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Abstract
Modelling the dynamic dependent data by the linear approach is the most popular among the researchers because of its sim-
plicity in calculation and approximation, however, in real-world phenomena, most of the time-dependent data follow the non-
linearity. Moreover, most of the nonlinear modelling of time-dependent data have found in the financial applications. Besides 
this sector, the authors of this paper found the presence of nonlinearity in meteorological data with the help of four popular 
nonlinearity tests. Furthermore, there is a scarcity of the application of regime-switching threshold autoregressive nonlinear 
time-series model in forecasting the weather variables like temperature. Thus, this paper aims to compare the forecasting 
accuracy of the linear autoregressive (linear AR), self-exciting threshold autoregression (SETAR), logistic smooth transition 
autoregressive model (LSTAR), and feed-forward neural network (ANNs) and fitted with the determination of regime and 
hyperparameters. After fitting the models, twenty steps ahead forecast considered for the comparison along with the selected 
model selection criteria; and results depict that the LSTAR models are selected as the most appropriate fitted models for 
forecasting the daily Average, Maximum and Minimum temperature. Finally, it has observed that the average, as well as 
maximum temperature of Dhaka, Bangladesh, have an increasing trend and minimum temperature having a decreasing trend.

Keywords Nonlinearity test · Threshold autoregression · Regime switching · Model selection · Forecasting · Temperature · 
Bangladesh

Introduction

Time-series analysis deals with real-world phenomena under 
the concept of dynamic dependencies. Most of the research-
ers focus on the linear time-series models because of their 
long history of successful applications as well as straight-
forward calculations and good approximation. Moreover, 
linear processes and models are often adequate in making 
inferences about the time-series-related phenomena as these 
models dominate the research from the past decades. Prob-
ably the linear autoregressive (Linear AR) model and its 
branches are the most extensively used time-series model to 
predict future values with the help of a linear combination 
of past values. The simple idea of stochastic deference in the 

autoregressive model can deliver accurate forecasts together 
with a random error in a series. But there is an issue of the 
biasness in terms of forecasting the high frequent or long-
term time series and financial data, e.g. hourly temperature 
data, four-minute stock price data (Olson and Wu 2020). 
Conversely, nonlinear models can give better approximation 
and significant contribution in numerous cases, especially in 
this era of nonparametric and computer-intensive modelling. 
Moreover, from the literature it is seen that the application 
of nonlinear time-series models for financial prediction is 
increasing enormously because of its property of charac-
terization of the asymmetric dynamics of data. Any devia-
tion from the causal time-series linear models produces the 
nonlinearity. This variation can lead to certain restrictions in 
exploration, which result in different approaches to tackling 
the substantial nonlinear world of different classes (Tsay and 
Chen 2018). As a consequence, there is an issue of the accu-
rate forecast, as many researchers argue with some case stud-
ies. For example, Teräsvirta (2006) conclude that the linear 
models give better forecast than nonlinear models. Alter-
natively, Montgomery et al. (1998) showed that in the case 
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of the regime-switching forecast, the nonlinear models give 
better estimates; however, Dacco and Satchell (1999) found 
weak outlook. Meanwhile, White (2006) mention that non-
linear models have issues of complicated computation, over-
fitting, and difficult interpretation in practice for multi-step-
ahead forecasts. So, there is no constrain conclusion about 
the better performance between linear and nonlinear mod-
els. However, the interest in nonlinear threshold time-series 
models was steadily increasing after addressing. Still, over 
previous decades, it has been getting more attention because 
of its application in economic time series, mainly because of 
its state-dependent or regime-switching behaviour (van Dijk 
et al. 2002). In modern time-series analysis, there is a bunch 
of models to handle the nonlinear time-series data that can 
broadly divide into the parametric and nonparametric. One 
can approach both parametric and nonparametric means of 
projection for univariate nonlinear time-series data. To make 
the comparison and multi-steps predictions, selected univari-
ate parametric regime-switching threshold autoregressive 
models have considered in this study.

The regime-switching Threshold Autoregression (TAR) 
model is a nonlinear time-series model found in the litera-
ture with life cycle and jumping phenomena as a signifi-
cant feature. The modern TAR modelling approach allows 
two or more branches or regimes governed by the values 
of the threshold variable. The available models in the lit-
erature may contain two or multiple schemes where move-
ments between regimes governed by an observed variable. 
Also, TAR models become popular after the publication 
of Tong and Lim in 1990, though Tong first proposed it 
in the literature (Tong 1978, 1990). There is a variant of 
regime-switching threshold autoregressive models, among 
them, Self-exciting Threshold Autoregressive (SETAR) and 
smooth transition autoregressive (STAR) is needed to men-
tion. Moreover, the STAR model has two popular variants 
named Logistic STAR (LSTAR) and Exponential STAR 
(ESTAR).

