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Abstract-This paper is intended to give a short overview about
the NEPSAC nonlinear predictive control approach. In the first
part there are presented the theoretical aspects of the control de-
sign procedure, and then in the next section are shown the results
for the designed algorithm for a real life experiment. There are
also compared the results with other type of controllers like the
MPC or PID controller.
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1. INTRODUCTION

The main objective of this paper is to present the NEPSAC
(Nonlinear Extended Prediction Self-Adaptive Control) control
algorithm in a real life application. As the name shows it can
deal with nonlinear systems, using predictive control algorithm
with a self adaptive ability. The fact that it can be applied to
nonlinear systems is only an extension of the linear EPSAC,
the fundamental principles of the algorithm are the same in
both cases [1].

The predictive part of the algorithm is relying on the fact that
it is based on the MBPC principle, i.e. it uses a model for pre-
dicting the future response of the system, and based upon this
prediction computes the necessary control action for the sys-
tem.

The self-adaptive capability of the algorithm specifies that
even for partial miss modeling or for varying systems it is able
to function within a normal range, adapting itself to the
changes of the modeled system. In other words this ensures a
rather high degree of robustness of the algorithm.

A. General description problem

The chosen problem may be divided into the following sub-
parts:
Choosing the system that will be controlled
Building the necessary 10O interface to the system
Making identification experiments for the model
Getting a valid model for the system
Building a controller for the system
Testing and optimizing the controller

At the moment of choosing the plant a list of points needs to
be analyzed in order to eliminate the possible problems which
may emerge at later stages of the design procedure. Such points
may be the available measuring devices for the quantities
needed to be measured or how many states can be measured
and how many are needed to be known; controllability of the
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plant and the sampling rate of the signals. These are only some
of the most fundamental parts of the selection criteria. Based
on the mentioned criteria’s there was selected a high perform-
ance equipment water tank system which will be described in
details in the next section.

As the NEPSAC control algorithm is a model based control
algorithm it needs a model for the system. The model can be
obtained via identification experiments. At this point is already
essential to have some basic knowledge about the system, such
as the sampling time, the measured variables, and the con-
trolled quantities.

Based upon this priory knowledge it is needed to be selected
the type of the identification experiment: step response, stair
case, PRBS or other type of excitation [3]. The ideas upon
which were selected the input types is presented in the section
describing the identification. After selecting the input type it is
needed to be performed the proper identification experiments.

Finally, based on the collected data from the identification
experiment it can be built a model for the system, which later
can be used in the control design procedure. This model build-
ing is not a trivial task; it may need also physical modeling
knowledge about the system. The model building is treated in
details in the part presenting the modeling.

The controller design in the case of EPSAC is generally
done based on input/output from a state space model. The cur-
rently presented solution has extended this principle.

B. The novelty of this approach

The main novelty of the current solution is that it does not
use a state space or transfer function model for the system, in-
stead of it, it can be used any ‘black box’ model being able to
generate a valid output for the model for a certain excitation at
a certain operation point. In other words, it uses only the re-
sponse of a model, and does not care about the description
form of the model.

II. THEORETICAL PRESENTATION

A. Theoretical Aspects of the Model Based Predictive Control
Basically there is an interest to reduce some cost in the
plants. In other word these economical problems can be trans-
lated to some cost indices used in the control procedure. The
model based predictive control (MBPC) approach’s main ad-
vantage is that it can handle easily these costs and constraints.
However the MBPC control does not want to eliminate, nor
replace the ‘old good working” PID controllers, rather it offers
a chance to reformulate some problems at higher hierarchical
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levels, e.g. economical ones. At this way one may think about
predictive controllers as some supervisors, which can provide
useful advices to their subordinates in such a way that some
long term interest will be satisfied [1].
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Figure 1 The basic idea of MBPC

The key idea of the MBPC can be summarized on the Figure
1. There can be seen clearly separated the past, present and
future control variables. This approach supposes that there is
known in advance the reference trajectory for the output state
trajectories, at least in some points (dealing with the number of
points/shape of the reference trajectory there are available dif-
ferent methods). The system may also have dead time, which
can be introduced in the model. The past values for the inputs-
outputs are available in the database. The main control objec-
tive is to minimize some cost represented by a cost index.

