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Abstract 

This thesis considers the Cobb-Douglas type production functions, which are 

nonlinear regression model. To estimate the production of a product these nonlinear 

models are to be fit. But the nonlinear estimation problems are not simple and straight 

forward; hence some related computational issues to over come this problem which 

are discussed in this study. Thus appropriate nonlinear production function models 

with additive error terms are selected by model selection criteria for this study. Time 

series data for the period 1982-83 through 1997-98 for some selected manufacturing 

industries are used and the data are collected from Bangladesh Bureau of Statistics 

(BBS) and CMI. Fitting the model then we have deal with the problem of econometric 

analysis such as: Autocorrelation and Multicollinearity. We have detected the 

problems separately and if there exists, the presence of any of these problems, we 

have tried to remove them with appropriate techniques. Finally, the results obtained in 

this study have been analyzed and comments are made with the aim of meeting the 

objectives of the study. 

A brief summery of the contents of this thesis is as follows: Chapter 1 furnishes the 

background; Chapter 2 discusses the relevant literature for this thesis. In Chapter 3 

discusses different technique of nonlinear estimation. Chapter 3 also discusses the 

computational issues that we face to estimate the intrinsically nonlinear production 

function.  

In Chapter 4, we estimate the Cobb-Douglas production function. Chapter 4 also 

discusses comparison of intrinsically linear and intrinsically non linear model. Hence 

we observed that our suggested model is better for this study. In chapter 5 we test the 

violation of autocorrelation for the proposed fitted model and finally we remove the 

autocorrelation by suitable method. The existence of multicollinearity is observed in 

chapter 6. In Chapter 7, some conclusions have been drawn about intrinsically 

nonlinear model for manufacturing production in Bangladesh.  



11 

Chapter One 

Introduction 

1.1 Background 

A developing country like Bangladesh which is facing enormous problems so far as 

industrialization policy is concerned does not follow the policy of Marxian Economy, 

neither thus it strictly follow the policy of a Capitalist country. The economy of 

Bangladesh actually turned out to be a mixed economy since a long time. But it could 

not stand either Marxian economy nor on mixed economy for different situation that 

occurred in national and international politics. However, the economy of Bangladesh 

more or less now biased to Capitalism. In these circumstances, it is essential for 

Bangladesh to go for mass industrialization to strengthen the economy of Bangladesh 

for this purpose, of course our policy for industrialization must be well-planned, well-

defined and well-thoughtful. Strictly speaking, the development of economy is solely 

dependent on the industrial policies of the country. The factors of production that 

would be used in a production function will inevitably depend on the import policy of 

spare parts, intermediate goods and capital goods, etc. A production function gives us 

indication about the nature of the production inputs used in the production function.  

Naturally, it is clear that different types of industries require different levels of factors 

of production. This depends on the nature, size and pattern of the industry concerned. 

There is a good number of manufacturing industries in Bangladesh with respect to its 

assets and demands. Some of the industries, as for instance, garments, textiles, 

construction, industrial chemical etc. may be profitable and some of them like 

petroleum refinery, jute, electrical machinery etc. may incur losses. The industry 

sector was severely damaged during the war of liberation in 1971. Replacement and 

rehabilitation costs estimated for the industries were estimated at Tk 291 million, of 

which Tk 223 million was estimated for public sector enterprises. The public sector 

started in 1972 with 72 Jute mills (with production capacity of 79,200 tons), 44 

Textile mills (13.4 million pounds), 15 Sugar mills (169,000 tons), 2 Fertilizer 
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factories (446,000 tons), one Steel mill (350,000 tons), one Diesel engine unit (3,000) 

and one Shipbuilding yard. Mills and factories in the public sector however, soon 

became losing concerns largely because of mismanagement and leakage of resources. 

The government had to quickly review its policy of dominating the public sector. 

Although it continued to exercise control over industries, it soon raised the allowable 

ceilings of private investment. However, this did not bring much improvement. 

After a series of adjustments and temporary changes in state policy, the government 

finally adopted a new industrial policy in 1982, following which 1,076 state-owned 

enterprises were handed over to private owners. Unfortunately, denationalization 

created a new problem of industries. They started getting sick because of failures of 

the inexperienced owners. Many of them were more interested in getting ready cash 

from selling of the cheaply acquired property than in sustaining and developing the 

industries. The result was that industrial sickness affected 50% of industries in Food 

manufacturing, 70% of them in Textile, 100% in Jute, 60% in Paper and Paper board, 

90% in Leather and Rubber products, 50% in Chemicals and Pharmaceuticals, 65% in 

Glass and Ceramics, and 80% in Engineering industries. The largest group of 

industries in Bangladesh falls in the category of small and cottage industries and their 

number in 1984 was 932,200 units, of which 20.7% were in Handlooms, 15.4% in 

Bamboo and Cane work, 8.1% in Carpentry, 6.1% in products from Jute and Cotton 

yarn, 3.4% in Pottery, 0.3% in Oil crushing, 3.2% Blacksmiths, 0.8% in Bronze 

casting, and the rest in other types of crafts.  

In 1984, Bangladesh had 58 textile mills with 6,000 looms and 1,025,000 spindles. 

The annual production of the mills was 106.2 million pounds of yarn and 63 million 

metres of cloth. Textile is a public sector dominated industry in Bangladesh and like 

most other sectors, Textile also incurred losses, which amounted to Tk 353.4 million 

in 1984. Problems in the sector include poor management as well as difficulties in 

developing skilled workers and shortage in supply of raw material and power. 

Bangladesh had 70 Jute mills with 23,700 spindles in 1984. These employed 168,000 

workers and 27,000 other staff and used 545,000 tons of raw Jute. But their 

production was less than the 561,000-tons figure of 1969, when the country had 55 
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Jute mills with 21,508 spindles. The three major centres of Jute industry in 

Bangladesh are Dhaka, Chittagong and     Khulna. The Jute industry in the country 

has been declining in the face of competition from India and in an international 

situation, where Jute goods are being replaced by cheap and durable Plastic products.  