In 1991, the SETAR model, which might have consid-
ered as the extension of piecewise linear regression with 
structural changes in threshold space (Tong 1990; Tong and 
Yeung 1991). The SETAR model possibly the most widely 
used TAR model, which often named as segmented linear 
regression. There is a substantial application of SETAR 
model as it used to deal with the assets market prices, 
exchange rate forecasts, water usage for rice irrigation, 
currency incomes and currencies, GDP and others relative 
cases (Ismail and Isa 2006; Tong and Yeung 1991; Kräger 
and Kugler 1993; Tiao and Tsay 1994; Potter 1995, 1997; 
Chan and Tsay 1998; Clements and Smith 1999, 2001; 
Feng and Liu 2003; Umer et al. 2018). Conversely, the 
comparative study, along with the other models, was con-
ducted by several researchers. Among them, in the study of 
Consumer Price Index of Lithuania, Export Volume Index, 

and Domestic Producer Price Index Series in Turkey and 
Industrial Production Index (IPI) of four major European 
countries have studied through the SETAR model in recent 
years. (Bratčikovienė 2012; Aydin and Güneri 2015; Boero 
and Lampis 2017). Another extended version of the popular 
SETAR model has introduced in the early nineties to deal 
with the existence of nonlinearity named smooth transition 
autoregressive (STAR) model (Teräsvirta 1994, 1996; van 
Dijk et al. 2002). The mechanism of governing the transition 
between regimes makes the main differences between STAR 
and SETAR model. The STAR model aims to identify the 
speed of transition between regimes by a transition function. 
It also determines the threshold level both endogenously 
as well as exogenously. Transition function includes two 
major types as a logistic and exponential function, which 
is popularly known as Logistic STAR (LSTAR) and Expo-
nential STAR (ESTAR) model. The STAR model consists 
of three-stage as specification, estimation, and evaluation, 
which make the model more convenient, but the constant-
coefficient may create a problem to measure the volatility 
(Teräsvirta 1998).

The brief idea of the STAR model was discussed in sev-
eral articles (Teräsvirta et al. 1994; Teräsvirta 1994, 1996; 
Potter 1999; van Dijk et al. 2002). The STAR model has 
vast applications in different fields of study. For instance, 
Istanbul market efficiency, disinflations of Australia, Can-
ada, and New Zealand, Swedish business cycle, the real 
exchange rate of G-10 countries, industrial production, 
and 47 macroeconomic variables of the G7 economies 
have investigated through STAR model (Sarantis 1999; 
Skalin and Teräsvirta 1999; Leybourne and Mizen 1999; 
Bradley and Jansen 2004; Teräsvirta et al. 2005; Antwi 
et al. 2019). There is a bunch of researches that compare 
the linear models with the threshold models, including 
SETAR, LSTAR, and ESTAR model. Boero and Marrocu 
(2002) showed the superiority of the STAR model against 
linear models. Chu (2008) shows the outperforms of the 
STAR model comparing to linear models. Moreover, the 
variant of the STAR model also used to deal with the non-
linear pattern, particularly most of the case study, which 
compares the linear and nonlinear models includes LSTAR 
and SETAR, in their analysis. Furthermore, many studies 
only consider the specific version of STAR models; for 
example, in the study of the Bucharest Stock Exchange 
(BET) index and the asymmetric behaviour of the quar-
terly unemployment rate focuses on the LSTAR model 
(Rothman 1998; Acatrinei and Caraiani 2011). Alterna-
tively, Artificial neural networks (ANNS) and deep learn-
ing models become very popular in recent years because 
of its many successful applications towards different sec-
tors. The characteristics of approximation in any arbitrary 
close nonlinear function and the nature of detecting truly 
nonlinear dynamic relationships without the complexity 
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of dealing with parameter results increased the popularity 
of ANNs. Moreover, to ignore the complexity of param-
eters, ANNs often considered as pattern recognition and 
forecasting ‘black box’ models (Franses et al. 2000). There 
is a bunch of available neural network models to deal with 
time-series data. Among them, a straightforward archi-
tecture-based feed-forward neural network with a single 
hidden layer have considered in this study, which denoted 
as ANNs.

Evidence from the above discussion indicates that, 
through the application of the Linear AR (Linear AR) 
model, and regime-switching threshold AR (TAR) models, 
no constraint conclusion could have drawn, as several com-
parative studies suggest diverse models as a suitable model 
to deal with the time-series data. Moreover, there is an ample 
amount of research exists in the literature which deals with 
the nonlinearity of economic and financial data. Still, in 
reality, the existence of nonlinearity not only found in eco-
nomic and financial data but also in other dynamic time-
series data like meteorological data. Furthermore, there is 
a bunch of studies available in the literature which includes 
the Markov regime-switching and other regime-switching 
models for forecasting of wind speed as well as other time-
series dynamics. (Haldrup and Nielsen 2006; Janczura and 
Weron 2010; Reikard 2010; Lerch and Thorarinsdottir 2013; 
Chen and Bunn 2014; Song et al. 2014; Allen et al. 2020; 
la Torre-Torres et al. 2020; Oscar et al. 2020; Ouyang et al. 
2020). The authors of this article did not find any research 
article which includes any of the threshold regime-switching 
autoregressive models among SETAR, LSTAR, and ESTAR 
for the application of meteorological data. However, this 
study intended to deal with the nonlinearity of the selected 
meteorological variable of the capital Bangladesh (Dhaka); 
through the comparison of selected linear and nonlinear 
models. The focus of this study to introduce the nonlinear 
regime-switching threshold autoregressive time-series mod-
els in the meteorological field through the comparison of 
Linear AR, SETAR, LSTAR, and ANNs.