B. The basic idea of EPSAC
For the linear case of the predictive control algorithm con-
sider the system as presented on the Figure 2:
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Figure 2 The model for the control

The notations used for the Figure 2 are the followings:
e y(f): (measured) process output
e u(f): process input
e  x(f): model output
e n(f): noise
For the discrete model there is considered the CARIMA type
one presented in the relation (1):

Ag™)y(0) = B(g (0 + %e(r)

Where the e(t) signal is considered white noise, and it repre-
sents the disturbance through the filter between the controller
and the system.

M

230

The equation represented in the relation (1) can be solved us-
ing different techniques, like the algebraic equations (Dio-
phantine equation), or by the filtering ones. The two different
approaches produce the same result [2].

The GPC approach uses the Diophantine equation techniques
to solve the system (1), while the EPSAC uses the filtering one.
On the following there will be presented the filtering approach.

C. The noise prediction in the model

One of the obvious advantages of the presented approach is
that there can be implemented a noise model in the case that
there is a priory knowledge about it. By the simple equation
(2), the noise can be determined as the difference between the
model output and the measured state:

n(t) = y(t) — x(z) ®)

However it is not as trivial to predict the future noise. One
convenient way is to suppose it as being white noise, passing to
a suboptimal integration filter. This allows predicting the noise
as 0 mean one, i.e. the best prediction being the mean of it, and
considering 0.

The white noise e(t) can be recalculated by passing the
measured noise through ‘inverse’ filter used for modeling the
disturbance. After having the values for e(t) in the past, the
future values can be taken 0, as the best approach for mean of
the white noise. With these values, there can be predicted the
future noise in a recursive way.

n(t+k|t):gi+j;e(t+k|t)

In the relation (3) the | operator represents the prediction of
the signal at the moment ¢ for the time 7+k in the future, e.g. the
noise at the #+k moment predicted at the time ¢.

There are made N2 prediction points in the prediction hori-
zon.

3

D. The controller configuration

The response of the system is considered to be one com-
posed from a base component and a forced, optimal one as in
the equation (4). This is valid for linear systems although it can
be extended to nonlinear ones too [1].

y = ybase + yopt (4)

This means conceptually the followings:

- The yBase is produced if the system is leaved with the last
command to act free over the predicted horizon with the uBase
command defined priori. This is not relevant for linear systems
however in the nonlinear case this needs to be considered too;

- yOptim will be the response for the optimizing part of the
input, i.e. the one which is added to the uBase in order to
minimize a certain cost function. This is presented on the
Figure 3.
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Figure 3 The idea of the base and optimized response

Having in mind that the yOptim is the response to certain
special impulses represented by uOptim, with the amplitude of
uOptim at moment t while on the other hand these impulses
have a finite length, so they can also be interpreted as some
sort of step inputs. As a result, the yOptim can be computed as
a combination of impulse/step response such in the equation

)
Yo (E+ K |8) =R ou(t|t)+ h_ou(t+1]8)+--+

&)
+ gk—NU+15u(t + Nu -1 | t)
Which using a matrix notation it can be represented as:
yopt(t+Nl|t) ]
Yo (+ Ny +1]1)
Yopt =
yopt(t+N2 |[) i
I th th—l th—NU +2 gNl—NU+l_
hN1+1 hN,
G =
L th hy, - thNU+2 En,-Ny+1 |
ou(t|t)
ou(t+1]|t
o_| a1l
ou(t+N,—-1]|1)
Y, =G*U
(6)

E. The control objective

In the case of the predictive control approach the main aim is
to minimize a cost function. Therefore a most common ap-
proach is to minimize the following well know ITAE form de-
scribed in (7):

N2 2

Slrt+ k- yt+k|t)]

N1

0

For the term (7) using the notations from (6) the optimal so-
lution can be written in the following matrix form:

v =(G"6)'¢"(R-7) (8)

In this way the optimal control part can be determined by
simple matrix multiplication using the already defined G ma-
trix and the difference between the R reference and the Y
measured values, however special attention should be paid for
numerical stability problems.

F. Extension to the non linear case

The superposition principle — the system response may be
decomposed in base and optimized responses — presented in the
previous chapters which theoretically is valid for linear systems
only[1].