 

Development of new industries like Sulphuric acid, Chemicals, Paper, Caustic soda, 

Glass, Fertilizer, Ceramics, Cement, Steel and Engineering in Bangladesh was slow in 

the period before 1985. There were only two plants for production of Sulphuric acid 

in the country in 1985 and their total production was 5,995 MT, while the production 

of this important ingredient for industries like Soap, Paper, Cast iron and Steel was 

6,466 MT in 1970. Production of Caustic soda in 1985 was 6,787 MT. The soda was 

used almost entirely in Paper mills. Because of availability of Sand, Salt and 

Limestone within Bangladesh, the country has a good prospect in developing its glass 

industry. Dhaka and Chittagong are the two major centres for this industry. The 

automatic Glass factory at Kalurghat of Chittagong produced 12.9 million sq ft of 

sheet glass in 1985.  

 

The fertilizer industry in the country uses Natural gas as the main raw material. The 

fertilizer factories produced a total of 808,660 MT in 1985. 741,463 MT was urea, 

9,634 MT Ammonium Sulphate, and 57,563 MT Triple Super Phosphate. The three 

major factories were at Fenchuganj, Ghorasal and Ashuganj. The total production of 

cement in the country in 1985 was 292,000 MT. The major industries were at Chhatak 

and Chittagong. Pakshi of Pabna and Chandraghona of Chittagong were the main 

locations for the Paper industry in Bangladesh. The total production of Paper in 1985 

was about 7,500 MT. In 1985, Khulna had a Newsprint mill with a production 

capacity of 55,000 MT and a Hardboard mill that produced 1,621 sq metre of 

hardboard. Around this time Bangladesh also had some mills for production of 

Particle boards and Partex. The country also achieved self-sufficiency in producing 

matches; major centres of match production were Dhaka, Khulna, Khepupara, 

Chittagong, Sylhet, Bogra and Rajshahi. The total production was 1.30 gross boxes in 

1985. That year Bangladesh had 8 sugar mills with a total annual production of 

87,000 tons. The Sugar mill at Darshana (Ishwardi) produced Sugar as well as 
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Alcohol, Methilated Spirit and rectified spirit. The Iron and Steel mills in Bangladesh 

were mostly under the Steel and Engineering Corporation and were concentrated in 

Chittagong and Dhaka, although there were some Steel and Ironwork enterprises in 

Khulna, Kushtia and Bogra. Industries marked by notable development in Bangladesh 

in the mid-1980s include Shipbuilding, Automobiles (assembly), Oil refinery, 

insulators and Sanitary wares, Telephone equipment, Electrical goods, Televisions 

(assembly), Cigarette, and Vegetable Oil. The country achieved a significant success 

in developing Garment industry in this decade. The government followed a strategy of 

planned growth blended with 'free play' of market forces. The manufacturing sector 

showed some growth in the 1990s. The share of the manufacturing sector in the 

country's GDP rose to 11% in 1996. Investment in the sector was Tk 57.8 billion in 

1997 as compared to Tk 22.5 billion in 1991. The share of the public sector in the 

total investment in the country's industries fell from 37.03% in 1991 to 8.63% in 

1997. The basic industrial statistics as adopted from the latest census of 

manufacturing industries in Bangladesh are presented in a table (the census did not 

cover the cottage industry sector).  

 

Table1.1 Summary statistics of different Manufacturing Industries of Bangladesh in 

1999-2000.  

 Number  Value 
(Million Tk) 

Establishments  
(by admin. divisions) All  

24752 Fixed Assets  243805 

Dhaka  11588 Products and by-products total 590865511 
Chittagong  4235 Finished products  581177103 
Rajshahi  6570  by-products  8011880 
Khulna  2314  industrial wastes  1676528 
Barisal   45        
Sylhet 404   
Workers Both sexes  2613564 Taxes paid  32222 
Male  1699897       
Female  913667 Gross output  639220 
All employees Both sexes  2259717 Gross value added  235443 
Male  1421734  Value added at factor cost  155820 
Female  837983       

Source: Bangladesh Bureau of Statistics 
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The government continues to implement a Privatization programme to hand over 

public sector enterprises to private owners. Simultaneously, the government 

implements a programme of rehabilitating industries identified as sick because of 

various reasons. Industries identified for rehabilitation under the programme in 2000 

included one Cement factory (annual production capacity 0.15 million tons), one 

Paper mill (30,000 tons), one Newsprint mill (52,000 tons), 6 Cigarette factories (630 

million sticks), 8 Oil mills (934,818 tons), 2 Food processing units (950,400 tons), 2 

Fish processing units (6.9 million tons), 2 Cold storages (5.9 million lbs), one 

Beverage producing unit (4.3 million bottles), 3 Chemical industry units (26,100 

tons), one Glass factory (7.5 million feet) and 12 Pharmaceutical units. 

 

The fifth Five-Year Plan for the period 1997-2002 stipulated a total outlay of Tk 8.95 

billion in industry including Tk 1.39 billion in the private sector. In 2000, the total 

employment in industries was estimated at 0.6 million, of which the private sector 

employed 0.5 million. Industrialisation efforts of the government during the 1990s 

included investment in balancing, modernisation and reconstruction, creation of new 

industrial estates and export processing zones, promotion of private investment, and 

attraction of foreign direct investment. The policy changes have been in line with 

trends in the international market, recommendations of donor countries and agencies 

for liberalization of trade and investment and Structural Adjustment Programmes. 

 

Almost at regular intervals of 4 to 6 years after 1982, the government adopted new 

industrial policies with increased incentives for private investors from both home and 

abroad. These policies have some common aspects such as incentives to promote 

industrialization in rural and remote areas and to encourage entrepreneurs to use local 

raw materials, and the efforts towards development of a system that would help in 

transfer of technology. 

 

Manufacturing industry in Bangladesh achieved respectable growth during 1990s    

(Table 2). The contribution of manufacturing to GDP increased from 12.9 per cent in 

1990-91 to 15.4 percent in 1999-00. However, the sector's current share in GDP 

appears rather modest for it to spearhead sustained high growth of the economy. The 
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growth of Bangladesh’s manufacturing sector has also been rather narrowly based 

with readymade garments accounting for nearly a quarter of the sectoral growth. 