Methodology

Data sources

This study considers three variables namely daily Aver-
age, minimum, and maximum temperatures of Dhaka, 
Bangladesh for carried out the analysis. The dataset of the 
mentioned variables has been collected from Bangladesh 
meteorological department over the period January 1971 to 
May 2019. As these data contain missing values, the missing 
values have replaced by previous and subsequent 10 days 
average value.

Methods

This study involves the test of nonlinearity, identification 
of the parameters of the model, and comparison among the 
selected models along with 20-day forecast of the selected 
variables. Both the means of the parametric and nonpara-
metric nonlinearity tests have included in the study. As 
mentioned by Tsay and Chen (2018), the BDS test, and 
Mcleod-Li and Engle test included among nonparamet-
ric tests. Similarly, the parametric test F-test, and Keenan 
and RESET tests considered for testing the nonlinearity. 
Linear autoregressive (Linear AR), SETAR, LSTAR, 
and ANNs models have selected to make a comparison 
between linear and nonlinear models. The main focus of 
this study is to introduce the nonlinear regime-switching 
parametric time-series model to the meteorological vari-
able; thus, the SETAR and LSTAR parametric model have 
selected among the nonlinear regime-switching threshold 
autoregressive time-series models. Most basic ideas of 
linear autoregressive from the linear worlds and artificial 
neural network-based algorithms from the popular non-
parametric nonlinear world have considered in this study. 
Since the linear autoregressive model is the basic starting 
of any linear time-series model, it has assumed that the 
particular extension of linear models like autoregressive 
integrated moving average (ARIMA) and other models 
may work correspondingly. Similarly, the underlying sin-
gle hidden layer-based feed-forward neural network is the 
most prior ideas of nonparametric artificial intelligence 
segment. More advanced algorithms may apply in the fur-
ther study if there is any evidence of better fitting of this 
algorithm. The nonlinear world boosted massively from 
the last few decades. There is a bunch of univariate non-
parametric models including kernel smoothing, splines, 
wavelet smoothing, and many more. There is evidence of 
applying these methods also in the literature. But there are 
no constraints pieces of literature and application noticed 
for the parametric nonlinear models for the weather vari-
ables. Hence, this study introduces these models in the 
branch of weather forecasting. However, further study can 
be made by including the extension of linear AR models 
like ARIMA, nonparametric univariate models, and other 
advanced neural-network-based time-series algorithm 
along with the regime-switching threshold autoregressive 
models. Following mathematical illustration involved the 
basic idea of tests, models, and algorithms. For a further 
and detailed study, readers suggest seeing the referred arti-
cles and books. Since the linear Autoregressive (Linear 
AR) is the most used and trendy applied model for time-
series analysis, the explanation and mathematical demon-
stration have not discussed in the following part.
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Nonlinearity test

The BDS test The BDS test consider the null hypothesis of 
independent and identically distributed (iid) random vari-
ables of a time series with the help of correlation integral 
(Broock et al. 1996). Roughly, correlation integral is a 
popular idea of chaotic time-series analysis where repeated 
temporal patterns have measured in frequency. The embed-
ding m dimensional correlation integral can define as,

where T  denotes the sample size of a time series {
xt|t = 1,… , T

}
 with m positive integers. The m-his-

tory have defined as xm
t
=
(
xt, xt−1,… , xt−m+1

)
 with 

Tm = T − m + 1 number of constructed m-history. In 
Eq. (1), � is a given positive real number with I(�, v|� ) indi-
cator variable. For testing the nonlinearity, the correlation 
integral c(m, �) and 1st-history c(1, �) have compared with 
the intuition that if 

{
xt
}
 is iid then there is no existing pat-

tern in the data under the independence and mth power of 
the corresponding probability of 1st-history. The BDS test 
can be defined as,

where �c(k, 𝜀) = lim
Tk→∞

2

Tk(Tk−1)

∑ ∑
k≤s<t<T

I
�
xk
t
, xk

s
�𝜀� and the 

standard error s(m, �) can be estimated under the null 
hypothesis consistently from the data. For more detail’s 
reader are suggest to see the reference paper (Brock 1987; 
Broock et al. 1996; Tsay 2010).

McLeod–Li and Engle tests The general portmanteau 
test with the assumption of a weakly stationary x2

t
 process 

has applied to residual ât of an fitted time-series model was 
proposed by McLeod and Li, which known as McLeod-Li 
test of testing nonlinearity (McLeod and Li 1983). The 
lag − l autocorrelation of squared residual with T  sample 
size defined as,

where �̂�2 =
∑T

t=1
â2
t

�
T  and fixed positive integer m with the 

joint distribution 
√
T
�
�̂�aa(1), �̂�aa(2),… , �̂�aa(m)

�� is asymp-
totically multivariate normal with mean zero and identity 
covariance matrix. To test the nonlinearity, McLeod–Li 
proposed the portmanteau statistics with the adequate fitted 
linear model and fourth-order stationarity as,

(1)c(m, 𝜀) = lim
Tm→∞

2

Tm(Tm − 1)

∑ ∑
m≤s<t<T

I
(
xm
t
, xm

s
|𝜀)

(2)D(m, �) =

√
T
�
ĉ(m, �) −

�
ĉ(1, �

�m
)
�

s(m, �)

(3)�̂�aa =

∑T

t=l+1

�
â2
t
− �̂�

��
â2
t−1

− �̂�
�

∑T

t=1

�
â2t − �̂�

�

It is mentionable that Q∗(m) has asymptotically distributed 
as �2

m
 which is essentially a Ljung-Box test of the x2

t
 process. 