Although for nonlinear systems in case that the future uBase
is selected appropriately, then the optimal and the base re-
sponse are practically identical, i.e. no superposition is in-
volved, so this results in the optimal response for NEPSAC In
order to apply the EPSAC algorithm for nonlinear systems, the
following steps have to be done:

e Select the uBase in such a way that this is close to
the uOptim, so there is no superposition involved at
the generation of the response.

e  Once there is selected the uBase there can be com-
puted the uOptim, using the above presented algo-
rithm.

e For nonlinear systems the last step might be needed
to be repeated in order to get a close yBase and
yOptim response.

e As it can be seen in the case of the nonlinear sys-
tems the optimization is done more than once.

III. PRACTICAL APPROACH TO THE PROBLEM

In this chapter first is presented the plant on which were car-
ried out the measurements, together with the physical model-
ing, the simulations and the carried out experiments.

A. Presentation of the experiment equipment
On the Figure 4 there is shown the schematics of the water

tank system.
&

Figure 4 The schematics of the water tank system

As it can be seen there are two water tanks, from which/into
which can flow water on several pipes. There is a pump in the
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system, several valves and a servo valve too. On both tanks
there is installed an infrared level sensor

The used 10 interface to the tank process is realized via the
available modules from IPCON-7000 production series. These
are general IO modules which can be interconnected through
the RS-485 protocol in a communication bus. They use as
communication protocol the DCON specific commands.

DCON Communication Protocol for 1-7000 series module
works on the principle that there is sent a command to the de-
vice which answers for the sent command. The distinction
among the modules is done using the address as ID for each of
them.

B. The plant model

The diagram describing the process is presented on the
Figure 5. The rate at which water enters is proportional to the
voltage, V, applied to the pump. The rate at which water leaves
is proportional to the square root of the height of water in the
tank.

t’ Water in
bV

Tank

Water out

aH
Figure 5 The water tank system overview

The water tank system can be modeled via differential equa-
tions represented by
d dH

—Vol = A—— = bV
dt dt

~aH )

The equation (9) describes the height of water H, as a func-
tion of time, due to the difference between flow rates into and
out of the tank. The equation contains one state, H, one input,
V, and one output. It is nonlinear due to its dependence on the
square-root of H. The constants a and b are specific for the
tank, and they need to be identified.

There is also a Simulink model available for the system,
which gives a clear view about the nonlinear characteristics in
the system. The model using the Simulink blocks is presented
on Figure 6.

Qutput

(Constant

alA Square
Root

Figure 6 The Simulink schematics of the plant
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C. Parametric identification of the process

The testing of the sensor and the pump: First there were car-
ried out some experiments in order to determine the character-
istics of the sensors and the pump of the system.

The sensor testing consists of checking the linearity of the
sensor. As it was mentioned in the specifications of the system,
the sensor linear is a linear one, which fact was validated with
an experiment.

At the next step there was tested the pump linearity. As it
can be seen on the Figure 7, the pump has a rather linear be-
havior in the range of 0-6. After the pump linearity test, it was
checked the non-linear characteristic of the flow out from the
tank, which can be also seen on this figure from the time inter-
val 150 to 250.

Basic exparimant: pump - and flow
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Figure 7 The linearity of the pump

After performing the two experiments there was performed a
measurement with stair-case excitation to the system.

The aim of the stair case experiment was to get the nonlin-
earities in the system, and to be able to validate later the ob-
tained models. The obtained stair case response is plotted on
Figure 8.

Staircase experiment
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Figure 8 The stair-case experiment

The Simulink control design tool was used for the parametric
identification of the plant using the dataset from the staircase
experiment. Using this toolbox it can be done the identification
in an automatic way, i.e. after the signal specifications, the
toolbox estimates the parameters of the model based on certain
types of optimization methods [5].
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In the next step as a validation for the obtained model this
was tested against the measured values, as this can be seen on
the Figure 9. As it can be seen on this figure, the simulated
output is close to the measured one.

Weasured ve Simusted Responses

— f \t"‘"—w—|
3 L
— Thir migas enad s ponte l\- }
— The simulsted eIpoAEe
1 i i T 1 1 L
0 20 A0 GO0 EI0 1000 1200
Time (36¢)

Figure 9 The response of the identified model

D. The controller design

The PID Controller design was performed using a graphical
design tool based on frequency response of the system called
FRTool [4]. As the plant is a nonlinear one, and the control
algorithm is for linear plants, there was chosen a local opera-
tion point around which it was considered a model of the plant.