Other important export industries contributing to sectoral growth are Fish & Seafood, 

and Leather tanning. Major import substituting industries experiencing significant 

growth during this period include Pharmaceutical, Indigenous cigarettes (bidi), Job 

printing and Re-rolling mills. 

 

Table 1.2 Growths of Manufacturing and Share in GDP. 

Year Yearly Growth (%) Share in GDP (%) 

1990-91 6.4 12.9 

1991-92 7.4 13.3 

1992-93 8.6 13.8 

1993-94 8.1 14.4 

1994-95 10.5 15.1 

1995-96 6.4 15.4 

1996-97 5.0 15.4 

1997-98 8.5 15.9 

1998-99 3.2 15.6 

1999-00 4.8 15.4 

2000-01 9.1 15.8 

Source: Bangladesh Bureau of Statistics 

 

Weavers work in almost all parts of Bangladesh but their major concentration is in 

areas like Narsingdi, Baburhat, Homna, Bancharampur, Bajitpur, Tangail, Shahjadpur 

and Jessore. The Silk industry has flourished in Rajshahi and Bholarhat. Other places 

earning reputation in cottage industries during the 1980s in Bangladesh include 

Chapai Nawabganj and Islampur (bronze casting), Sylhet (mat and cane furniture), 

Comilla (pottery and bamboo work), Cox’s Bazar (cigar), Barisal (choir) and Rangpur 

(checkered carpet). 

 

From the Figure 1.1, we see that, most of the industries of Bangladesh are situated at 

Dhaka, Chittagong, and Rajshahi based on some facilities.  
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Figure1.1 The position of manufacturing industries of Bangladesh. 
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1.2 Problems and Motivation 

Bangladesh is industially a less developed country among the developing countries of 

South Asia. Industrial sector contributes to the economic development. Out of these 

industries, 60% are agro-based, such as jute, textile, paper, sugar etc. The population 

of Bangladesh has increased but the land for cultivation has decreased in course of 

time. That is why it is the crutial time to find the alternatives.   

 

Every industrialist tries to produce goods with maximum profit but with minimum 

cost. In order to do this, it has to be decided what to produce, how much to produce 

and how to produce. The industries need various inputs such as labor, raw material, 

machines etc. to produces goods. 

 

An industy’s production cost depend on the quantities of inputs it buy and on the 

prices of each input. Thus an industry needs to select the optimal combination of 

inputs, that is, the combination that enables it to produce the desired level of output 

with minimum cost and hence with maximum profitability.  

 

In developing counties, efficiency of economic development has determined by the 

analysis of industrial production. An examination of the characteristic of industial 

sector is an essential aspect of growth studies. The most of the developed countries 

are highly industrialized as they brief “The more industrialization, the more 

development”. 

 

For proper industrialization and industrial development we have to study industial 

input-output relationship that leads to production analysis. For a number of reasons 

econometrician’s belief that industrial production is the most important component of 

economic development because 

 If domestic industrial production increases, GDP will increase. 

 If elasticity of labor is higher, implement rates will increase. 

 Investment will increase if elasticity of capital is higher. 

 

In the present times, production takes place by the combination forces of various 

factors of production such as land, labor, capital etc. In this connection, Socialist 
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countries are using different patterns of level of factors of production for their 

respective industrialization policy according to the taste, demand and nature of their 

country-wide population, its size, location and environment. Bangladesh are a 

developing country. It is essential for Bangladesh to go for mass industrialization to 

strengthen the economy of Bangladesh for this purpose, of course our policy for 

industrialization must be well planned, well defined and well thoughtful.  

 

It is obvious that the development of economy is solely dependent on the industrial 

polices of the country. By using production function we can get industrial policies 

especially indication about the nature of the production inputs used in the production 

function. The production function may be intrinsically linear and intrinsically 

nonlinear. Also we know that the parameters are restricted in the production function.  

 

In this thesis, we develop a model which gives optimal combination of inputs, that is, 

the combination that enables it to produce the desired level of output with minimum 

cost and hence with maximum profitability.  

 

1.3 Objectives of the Study 

The main objectives of this study are: 

i) to identify the industrial policies espicially identify the nature of the 

production inputs.  

ii) to estimate the labor elasticity of substitution as well as the capital elasticity of 

substitution for each of the selected manufacturing industries of Bangladesh.  

iii) to indentify the appropriate Cobb-Douglas production function. 

iv) to discuss the computational issues of estimating non-linear production 

function. 
 

1.4 Data Collection 

In recent publications of “Statistical Yearbook of Bangladesh” and “Report on 

Bangladesh Census of Manufacturing Industries (CMI)” published by BBS, we get 

the published secondary data for the major manufacturing industries of Bangladesh.  
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1.5 Variables Considered in the Study 

Perhaps the most important consideration in productivity measurement is the measure 

of inputs and output. The reliability of performance measures of economic agents 

hinges on accuracy of measures of output and inputs. 

Subject to the availability of data, we consider three variables in this study. The Gross 

output consider as the dependent variable and the two independent variables are  

 

i. Total fixed assets  

ii. Total person engaged  

 

1.5.1 Gross output 

 It’s the total yearly output of the particular Manufacturing Industry in Bangladesh 

measured in terms of money, usually in thousand taka. 

 

1.5.2 Independent variables 

• Total fixed assets 

It refers to the assets of a particular Manufacturing industry of Bangladesh, whether 

obtained from other enterprises or produced by the out of its own resources for its 

own use, which are expected to have a productive life more than one year. It includes 

land, building, other constructions, machineries, tools and equipments, transport etc. 

 

• Total person engaged 

It refers to the persons both employee and workers who are engaged in the 

production of an industry in Bangladesh. 

 

1.6 Limitation of the Study 

Due to unavailability of the data we could not developed a model by using appropriate 

variables. We only use production, total fixed assets and total person engaged to 

develop nonlinear model. On the basis of the available of the data we collect data over 

the period 1982-83 to 1997-98. Thus we can precisely identify the limitation of our 

study as follows: 

i) Due to unavailable information in Bangladesh Bureau of Statistics (BBS) we 

cannot use the recent data of the manufacturing industries. 
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i) Estimation of nonlinear model is a serious problem that we observe in the 

study.  