For autoregressive conditional heteroscedastic (ARCH) model, 
often Q∗(m) is equivalent to the Lagrange multiplier test of 
Engle, where an AR(m) model has used with the error term �t 
(Engle 1982). The AR(m) model defined as,

With the consideration of F-statistics the null hypothesis and 
alternative could have tested to test the ARCH effect with 
H0 ∶ �1 = �2 = ⋯ = �m vs Ha ∶ �a ≠ 0 for i ∈ {1,… ,m}. 
Moreover, one can use mF as test statistics with �2

m
 

distribution.
Keenan and Ramsey RESET Test Most of the paramet-

ric nonlinearity tests based on zero-mean stationary Volt-
erra time series consider that if some of the higher-order is 
nonzero, then the series becomes nonlinear. In 1969, Ram-
sey proposed a specification RESET test for testing with the 
linear AR(p) model (Ramsey 1969). This model considering 
xt−1 = (1, xt−1,… , xt−p)

� and � = (�0,�1,… ,�p)
� as,

The testing procedure consisting of three steps where the 
fitted value x̂t , residuals ât , the sum of squared residuals 
SSR0 =

∑T

t=p+1
â2
t
 , and least square estimate �̂� have been 

obtain in the first step. In the second step, least square resid-

uals v̂t and the sum of squared residual SSR1 =
T∑

t=p+1

v̂2
t
 have 

computed for the linear regression model,

The test of nonlinearity of AR(p) stated in Eq. (6) could 
draw in third step with the F test, where the conclusion is 
drawn for the coefficient �1 and �2 of Eq. (7). The acceptance 
of the null hypothesis of the zero coefficient (� = 0) state the 
linearity of AR(p) model. The F – statistics could define as,

with the degrees of freedom g and T − p − g under the lin-
earity and normality assumption. On the contrary, to avoid 
the multicollinearity between x̂2

t
 and Xt−1 of Eq. (6), Keenan 

introduces the nonlinearity test, where modified x̂2
t
 are used 

in the second step of RESET test (Keenan 1985). According 
to the Keenan modification, the fitted linear regression in 
Eq. (7) has used to remove the linear dependence of x̂2

t
 on 

Xt−1 with the computation of the estimated residual �̂�t . To 

(4)Q∗(m) = T(T + 2)

m∑
𝜄

�̂�2
aa
(t)

T − 𝜄

(5)â2
t
= 𝛽0 + 𝛽1â

2
t−1

+⋯ + 𝛽mâ
2
t−m

+ 𝜀t

(6)xt = x�
t−1

� + at.

(7)ât = x�
t−1

𝛼1 +M�
t−1

𝛼2 + vt.

(8)F =

(
SSR0 − SSR1

)/
g

SSR1∕(T − p − g)

; g = s + p + 1

Author's personal copy



2455Modeling Earth Systems and Environment (2020) 6:2451–2463 

1 3

test the zero coefficient (� = 0) , the sum of squared residual 

SSR1 =
T∑

t=p+1

(ât − �̂�t�̂�)
2 =

T∑
t=p+1

v̂2
t
 has obtained from the 

linear regression model,

The F test With the inclusion of half stacking vector of on 
and below elements of the diagonal matrix vech(xt−1x�t−1) , the 
different choice of regressor Mt−1 = vech(xt−1x

�
t−1

) has intro-
duced by Tsay to improve the RESET and Keenan’s test (Tsay 
1986). Tsay nonlinearity test uses the partial least square F 
statistics in the linear least square regression (9) with error 
term et to test the coefficient � = 0 , where F-statistics follow 
F distribution with g and T − p − g − 1 degrees of freedom. 
Laukkanen and others proposed different alternatives and 
extensions, where they suggest x3

t−i
; i = 1,… , p term for Mt−1 

(Luukkonen et al. 1988).

Nonlinear time‑series models

SETAR model A time-series xt follows a two-regime TAR 
model for the threshold variable xt−d of order p with a 
sequence of iid random variables �t is satisfying the follow-
ing equation along with mean zero and unit variance.

where �i and �i are real-valued parameters such that �i≠�i 
for some i with the theoretical delay d and threshold r . The 
most straightforward class of nonlinear models involves the 
piecewise linear regression model for the estimation. As a 
consequence, the SETAR model is the simplest particular 
case of the TAR model. In a recent study, several improve-
ments have been done in case of estimation and prediction 
of numerous parameters of the TAR model. Among the sev-
eral types of SETAR models, only the two-equation based 
SETAR model with the two linear sub-model have men-
tioned in the following (Tong 1990). The previously defined 
TAR model could have been written with a slightly different 
version by the high-degree with an integer lagging value d 
as,

(9)ât = �̂�t�̂� + vt.

(10)xt = x�
t−1

� +M�
t−1

� + et.