Having this model, the frequency response of the controlled
system is presented on the Figure 10. As it can be seen on this
figure, the response of the system (thin blue line) is satisfying
the robustness constraint (thick blue line), as well as the over-
shoot constrain (thick red line) and the imposed response time
(green line).

40

30F-

- . 3 : L i HEN R
-200 -150 -100 -50 i
Figure 10 The frequency response of the system with the PID controller

The NEPSAC controller design was performed without mak-
ing any explicit linearization of the plant, instead of this, using
the referenced output generated from the model.

The whole algorithm’s idea is an intuitive one, although it is
important to make a suitable data representation for the past,
present and future values of input/outputs, states, and noise.

The convention that was used in this paper is the following:

Tablel

| Past(Nx) | Present(1) I Future(N2)

In Tablel Nx represents the number of elements that will be
stored from the past. This depends mainly on the length of the
structure of the modeled system. The values for the present are

just one dimensional, while the predicted values have N2
length, having in mind that all the inputs/states/noise are being
predicted on a horizon of N2 points.

Although there is no local linearization performed using this
algorithm, the step response at each sampling time for the
model is recalculated. In order to have a fast algorithm in the
first approach there was made a trade off, considering a local
model for the system of the form presented in equation (10)

K (10)

s+ a

This form can be easily deduced from the physical model of
the system. The problem with this approach was that the re-
sponse of the system will get more and more far away from the
real one. In this case the response had steady state error, due to
the approximations done at the previous phase. As the predic-
tion horizon grows, it grows the steady state error too. A possi-
ble solution for this problem may be to include an integrator
element in the noise model; however this may reduce the phase
margin of the system. So this approach is not a useful one, and
it can be used only in the case that N2 is small, as this is also
visible on the Figure 11.

The local model and the system step response
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Figure 11 The locally operation point response

Instead of the local operation point it was used the step re-
sponse of the model starting from an initial state, which re-
sponse can be generated from the Simulink representation of
the plant. This approach leaded to a correct behavior of the
controller.

After having done the two controllers design phases, in the
next step there were compared in simulations the outputs from
the two controlled systems.

NEPSAC-PID comparison
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Figure 12 Comparison of the PID and NEPSAC simulations
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As it can be seen on the Figure 12 the response of the PID
controlled system is fast, doing well around the operation point
where it was designed, but it gets with a slow convergence to
the set point in different operation points. On the other hand,
the nonlinear predictive control algorithm handles in correct
mode the nonlinearities in the system.

E. The real time experimental set up

The experiment was performed for different controllers the
control algorithm running on a PC. The link between the plant
and the PC was done with the IPCON data acquisition board,
with a sampling time of 1 second. In case of the NEPSAC al-
gorithm it was necessary to check the real time constraints of
the algorithm which is a rather time consuming one. On the
Figure 13 there is shown the result of the algorithm profiling.
As it can be seen, the algorithm runs in about 0.5 seconds, in
this way satisfying the real time constraints for the control ap-
plication with the 1 second sampling time.

Real time constains

Time hits (s)

020 RN N |
— Sampling time
: — Algorithm time
0 | | | T I
0 10 20 30 40 50 60

Time (s)
Figure 13 The algorithm running time and the sampling time

The result of the PID controlled system is presented on the
Figure 14. As it can be seen on this figure, the controller has
quite a good response near the operation point where it was
tuned, but in other points, the response is pretty poor. Also the
control effort has great variations compared to the NEPSAC

case.
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Figure 14 The PID response in the experiment
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On the Figure 15 there is shown the output of the controlled
system with the NEPSAC controller in case of the prediction
horizon N2=5 and the control horizon N1=1.

NEPSAC expreiment: staircase
— Input
NEPSAC response
Ao Reference

Hight (units)

el e

i i
100 150
Time (s)

200

Figure 15 the NEPSAC response of the experiment

Although the response of the controlled plant with these tun-
ing parameters is slower than in the case of the PID controller,
there are no stationary errors in this case. The input to the plant
has less variation than in the previous case, and in this way the
control effort is also less.

CONCLUSIONS

As a conclusion it can be said, that the NEPSAC control al-
gorithm is performing well in different operation points in case
of nonlinear plants, and it can be also estimated the computa-
tional effort for this type of control algorithm as this is a de-
terministic one.
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