 

1.7 Outline of the Study  

This research is organized into seven chapters. Chapter 2 consists of different types of 

production function with their properties and limitations. Chapter 3 discusses different 

nonlinear regression model and nonlinear estimation methods. This chapter also 

contains the computational issues of our analysis. In chapter 4, we estimate the 

parameters of Cobb-Douglas production function. This chapter also contains different 

model selection criteria and based on them, we select the best model for the data 

under study. 

 

Chapter 5 contains brief description of autocorrelation. This chapter also discusses the 

tests of detecting autocorrelation and the remedial measures. In chapter 6, we discuss 

briefly about multicollinearity. A summary with some concluding remarks and some 

suggestions for further research is contained in the final chapter. 

 

1.8 Computation 

When the model is intrinsically non-linear, it is very difficult to estimate the 

parameters by ordinary software. In some cases SPSS, SAS does not provide the best 

solution. The optimal solution depends on the initial value. By trial and error method 

we find the appropriate initial value and it is time consuming. It’s a great problem. In 

this situation we write program and we can handle this problem easily. All the 

programs used to estimate the results in this thesis are written in GAUSS System 

Version 3.2.18. We used Gauss built in optimization routine to estimate optimal 

parameters to estimate the production. 
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Chapter Two 

Different Types of Production Function 

2.1 Introduction 

Productive activities are as diverse as life itself. An agriculture farm takes fertilizer, 

seed, land and labor and turns them into wheat or corn. Modern factories take inputs 

such as energy, raw materials, computerized machinery and labor and use them to 

produce tractors, TV’s or tubes of toothpaste. An accounting firm takes pencils, 

computers, paper, office space and labor and produces audits or tax returns for its 

clients. The agriculture firm; factory and accounting firm always attempt to produce 

the maximum level of output for a given dose of inputs avoiding waste whenever 

possible. Now, if we discuss about inputs like land, labor and capital and also outputs 

like wheat, TV’s and profits; a question may be arise, if we have a fixed amount of 

inputs, how much output can we get? 

In order to get the answer of above question, firstly, we have to establish the relation 

between inputs and outputs. In the view of economists, the relationship between the 

amount of input required and the amount of output that can be obtained is called the 

production function. We know, there are a number of production functions developed 

by the economists. The most frequently used production functions are Cobb-Douglas 

production function, Constant Elasticity of Substitution (CES) production function 

and Variable Elasticity of Substitution (VES) production function. There are some 

other types of production functions; however, they are seldom used in econometric 

research. Secondly, we have to choose or select a production function and estimate it 

and thus for a fixed amount of input, we can easily get estimated output. 

The organization of the present chapter is as follows: Section 2.2 represents the 

definition of production with its drawbacks. Section 2.3 explores different types of 

model. In Section 2.4, we describe different types of production function with its 

merits and limitations.   



23 

2.2 Production Function 

Businessmen as well as industrialists concerning the theory of the firm make 

decisions about what, how much to produce, and how to produce it. Such decisions 

are related to costs of production, the kind of market in which the firm operates, and 

the internal organization of the firm. 

The starting point for the theory of the firm usually assumes profit-maximizing 

business operating in a competitive market and producing only a single good 

(Hurbury, p-37, 1968).The firm is the basic production unit, producing goods (and 

services, such as transporting, financing, whole-selling and retailing) using certain 

inputs called “factors of production” such as labor and capital (Intriligator, M.D., p-

251, 1980). 

Production functions are one of the most basic economic relationships, and ideally 

they express the technical relationships between physical quantities of inputs to the 

production process, and the physical quantity of output produced. This description 

should be applied at the micro-economic level, for a single firm or a single 

homogenous product, and a few homogeneous inputs. Production function, in this 

sense, shows up a one-way relationship in the causal flow. 

It is, therefore, important in theories of economic growth and in theories of 

distribution. At the micro-economic level it is of interest because of its usefulness in 

the analysis of such problems as the degree of which substitution between the various 

factors of production is possible and extent to which firms experience decreasing or 

increasing returns to scale as output expands. At both the macro and micro-levels, the 

production of any increase in output over time can be attributed to, firstly, increases in 

the inputs of factors of production; secondly, to the existence of increasing returns to 

scale; and thirdly, to what is commonly referred to as ‘technical progress’ (Thomas, 

R. L., p-208, 1985).

The concept of a production function plays an important role in both micro and macro 

economics. Production functions are one of the most basic econometric relationships, 
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and ideally they express the technical relationships between physical quantities of 

inputs to the production process, and the physical quantity of output produced. 

Mathematically, such a basic relationship can be expressed as: 

( , , ,...)P f A B C=   

where, P  is the output (dependent variable); A  is the labor (independent variable); 

B  is the capital (independent variable); C  is the land (independent variable) and 

other natural. 

2.2.1 Drawbacks of production function 

The Econometricians try to estimate the form of this theme, it would have many 

welcome features: it would be in physical units, so shifting monetary values would 

not affect it; it would be unambiguous one-way in the causal flow. It is expressed-

from given inputs to the resultant output; it would stand independent of other 

economic relationships such as input supply functions and output demand functions. 

Its parameters, when estimated, would describe the technological features of a well-

defined productive process, and would be given concrete interpretation.  

We regret to speak that there is no such production function which ensures this theme. 

Further, no-one is really interested in the production function for a single firm or a 

single, simple process. They usually relate to a whole industry or even a whole 

economy, and thus move to the micro-economic level. Then we are really aggregating 

over a set of different production functions and different techniques, and the 

procedure will become more and more meaningless as we aggregate further and 

further, till the result is so much of a bland ‘average’ that it bears no economic 

meaning any more, in the sense of describing the technical features of the 

transformation of inputs into output (Hebden, J., pp-87-88, 1983). 

Through aggregation the causal direction has gone from one extreme (input  output) 

to the other (output  inputs). However, the truth lies between these, and makes 

added complications: output and inputs are usually decided upon together by the 

producer, or at least some degree of feedback from output to inputs occurs, either 
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directly or via the ancillary relationships of supply and demand functions (Hebden, J., 

pp-87-88, 1983).      