(11)xt =

⎧⎪⎨⎪⎩

𝜙0 + +
p∑
i=1

𝜙ixi−1 + 𝜎1𝜀t, if xt−d ≤ r,

𝜃0 +
p∑
i=1

𝜃ixi−1 + 𝜎2𝜀t, if xt−d>r,

(12)xt =

⎧⎪⎨⎪⎩

𝜙1,0 +
p∑
i=1

𝜙1,ixt−1 + 𝜎1𝜀t, if xt−d ≤ r,

𝜙2,0 +
p∑
j=1

𝜙2,jxt−1 + 𝜎2𝜀t, if xt−d>r,

with the two autoregressive levels p1 and p2 , the sim-
plified model can be obtained through the assumption 
p1 = p2 = p;1 ≤ d ≤ p for the defined TAR

(
2, p1, p2

)
 model 

with d lagged. Finally, the simplified first-degree SETAR 
model with the � autoregressive parameters and standard 
noise deviation � can be defined as,

To know more details about the properties, estimation, and 
multi-step forecasting of the SETAR model, readers suggested 
reading referred articles and book chapters (Tong 1978, 1990; 
Teräsvirta 1996; Rothman 1998; Tsay and Chen 2018).

LSTAR model As discussed before, the Smooth Transition 
Autoregressive Model (STAR) model is a similar kind of 
TAR model with a different mechanism of transition in regime 
with a ranged transition function. To define the STAR model, 
TAR(p) model defined in Eq. (10), can rewrite with the indi-
cator variable I(y) as,

where d is the delay parameter and xt−d is the threshold vari-
able and the step I(xt−d>r) function governs the transition 
from one regime to another regime.

Any time series xt will follow the two-regime STAR model 
with transition function G(st|� , c) where st = xt−d if it satisfies 
the following equation.

where � and c is the scale and location parameter with the 
condition 0 ≤ G(st|� , c) ≤ 1 , and at is the iid sequence of 
random noises with mean zero and variance 𝛿2

a
> 0. The 

exponential, standard Gaussian and logistic transition func-
tions result in different types of STAR models. For instance, 
by considering the logistic function, the transition function 
can be defined as,

where G(st|� , c) → 1 if �(st − c) → ∞ and the resulting 
model can define as a logistic STAR or LSTAR model. The 
iterative building of the model, identification, and smoothing 
details can found in a suggested reference where readers can 
make their clear concept about the LSTAR model (Teräs-
virta et al. 1994; Tsay and Chen 2018).

(13)xt =

{
�1,0 + �1,1xt−1 + �1�t, if xt−d ≤ r,

�2,0 + �2,1xt−1 + �2�t, if xt−d ≤ r,

(14)

xt = (𝜙0,1 + 𝜙1,1xt−1 +⋯ + 𝜙p,1xt−1 + 𝜎1𝜀t)[1 − I(xt−d > r)]

+ (𝜙0,2 + 𝜙1,2xt−1 +⋯ + 𝜙p,2xt−1 + 𝜎2𝜀t)I(xt−d > r),

(15)

xt = (𝜙0,1 + 𝜙1,1xt−1 +⋯ + 𝜙p,1xt−1 + 𝜎1𝜀t)[1 − G(xt−d > r)]

+ (𝜙0,2 + 𝜙1,2xt−1 +⋯ + 𝜙p,2xt−1 + 𝜎2𝜀t)G(xt−d > r) + at.

(16)G(st|� , c) = 1

1 + exp[−�(st − c)]
.
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It needs to be mentioned that the determination of the 
regime is relevant at regime base nonlinear threshold models 
as there are two regimes and multiple regime base models 
available in the literature. The graphical methods of deter-
mining the regime found effective in literature. This study 
involves the determination of the regime through the graphi-
cal method with the help of a smoothing function. The local 
smoothing method considers the scatter plot to have an initial 
idea about the regime. Moreover, to determine the autoregres-
sive lag order, the popular Partial Autocorrelation function 
(PACF) and maximum likelihood estimation of determining 
the order also used to determine the parameter of linear AR 
model. Similarly, the identification of the hyperparameters of 
the SETAR, and LSTAR model includes the identification of 
theoretical delay, maximum lag order for the selected regime, 
and many more. Gonzalo and Pitarakis (2002) deliberate a 
procedure of selecting these parameters through a grid search 
procedure with the involvement of pooled AIC and p-values 
which can be implemented by the R package tsDyn (Gonzalo 
and Pitarakis 2002; Narzo et al. 2020).

Artificial neural network (ANNs) The Neural network can be 
used in prediction as it is a nonparametric statistical advance-
ment in calculating power and algorithm. Among several 
algorithms, the vanilla feed-forward network most widely 
used in modern time-series analysis. However, the single hid-
den layer feed-forward neural network ANNs have considered 
dealing with the nonlinearity of selected weather variables of 
Bangladesh. Franses et al. (2000) compare and show the rela-
tions with different TAR based models. However, the ANNs 
aim to model the nonlinear relationship, where the interpre-
tation of the regime is not focused, as the determination of 
switching done through the particular linear combination of 
the p lagged variable over the vector xt . Finally, the summa-
rized neural network model denotes with linear output, D hid-
den units and activation function g as follows,

The Reader can see the book of Franses et al. (2000) 
and Ripley (1996) to know the summarized the derivation, 
properties, and estimation as well as the network nomencla-
ture (Venables and Ripley 2002). The hidden layer size also 
obtained by the tsDyn R package along with an iterative 
process (Gonzalo and Pitarakis 2002; Narzo et al. 2020).

