to 
take into account space in multivariate analysis. The 
most traditional approach considers two steps. Firstly, 
a table representing explicitly some spatial structures is 
constructed (this table is often called ‘space’ in scientific 
papers). Then, this table is used as a predictor or co
variable in a (partial) canonical ordination method such 
as Redundancy Analysis (RDA, Rao 1964). Methods of 
variation partitioning (Peres-Neto et al. 2006) can then 

be used to evaluate the part of the variation in species 
composition which is due to space, environment or both. 
In the literature, different tools have been proposed to 
create the space table. Borcard et al. (1992) used a poly-
nomial of degree 3 while Borcard & Legendre (2002) 
developed the PCNM approach. Dray et al. (2006) 
demonstrated that the PCNM method is a particular case 
of the more general framework of Moran’s eigenvector 
maps (MEM). MEM are the eigenvectors of a double-
centered spatial weighting matrix. MEM provides a set 
of orthogonal predictors which maximize the spatial 
autocorrelation (i.e. Moran’s I). In a theoretical point of 
view, MEM and MULTISPATI are quite close: they use 
a spatial weighting matrix and measure spatial autocor-
relation by Moran’s I. However, when MULTISPATI 
seeks for linear combinations of variables that maxi-
mize the product of the autocorrelation by the variance, 
RDA with MEM maximizes the variance explained by 
the spatial descriptors (which maximize spatial auto-
correlation). This theoretical difference implies some 
practical considerations. For a table with n rows (sites), 
the number of MEM, which are used as descriptors or 
covariables in RDA, can be equal to (n – 1). In this case, 
the regression step of RDA can be problematic because 
the species table would be completely predicted by the 
high number of spatial descriptors. It is thus necessary 
to reduce the number of MEM before the regression. 
Classical forward selection is too liberal in this context 
(many orthogonal predictors) and tends to select too 
much regressors (see Dray et al. 2006 for more details). 
MULTISPATI maximizes directly the spatial autocor-
relation and so avoids all the problems related to the 
regression step of RDA. Hence, MULTISPATI could be 
preferred if one want to study the spatial structures of 
one data set. If one want also to include other descrip-
tors (e.g. environmental variables) than space and to 
perform variation partitioning, MULTISPATI can not be 
used as it works with autocorrelations and not variances. 
If we suppose that a subset of MEM has been properly 
selected, RDA with MEM has to be preferred for this 
objective. In this context, methodological developments 
are required to extend the MULTISPATI approach to 
the case of methods for relating two data tables such as 
Redundancy Analysis or co-inertia analysis (Dolédec & 
Chessel 1994; Dray et al. 2003a).
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App. 1. Mathematics

Classical multivariate analysis:

Each multivariate method (e.g., PCA, CA, …) corresponds to a statistical triplet (X, Q, D) where X is a (n × p)  

matrix derived from any data table, D be a scalar product of n
  (n by n symmetric matrix) and Q be scalar product 

of p
  (p by p symmetric matrix). The analysis of a triplet consists of finding a vector u1 (first principal axis) so that 

the quadratic form:

2

1 1 1 1( ) t tQ = =
D

u XQu u QX DXQu 		  (A.1)

is maximized under the constraints that 
2

1 1 1 1t= =
Q

u u Qu .

If r is the rank of the matrix X, then the second and further principal axes (u2, u3, …, ur) maximize the same quantity, 

but are subjected to extra constraints of orthogonality, i.e. for all s≠t ( )| 0s t =
Q

u u .

In practice, the solution vectors uj (1 j r≤ ≤ ) are obtained as the right-hand eigenvectors of tX DXQ , and the 

maximum of Q(uj) is equal and given by the j-th eigenvalue λj.

The general framework of MULTISPATI:

MULTISPATI corresponds to the diagonalization of the statistical triplet ( , ,1/ 2( ))t +X Q W D DW . It seeks for a 

vector u1 (with 
2

1 1=
Q

u ) maximizing the quantity:

( ) ( )

1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1 1

( ) (1/ 2( ))

1/ 2( )

1/ 2 | 1/ 2 |

t t t t

t tt t t t t

t t tt t

Q = +

= +
= +

= = =
D D

u u Q X W D DW XQu

u Q X W DXQu u Q X DWXQu

XQu WXQu WXQu XQu

u Q X DWXQu a DWa a Da

		  (A.2)

Equation (A.2) can be rewritten as:

( ) ( )

1 1
1 1 1

1 1

2 2

1 1 1 1

( )
t t t

t t t
t t t

Q

I I

=

= =D DD D

u Q X DWXQu
u u Q X DXQu

u Q X DXQu

XQu XQu a a

		  (A.3)
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MULTISPATI-(normalised)-PCA:

In the case of the normalised PCA of an original table Y (i.e., [ ] ( ) /ij ij j jx y y σ = = − X ), the elements in matrix 

H can be written as:

1 1

1 2 2

1 1

1 2 2

1 1

(1/ 2)( ( ) )

1 1
2 2

1
2 ( ) ( )

1
2 ( ) ( )

1 1
2 2j j k k

t t
jk j k

n nij j ij jik k ik k
i i

j k j k

n ij j ik k
i n n

ij j ik ki i

n ij j ik k
i n n

ij j ik ki i

y y y yy y y y

n n

y y y y

y y y y

y y y y

y y y y

SSS r SSS r

σ σ σ σ= =

=

= =

=

= =
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− −− −= +

− −=
− −

− −+
− −

≅ +

∑ ∑

∑
∑ ∑

∑
∑ ∑

y y y y y

H x W D DW x Q

 









k jy

		  (A.4)

and using (6) and (A.4), it is easy to show that ( )kk kI=H y . In this case, MULTISPATI is equivalent to Wartenberg’s 

approach using a row-sum weighting scheme.