 

This feedback makes it incorrect to regard output as the dependent variable and inputs 

as exogenous variables in the production function, at whatever level of aggregation. 

So when production functions are estimated in isolation by simultaneous equation 

least squares methods, their estimates are all subject to bias because the simultaneous 

context of the production function has been ignored. However, this does not appear to 

have deterred many distinguished researchers (Hebden, J., pp-87-88, 1983).    

 

2.3 Different Types of Model 

In statistical analysis to solve the problem it is necessary to know the type of model. 

The model is broadly classified into two types: 

• Linear regression model and 

• Non-linear regression model  

 

In the linear regression model the parameter are in linear. The simple linear regression 

model, classical normal linear regression models are the examples of linear regression 

models. 

 

In statistical analysis linear regression models are very commonly used technique. But 

in real field most of the situation arises where variable follows non-linear model. For 

example, the most popular population growth model is nothing but a non-linear 

model. Non-linear models tend to be used either when they are suggested by 

theoretical consideration or to build known non-linear behavior into a model. Even 

when a linear approximation works well, a non-linear model may still be used to 

retain a clear interpretation of the parameters (see Seber and Wild, (1989), pp.-5). In 

non-linear model the parameters are in non-linear. The polynomial regression model, 

logit model, probit model, tobit models are the non-linear regression models. 

 

Since the main concern is to fit a production function for this study, so we classify the 

non-linear model according to this production function. Here we can split the 

structure of non-linear model into three categories, which are discussed in below. 
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2.3.1 Intrinsically linear model 

When the non-linear model can be converted in a linear model then the model is 

known as intrinsically linear model. The form of this model is as, 

  (2.1)y X uβα=  

  (2.2)ty X e uβ λα −=  

Generally, in such model errors are multiplicative in nature and we get converted 

linear model by taking log transformation. 

2.3.2 Intrinsically non-linear model 

When the non-linear model can be converted in a linear model then the model is 

known as intrinsically linear model. The form of this model is as, 

  (2.3)y X uβα= +

  (2.4)ty X e uβ λα −= +

2.3.3 Partially non-linear model 

When the values of the parameter(s) is given, which are in non-linear, then the non-

linear model turns to a linear model and this type of model is known as partially non-

linear model. For example, if the value of β , which is in non-linear, is known then 

the model ( )2.3  is written as,

  (2.5)y Z uα= +  

Where, Z X β= , is known, then the model ( )2.8  is treated as linear model and known

as a partially non-linear model. 

And also for the model ( )2.7 , when the value of β  and λ  are given then the model

reduce to a linear model as, 

                                                                                    (2.6)y ZV uα= +  

Where, Z X β=  and tV e λ−= , are known then the model is partially non-linear model. 

Cobb-Douglas-type production function may take also this feature.  
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2.4 Different Types of Production Function 

In Econometrics we use the following production function: 

• Cobb-Douglas production function.

• C.E.S production function.

• Variable Elasticity of Substitution (VES) production function.

• Nerlove-Ringstand production function.

• Zellner-Revankar production function.

2.4.1 Cobb-Douglas production function 

The Cobb-Douglas production function is the widely used function in Econometrics. 

A famous case is the well-known Cobb-Douglas production function introduced by 

Charles W. Cobb and Paul H. Douglas (1928), although anticipated by Knut Wicksell 

(1901: p.128, 1923) and, some have argued, J. H. von Thünen (1863). They have 

estimated it after studying different industries in the world, for this it is used as a 

fairly universal law of production. 

The Cobb-Douglas production function with multiplicative error term can be 

represented as, 

                                                                                   (2.7)P AL K Uα β=  

Where, P  is the output; L  is the Labor input; K  is the Capital input; A  is a constant; 

U  is the random error term. α  and β  are positive parameters and 0α > , 0β > , 

0L >  and 1α β+ = . 

The Cobb-Douglas production function with additive error term can be represented as, 

 (2.8)P AL K Uα β= +

Where, P  is the output; L  is the Labor input; K  is the Capital input; A  is a constant; 

U  is the random error term. α  and β  are positive parameters and 0α > , 0β > , 

0L >  and 1α β+ = . 
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2.4.1.1 Economic significance of the Cobb-Douglas production function 

The common economic significance of the Cobb-Douglas production function is as 

follows: 

i) It provides important information regarding industrial and agricultural sectors

through which we can make different policies (Singh, S.P., p-276, 1977).

ii) Since we can determine the marginal productivity of capital as well as labor, it

is helpful in wage determination principles (Singh, S.P, p-276, 1977).

iii) The estimated elasticity of co-efficient may be helpful in international or inter-

sectoral comparisons.

iv) It helps us in the study of the different laws of returns to scale.

v) It provides us information regarding the substitutability of the factors of

production.

vi) It is used to determine the degree of homogeneity (Singh, S.P., p-276, 1977).

2.4.1.2 Drawbacks of the Cobb-Douglas production function  

The main drawbacks of the Cobb-Douglas production function are discussed below: 

i) Why have we chosen for a multiplicative, or log linear form? Does this ensure

correctness and applicability? A linear form might fit the data equally well.

When our data do not include extreme values, a linear and a by-linear form are

often hard to distinguish. However, the multiplicative form is not a guess, but

result of prior theory as how the productive process works; linear form would

be easy for regression, but would imply nonessential features like ever-

increasing or ever-decreasing marginal returns to input (Hebden, J., pp.-97-

100, 1983).

ii) Since we have taken only two inputs instead of multiple inputs, then the

estimates of the parameters, A , α , β  will be distorted, biased, and the

distribution of the residual may be distorted too. This bias in the estimates may

lead one to conclude 1α β+ > , i.e., increasing returns to scale exist, while

actually 1α β+ = . Griliches (1964) has included more than just K  and L  as
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inputs and thereby lessened the possibility of biased estimates and reduced the 

role of A  (Hebden, J., pp.-97-100, 1983). 

iii) If returns to scale are constant, then the Cobb-Douglas function cold is 

simplified to: 

  1              Where + =1Q AK L uα α α β−=  

 Or,  
Q L

A
L K

α

=  

 This form is a simple one rather than a multiple regression, with only A  and 

α  to be estimated. However if we impose constant returns from the outset, we 

are forcing the data into a form they may not fit. It would be much better to 

put no constraint on the sumα β+ ; after fitting the regression. 

              log log log logQ A K Lα β= + +  

 We would test the hypothesis of constant returns with a student’s t-test, thus:                       

  0 : 1H α β+ =    against  1 : 1H α β+ >  

 

 If the alternative hypothesis refers to increasing returns to scale. 