Results and analysis

The analysis considers two significant schemes. Some prior 
exploratory analysis, nonlinearity test, and determination of 
hyperparameter of the models were involved in the first part, 

(17)xt+s = �0 +

D∑
j=1

�jg

(
�0j +

m∑
i=1

�ijxt−(i−1)d

)
.

and the comparison of applied models, as well as the multi-
step prediction, deliberated in the second part.

One common tactic is to determining the autoregressive 
order of lag order to deal with the autoregressive models. 
However, there are several approaches available in the lit-
erature to deal with the autoregressive order. The most used 
PACF function and maximum likelihood estimation (MLE) 
of selecting autoregressive orders have used and found 12 
as an adequate autoregressive order for average, maximum, 
and minimum temperatures. The estimated order of 12 is 
selected from MLE with estimated sigma-square value 
2.0766, 2.086, and 2.0606, respectively (Fig. 1).

As the focus of this study to deal with the nonlinearity 
of weather variables, the test of nonlinearity is vital before 
exploring the appropriate model. The BDS test, Mcleod-li 
and Engle test; Ramsey RESET and Keenan test; and the 
F test have performed, and almost all of the tests confirm 
the existence of nonlinearity (Table 1). As mentioned in the 
methodology section, the BDS test tries to reject the null 
hypothesis of an iid random variable of a given time series 
with three embedding dimensions, if there is an existence of 
nonlinearity. The significant p values (less than 0.05) con-
firm the rejection of the null hypothesis for the BDS test. In 
Mcleod-li and Engle test, the considered portmanteau test 
statistics with significant p value (less than 0.05) confirm the 
nonlinearity (Table 1). Furthermore, there is evidence of the 
ARCH effect existence as Mcleod-li portmanteau statistics 
are similar to the popular Ljung-Box test statistics and Engle 
Lagrange multiplier test. Likewise, Keenan and RESET and 
the modified F test also state the nonlinearity as the depicts 
the significant test statistics (Table 1).

The next task is to get an idea about regimes as threshold 
autoregressive models acknowledged as the regime-switch-
ing model. There may have an existence of two regimes or 
multiple regimes according to the nature of the data. The 
initial idea about the regime can be revealed through the 
smoothing kernel function as this study consider the local 
smoothing function demonstrated in the preliminary papers 
of Tsay (Tsay 1986). Though SETAR and LSTAR model 
got a useful algorithm for determining the nonlinearity and 
regime, the graphical presentation may give more light on 
shades about the confirmation of regimes. However, the 
scatter plot with the smoothing function estimation for the 
selected data indicate the existence of two-regime base 
threshold models (Fig. 2).

After the confirmation of the regime, the hyperparameter 
of the applied models needs to determine to find a better-
fitted model. Gonzalo and Pitarakis (2002) discussed the 
hyperparameter estimation of threshold autoregressive; one 
can read their article to know more about that. The threshold 
models required the theoretical delay to apply the model. 
However, the author of this paper used the commands and 
procedure of selecting hyperparameter according to the 
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documentation of R package tsDyn, where the automatic 
selection of hyperparameters like theoretical delay and vari-
ables, maximum and minimum lag value and coefficients 
for the lagged time series is performed smoothly with the 
procedure of grid search (Narzo et al. 2020). The possible 

combinations of the theoretical values have tested the speci-
fied hyperparameters for the applied threshold models and 
selected variables. The hyperparameter selects through the 
grid search algorithm along with the famous model selection 
criteria and p values.

Fig. 1  PACF of selected variable

Table 1  Values from nonlinearity tests

Test name Average temperature Maximum temperature Minimum temperature

BDS test All eps statistics with embedding 
dimension got p value < 2.2e−16

Similar result Similar result

Mcleod-li and Engle test X-squared = 149,172, p 
value < 2.2e−16 and

ARCH effect exists

X-squared = 101,736, p 
value < 2.2e−16 and ARCH effect 
exists

X-squared = 156,129, p 
value < 2.2e−16, and ARCH effect 
exists

Keenan and RESET Test statistics = 215.3641
& p value 1.822575e−48

Test statistics = 192.591 & p value 
1.485539e−43

Test statistics = 173.4675 with p value 
2.007922e−39

F test Test statistics = 1.863
With p value 7.941e−46

Test statistics = 1.545
with p value 3.112e−22

Test statistics = 2.069 with p value 
7.673e−64
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The focus of selecting the hyperparameter is because of 
determining the theoretical delay through the lowest AIC 
value. For average temperature with the other parameter, 
the theoretical delay has searched between positive integer 
values from 1 to 11 and found that 8 as the appropriate num-
ber of delays with the lowest AIC value 55,868.12 for both 
SETAR and LSTAR model. The number of delays has been 
selected with the existence of a maximum lag value of order 
1 for both low and higher regimes. Furthermore, the hidden 
layer size has selected for the ANNs with a grid search pro-
cedure for average temperature.