 Test statistic: ( 3)

( ) ( )

var( )
nt

α β α β

α β
−

+ − +
=

+
   

          
( ) 1

var( ) var( ) 2cov( , )

α β

α β α β

+ −
=

+ +
   

 If 0H  is true, so a simple significance test can be made. 

iv) The trouble with the regression form 

  ln ln ln lnQ A K Lα β= + +  

 is that we may encounter severe multicollinearity between L  and K , 

especially with cross-section  ( rather than time series ) data and especially if 

our observations are for firms in a fairly homogeneous industry. 

v) If we assume the Cobb-Douglas function to apply at the level of a single firm, 

it will not apply to an aggregate of whole firms; while, conversely, if it applies 

to an industry, it will not apply to the firms that make up that industry. 
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vi) Should output be measured gross or net? Our choice was for the treatment of 

raw materials. If we measure the output as ‘value added’, then our production 

function is really like the model given bellow: 

  Q M AK Lα β− =  

 Where, Q M− = value added,Q =gross output, M = raw materials and fuel 

Implying that   

  Q AK L Mα β= +   

 

 Which in turn implies that materials enter the production function additively? 

But why should it not be: 

  Q AK L Mα β γ=  

 i.e., materials entering multiplicatively and thus contributing to the degree of 

outweighing to scale? This is more realistic, since at different bends of 

production there may be economies or diseconomies in the use of raw 

materials and fuel, rather than the constant relationship of  M  to Q  that the 

value added form implies. 

vii) In the Cobb-Douglas function, α  and β  are by definition constants, 

regardless of the levels of output or input. But they represent input elasticities 

and factor shares, both of which might vary with output or input levels. 

Similarly, returns to scale are fixed (α β+ ) for all output levels-which is 

unrealistic. Moreover by definition we know that elasticity of substitution may 

be positive or negative, if positive it can be greater than 1 or less than 1. We 

also get various values of  α  and β  for various industries. 

viii) The Cobb-Douglas function provides a single equation system. Though we 

may determine the supply of inputs and demands for output which would 

provide a simultaneous equation system. Due to lack of this, we get a biased 

estimate.   
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2.4.1.3 Common criticisms about the restriction Cobb-Douglas production 

function 

The common criticisms about the restriction Cobb-Douglas production function forms 

are: 

• It cannot handle a large number of inputs. 

• The function is based on restrictive assumptions of perfect competition in the 

factor and product markets. 

• It assumes constant returns to scale (CRS). 

• Serial correlation and heteroscedasticity are common problems that beset this 

function too. 

• Labor and capital, are correlated and the estimates are bound to be biased. 

• Unitary elasticity of substitution is unrealistic. 

• It is inflexible in form. 

• Single equation estimates are bound to be inconsistent. 

• Other criticisms relate to the level of aggregation and nature of technology. 

• It cannot measure technical efficiency levels and growth very effectively. 

 

2.4.2 C.E.S production function 

A production function which has a constant elasticity of Substitution (not necessary 

equal to unity) is known as the constant Elasticity of substitution (CES) production 

function. This production function was derived independently by two different groups 

of econometricians. One consisting of K.J. Arrow, Chenery, B.C. Minhas (in 1961) 

and R. M. Solow and the other group consisting of M. Brown and De Cani. It can be 

expressed as  

[ (1 ) ] ; 0;0 1; 1                         (2.9)  
v

P C Nα α αγ δ δ γ δ α
−

− −= + − > < < >    

Where, P  = Out put, C  = Capital input, N  = Labor Input, α  = Substitution 

Parameter,  γ  =Technical efficiency coefficient, δ  = Coefficient of capital 

intensity, 1 δ−  = Labor intensity coefficient and V  = Degree of homogeneity. 

 

The other forms of CES production function which give the same results are: 
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i) 
1

[ (1 ) ] ; (1 )
v

P C Nα α αγ δ δ α
σ

−
− −= + − = − −  

ii) 
2

1

1
[ ] ; (1 )

v

P C Nα δ α αγ δ α
σ

−
− + −= = − −  

iii) 
1

[ (1 ) ] ; (1 )
v

P C Nα α αγ δ δ α
σ

′ ′ ′ ′= + − = −  

iv) 
1

[ ] ; (1 )
(1 )

vN C
P

N C

α α

α
α α

γ α
δ δ σ

= = −
+ −

 

 Where, σ =  Elasticity of Substitution. 

 

2.4.2.1 Properties of C.E.S. production function 

 The main properties of C.E.S production function are given below: 

i) If the production function is linear and homogeneous then the elasticity of 

substitution is 
1

1
σ

α
=

+
, if and only if the function is  

[ (1 ) ]
v

P C Nα α αγ δ δ
−

− −= + −  such that 0γ > , 0 1δ< < , 1α > −  

ii) The marginal product of C.E.S production function is zero. 

iii) In the C.E.S production function, the marginal product curves are falling 

downwards i.e., 

  
2

2
0

P

N

δ

δ
<  and 

2

2
0

P

C

δ

δ
< . 

 

2.4.2.2 Advantage of C.E.S production function over Cobb-Douglas production 

function 

The main advantages of C.E.S production function over Cobb-Douglas production 

function are given below 

i) The C.E.S production function represents the more general form of production 

technique than Cobb-Douglas production function. In the C.E.S production 

function the elasticity of substitution is constant and not necessarily equal to 

unity i.e. 1σ ≠ . 

ii) The C.E.S production function has more important parameters than Cobb-

Douglas. Therefore it has wider scope, substitutability and efficiency. 
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iii) The Cobb-Douglas production function is a special case of C.E.S relation. If 

we put 0α =  in the C.E.S relation we shall get the situation of Cobb-Douglas 

production function. 

iv) The C.E.S function is easy to estimate the parameters. It also removes all the 

difficulties and unrealistic assumptions of Cobb-Douglas production function. 

 

2.4.2.3 Limitations of C.E.S production function 

Although C.E.S production function has removed all difficulties and unrealistic 

assumptions of Cobb-Douglas function, and has wide scope in Econometrics, it also 

has some limitations. The main limitations are as follows: 

i) The C.E.S production function does consider only two factors i.e. N  and C . 

It is not applicable for more factors of production. Professor H. Uzawa has 

concluded that it is difficult to generalize it to n-factors of production. 

ii) The C.E.S production function contains one parameter, namely v  which is 

affected by the scale of operation and technological change. These two forces 

may affect the degree of returns to scale but can’t distinguish them separately. 

iii) It is assumed in this function that elasticity of substitution ( )σ  changes in 

response to technology only and factor proportions do not affect it. While the 

empirical study shows that the elasticity of substitution also changes due to 

changed factor proportions. The function has ignored this very important fact. 

iv) Lastly, δ  (parameter) of C.E.S function is not dimensionless. Besides it, there 

is also the difficulty of fitting the data to this function.  

 

2.4.3 Variable Elasticity of Substitution (VES) production function 

Once the assumption of a unitary elasticity of substitution σ  implicitly assumed in 

the Cobb-Douglas function had been superseded by the merely constant σ  of the 

more general CES function, it was clear that the next stage would be the 

developments of variable elasticity of substitution (VES) production functions.  

 

Reasons why the elasticity of substitution should vary are not hard to find. For 

example, σ  might be expected to vary with the capital-labor ratio K L− . The greater 
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is the ratio, i.e., the greater the capital intensity of production, the harder it is likely to 

be to substitute further capital for labor and the lower σ  is likely to be. Alternatively, 

even with a constant K L−  ratio, the elasticity of substitution may simply change 

over time if technical progress affects the case with which factors may be substituted 

for each other (Thomas, R. L., p-241, 1985).   

 

Christensen, Jorgenson and Lau (1973)  finally presented a general form for VES 

functions. The problem had always been that of finding a functional form that not 

only allowed for a variable elasticity of substitution but also was easily estimable and 

could be considered an efficiently close approximation to whatever the underlying 

productive process actually was. The ‘transcendental logarithmic’ or translog 

production function is of the form 

 

 ; 0, , 0                                                 (2.10)K LQ AK L e Aα β α β α β′ ′+ ′ ′= > ≤     

This case reduces to the Cobb-Douglas if α′  and β ′  vanish. 

 

Taking logarithms we obtain 

ln ln ln lnQ A K L K Kα β α β′ ′= + + + +  

 

So ln Q  is a linear function of the inputs K  and L , as well as the logarithms of the 

input in ln K  and ln L . For this reason it is possible for eventually falling. This 

function also permits variable elasticity of substitution over the range of inputs. 

 

2.4.4 Nerlove-Ringstand   production   function 

Nerlove (1971)  and  Ringstand  developed  a  production  function  which  is  a  

general generalization  of  the  Cobb-Douglas  production  function , of  the  form , 

1 ln ,  0                                                                    (2.11)c QQ AK L cα β+ = ≥

 

This case reduced to the Cobb-Douglas form if 0C = . 
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2.4.5 Zellner-Revankar production function 

Revankar  (1971)  developed  a  model  in  which  a  linear  function  of  the 

capital/labor  ratio  was  used  and  Sato  and  Hossman  (1968)  presented  a  series 

of  forms-one  similar  to  Revankar’s  and  another  in  which  σ   varied  over  time. 

Zellner-Revankar  production  function  is  one  of  the  generalizations  of  the  Cobb-

Douglas  production  functions , written  in  the  form    

,   0  (2.12)cQQe AK L cα β= ≥

where, P  is the output; L  is the Labor input; K  is the Capital input; A  is a constant; 

U  is the random error term.α  and β  are positive parameters and 0α > , 0β > , 

0L >  and 1α β+ = . 

This case reduces to the Cobb-Douglas form if 0c = . Taking logarithms, 

ln ln ln lnQ cQ A k Lα β+ = + +

ln ln  (2.13)a k Lα β= + +

where, lna A= . 

In the transcendental case inputs in this case output and the logarithms of input enter 

on the left-hand side (Intriligator, M. D., p-279, 1980). 

2.5 Concluding Remarks 

In this chapter we discuss five types of production functions. From among these 

types, we consider Cobb-Douglas production function for some of its well-known 

properties.  
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Chapter 3 

Estimation of non-linear production function 

3.1 Introduction 

Nonlinear Estimation will compute the relationship between a set of independent 

variables and a dependent variable. For example, we may want to compute the 

relationship between the inputs and output of a firm, the dose of a drug and its 

effectiveness, the relationship between training and subsequent performance on a task, 

the relationship between the price of a house and the time it takes to sell it, etc. We 

may recognize research issues in these examples that are commonly addressed by 

such techniques as multiple regression or analysis of variance. In fact, we may think 

of Nonlinear Estimation as a generalization of those methods. Specifically, multiple 

regression (and ANOVA) assumes that the relationship between the independent 

variable(s) and the dependent variable is linear in nature. Nonlinear Estimation leaves 

it up to us to specify the nature of the relationship; for example, we may specify the 

dependent variable to be a logarithmic function of the independent variable(s), an 

exponential function, a function of some complex ratio of independent measures, etc. 

When allowing for any type of relationship between the independent variables and the 

dependent variable, two issues raise their heads. First, what types of relationships 

"make sense", that is, are interpretable in a meaningful manner? Note that the simple 

linear relationship is very convenient in that it allows us to make such straightforward 

interpretations as "the more of x (e.g., the higher the price of a house), the more there 

is of y (the longer it takes to sell it); and given a particular increase in x, a proportional 

increase in y can be expected." Nonlinear relationships cannot usually be interpreted 

and verbalized in such a simple manner. The second issue that needs to be addressed 

is how to exactly compute the relationship, that is, how to arrive at results that allow 

us to say whether or not there is a nonlinear relationship as predicted.  
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This chapter is organized into the following sections. Section 3.2 represents the 

estimation procedure of non linear model. In section 3.3, contains some computational 

issues. 