Similarly, for the maximum and minimum temperature, 
the threshold delay has selected as 8 is the maximum lag 
order for low and 1 as for high regimes for both SETAR and 
LSTAR models. Likewise, the ANNs’ hidden layer size has 
selected for both maximum and minimum temperatures as 

17. Moreover, iterative graphs are produced for the SETAR 
and LSTAR model for all the selected variables. Only the 
grid search plot of the SETAR model of average and maxi-
mum temperature with the representation of the 10 best-
fitted hyperparameters among the bunch of combinations 
have displayed here (Fig. 3).

After having the hyperparameter, the next task is to find 
the best-fitted models among the applied models for all the 
selected temperature variables. Consequently, the models have 
applied through the selected hyperparameters and find the best-
fitted model subsequently with the comparison through the 
popular Akaike Information Criteria (AIC) and Mean Abso-
lute Per cent Error (MAPE). Though the three decimals value 
of MAPE looks similar for SETAR, Linear AR, and LSTAR in 
the study, however, the decimal values after three-digit make 
sense as the values show the minimality for every case along 

Fig. 2  Regime confirmation through local smoothing function
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with the least AIC values. Among the models considered in 
this study, the LSTAR model nominated as the best-fitted 
model for the average temperature with the AIC and MAPE 
values 6397.77 and 0.03635184, respectively. Correspond-
ingly, for both the maximum and minimum temperatures, the 
LSTAR model has selected as the most appropriate model as 
they consist of the lowest AIC and MAPE value (Table 2).

Now, for the average temperature the fitted LSTAR model 
for the low and high regime with the residual variance 
�2
�
= 1.443 can be written as,

where G(xt−7| 0.5601, 27.46) = (1 + exp[0.5601(xt−7 − 27.46)])−1 
is the logistic function. The LSTAR model seems to fit well 
for two regimes through the significant maximum higher 
and lower regime of order 1, constants values, smoothing 
parameter � = 0.5601 and threshold value 27.46. The thresh-
old value indicates that the average temperature became 
higher according to the last ten years’ average temperature of 
Dhaka. Similarly, for the maximum temperature the LSTAR 
with residual variance �2

�
= 2.768 model could write as,

x
t
= (1.53 + 0.94x

t−1)[1 − G(x
t−8| 0.5601, 27.46)]

+(9.49 − 0.31x
t−1)[1 − G(x

t−8| 0.5601, 27.46] + �
t
.

where G(xt−8| 1.52, 30.73 ) = (1 + exp[1.52(xt−8 − 30.73)])−1 
is the logistic function with significant lag order for the lower 
regime and higher regime, respectively, with significant con-
stant, gamma (�) , and the threshold value. The threshold 
value for the maximum temperature is 30.73, with a smooth-
ing parameter 1.52 indicates that the maximum temperature 
may have upward intensity compared to the previous year.

For minimum temperature, the significant � = 0.637 
and threshold value 20.08 with the logistic function 
G(xt−8| .637, 20.8 ) = (1 + exp[.637(xt−8 − 20.8)])−1 gives 
the following fitted model for significant lower and higher 
regime as,

As mentioned before that the SETAR and LSTAR models 
use the F test in the time of model fitting to test the nonlin-
earity. Moreover, the validation of nonlinearity with a full 
order of the LSTAR model against the Linear AR model also 
done by F test and the results are presented in the follow-
ing table (Table 3). Hence, it is seen that the p value for all 

x
t
= (1.32 + 0.72x

t−1)[1 − G(x
t−8| 1.52, 30.73 )]

+(4.23 − 0.12x
t−1)[1 − G(x

t−8| 1.52, 30.73 )] + �
t
.

x
t
= (.88 + 0.82x

t−1)[1 − G(x
t−8| 0.6374, 20.08 )]

+(0.70 − 0.35x
t−1)[1 − G(x

t−8| 0.6374, 20.08 )] + �
t
.

Fig. 3  Hyperparameter selec-
tion through the grid search for 
average (left) and maximum 
(right) temperature for SETAR 
model

Table 2  Model Selection 
Criteria’s

AIC Akaike Information Criteria and MAPE Mean Absolute Per cent Error

Linear AR SETAR LSTAR* ANNs

Average temperature AIC 6837.466 6469.676 6397.477 21,648.479
MAPE 0.03683454 0.03643249 0.03635184 0.05945545

Maximum temperature AIC 17808.96 17,640.56 17,628.84 29,963.67
MAPE 0.04109409 0.04079598 0.04079321 0.06127781

Minimum temperature AIC 16,572.26 16,244.67 16,216.91 56,785.33
MAPE 0.06158631 0.06094424 0.06091235 0.24501213
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variables considered in this study is less than 0.001. There-
fore, these results may confirm the presence of nonlinearity 
in LSTAR model.

Finally, the 20 steps ahead forecasting plot has been done 
for every selected temperature variable with the selected 
appropriate model and compare with the all applied models 
along with the observed value to have more insights about 
the model fitting. The downward intensity comparing to the 
observed values for average temperatures confirms that the 
average temperature of Dhaka will increase eventually. It is 
noticeable that all the applied models, except ANNs, seem to 
give a similar forecast. Likewise, the maximum temperature 
through the LSTAR model enunciates similar results of an 
upward increase, comparing to the observed values of the 
maximum temperature. It is also mentionable that LSTAR 
model forecasts are slightly higher or seem to have upward 
intensity comparing to Linear and SETAR autoregressive 
model for both average and minimum temperature forecast, 
which may indicate that the temperatures will have intensi-
fication sooner or later. Moreover, in the case of minimum 
temperature, the downward trend authorizes the decline of 
the minimum temperature, and there is an intensity of having 
an upward trend in the long run (Fig. 4).

Another noticeable thing is that, though nonlinear SETAR 
and Linear AR models have greater AIC and MAPE values, 
they still give almost similar forecasts like LSTAR. The 
authors of this study also investigate this issue by chang-
ing all the associated parameters of the applied models 
with consideration of several combinations of theoretical 
delay, lag values, and others, but almost every case shows 
a similar result. Hence, the authors conclude that the best-
fitted LSTAR models as statistical modelling has a particu-
lar rule of selecting the model through the model selection 
criteria. And believe that in a further study, this issue could 
reconsider to have a better weather forecast in the nonlinear 
world. However, another supposition could make as in case 
of temperature data, a smooth logistic transition autoregres-
sive (LSTAR) model elasticities a better-fitted model, but 
ANNs gives a more realistic forecast.

Summary and conclusion

Most of the researcher deals with linear models because 
of its simplicity and reduced computational complexity. 
However, nonlinear data often referred to do many trans-
formations to ensure the linearity but the main thing is that 
how uneven transferred information can give an accurate 
prediction about the real scenario. Moreover, the nonlinear 
models become popular maybe because of the computational 
advancement in the last decades, though it has a long his-
tory of evolving and application. The main objectives of this 
study were making the introduction of a regime-switching 
nonlinear threshold time-series approach for weather vari-
ables. To illustrate the application of nonlinear time series, 
the test of existing nonlinearity has done with the help of 
BDS, Mcleod-Li and Engle, Keenan and RESET, and F tests 
where all of them provide the same conclusion, i.e. all con-
sidered minimum, maximum, and, the average temperature 
having the nonlinearity property. However, nonlinearity test 
value of full-order LSTAR model against the full-order lin-
ear AR model also validates the existence of nonlinearity 
with the help of F test.

The conventional AR model was considered among the 
linear models as AR is the initial mathematical base of many 
linear models. Univariate parametric SETAR and LSTAR 
model were considered among the bunch of regime-switch-
ing nonlinear threshold models to compare and forecast 
the temperatures of Dhaka, Bangladesh. And fundamen-
tal single hidden layer base feed-forward neural network 
model has considered among the nonparametric nonlinear 
time-series algorithms with an assumption that if there is 
any evidence of better forecasting, further study can make 
with the advanced models. After the parameter estimation 
of includes parametric models including theoretical delay, 
maximum and minimum lag order, threshold value; the para-
metric models have applied for the contrast and comparison.

However, the models compared with the help of model 
selection criteria AIC and MAPE, which illustrate the LSTAR 
model as the best-fitted model as it stretches the minimum 
value of AIC and MAPE for all selected variables. The model 
can illustrate as the following mathematical form for aver-
age, maximum, and minimum temperatures, respectively, 
x
t
= (1.53 + 0.94x

t−1)[1 − G(x
t−8| 0.5601, 27.46)]+(9.49

−0.31x
t−1)[1 − G(x

t−8| 0.5601, 27.46] + �
t
.

With the logistic function G(x
t−7| 0.5601, 27.46) =

(1 + exp[0.5601(xt−7 − 27.46)])−1 ; G(x
t−8| 1.52, 30.73 ) =

(and)

x
t
= (1.32 + 0.72x

t−1)[1 − G(x
t−8| 1.52, 30.73 )]

+(4.23 − 0.12x
t−1)[1 − G(x

t−8| 1.52, 30.73 )] + �
t
.

x
t
= (.88 + 0.82x

t−1)[1 − G(x
t−8| 0.6374, 20.08 )]

+(0.70 − 0.35x
t−1)[1 − G(x

t−8| 0.6374, 20.08 )] + �
t
.

Table 3  Nonlinearity test value of full-order LSTAR model against 
full-order AR model

Variable F Statistic p Value

Average temperature 24.388 <0.001
Maximum temperature 28.173 <0.001
Minimum temperature 10.151 <0.001
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(1 + exp[1.52(xt−8 − 30.73)])−1 ; and G(x
t−8| .637, 20.8 ) =

(1 + exp[.637(xt−8 − 20.8)])−1 , respectively.
Finally, the 20 steps ahead forecasting of temperatures 

have done through the LSTAR model and compared with the 

observed, SETAR, and Linear AR model forecast values for 
checking the forecasting accuracy.

Though the values of model selection criteria promote 
LSTAR as an appropriate model, still forecasting com-
parison, identified ANNs forecasting plot is more realistic 

Fig. 4  Forecast comparison of average, maximum, and minimum temperature of Dhaka
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compared to the observed values. This study also concludes 
that the parametric nonlinear LSTAR model elasticities a 
better-fitted model, but ANNs gives a more realistic forecast 
for the temperatures of Bangladesh. However, the forecast 
from the fitted model shows that the average temperature and 
maximum temperature will increase steadily, and the mini-
mum temperature will decrease eventually. There is a scope 
of further study including the advanced ANNs algorithms, 
extended version of linear AR models, and other parametric 
as well as nonparametric nonlinear time-series models.
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