3.2 Estimating Nonlinear Models 

Technically speaking, Nonlinear Estimation is a general fitting procedure that will 

estimate any kind of relationship between a dependent (or response variable), and a 

list of independent variables. In general, all regression models may be stated as:  

( )1 2, ,...,                                                                                          (3.1)ny F x x x=  

In most general terms, we are interested in whether and how a dependent variable is 

related to a list of independent variables; the term ( )...F in the expression above means 

that y , the dependent or response variable, is a function of the X 's, that is, the 

independent variables.  

An example of this type of model would be the linear multiple regression model. For 

this model, we assume the dependent variable to be a linear function of the 

independent variables, that is:  

1 1 2 2 ...                                                                       (3.2)n ny a b X b X b X= + + + +

Nonlinear Estimation allows us to specify essentially any type of continuous or 

discontinuous regression model. Some of the most common nonlinear models are 

probit, logit, exponential growth, and breakpoint regression. However, we can also 

define any type of regression equation to fit to our data. Moreover, we can specify 

either standard least squares estimation, maximum likelihood estimation (where 

appropriate), or, again, define our own "loss function”.  

To estimate the production function we need to know different types of non-linear 

estimation. In non-linear model it is not possible to give a closed form expression for 

the estimates as a function of the sample values, i.e., the likelihood function or sum of 

squares cannot be transformed so that the normal equations are linear. The idea of 

using estimates that minimize the sum squared errors is a data-analytic idea, not a 
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statistical idea; it does not depend on the statistical properties of the observations. The 

other properties of the estimates do depend on the statistical model (see Christensen 

(2000), pp.-223).   

 

The idea of least squares estimation can be extended to very general non-linear 

situations.  

The method which are used to estimate the parameters in non-linear system are: 

o Non-linear least squares 

o Linear approximation  

o Numerical method 

 Gauss-Newton Algorithm 

 Newton-Raphson method 

 Steepest descent method 

 Marquardt method 

 Quadratic hill climbing method 

 Rank one correlation method 

 Davidon-Fletcher-Powell method 

 Method of scoring 

 Brown-Dennis method 

 Direct search method 

 

3.2.1 Non-linear least squares 

Suppose that we have n  observations ( ),i ix y , 1, 2,...,i n= , from a fixed regressor 

non-linear model, 

( );                                                                              (3.3)i i iy f x θ ε= +  

Where, [ ] 0iE ε = , ix  is a 1k ×  vector, and the least squares estimate of θ , denoted by 

θ̂ , minimize the error sum squares, 

( ) ( )
2

1

;                                                               (3.4)
n

i i
i

S y f xθ θ
=

= −  
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over θ ∈ Θ , a subset of pR . Unlike the linear least squares situations, ( )S θ  may 

several relative minima in addition to the absolute minimumθ̂ . We cannot be sure 

that non-linear least squares is the most efficient estimator, however except in the case 

of normally distributed disturbance (see Seber and Wild (1989), pp.-20-22). If we 

assume that the iε  are normally distributed, then θ̂  is also the maximum likelihood 

estimator. 

 

When each ( );if x θ is differentiable with respect to θ , and θ̂  is in the interior of θ , 

θ̂  will satisfy 

( )

ˆ

0; 1,2,..., .                                                                (3.5)
r

S
r p

θ

θ

θ

∂
= =

∂

 

The equations 
( );if x θ

θ

∂

′∂
 are called the normal equations for the non-linear model. For 

most non-linear models they cannot be solved analytically, so that iterative methods 

are necessary. 

 

3.2.2 Linear approximation 

The linear approximation (or linearization) method uses the results of linear least 

squares in a succession of stages. We begin by first noting that in a small 

neighborhood of *θ , the true value of θ , we have the linear Taylor expansion, 

( ) ( ) ( )
*

* *

1

p
i

i i r r
r r

f
f f

θ

θ θ θ θ
θ=

∂
≈ + −

∂
 

or,   ( ) ( ) ( )* *.                                                             (3.6)r rf f Fθ θ θ θ≈ + −  

where ( )
( )

. .
f

F F
θ

θ
θ

∂
= =

′∂
. When n  is large we get * *θ̂ θ θ θ− ≈ −  and 

( )
1*ˆ . . .F F Fθ θ ε

−
′ ′− =  (see Seber and Wild (1989), pp.-23). 

 

Hence we get the sum squares from ( )3.6  as,  
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( ) ( )
2

S y fθ θ= −  

         ( )
2

* *.( )y f Fθ θ θ≈ − − −  

         ( )
2

*.Fε θ θ= − −  

Since, ( )*y f θ ε− = . And the estimated sum squares is take the form as, 

( ) ( )2 ˆn p s S θ− =  

                ( )
2

ˆy f θ= −  

                ( )
2

n FI P ε≈ −  

                ( )n FI Pε ε′= − . 

Thus we get, 

( ) ( ) ( ) ( )
22

* *ˆ ˆS S y f y fθ θ θ θ− = − − −  

                      ( )
22

n FI Pε ε≈ − −  

          ( )n FI Pε ε ε ε′ ′= − − , 

where, ( )
1

. . . .FP F F F F
−

′ ′=  and n FI P−  are symmetric and idempotent. 

( ) ( )* ˆ
FS S Pθ θ ε ε′− =  

                      ( ) ( )* *ˆ ˆ. .F Fθ θ θ θ
′

′≈ − − . 

 

3.2.3 Numerical methods 

In the non-linear estimation problems it is most convenient to write down the normal 

equations ( )3.5  and develop an iterative technique for solving them. Estimating the 

parameters of such statistical model requires optimizing some kind of objective 

function, i.e., least squares estimates are obtained by minimizing a sum of squares and 

maximum likelihood estimation is done by maximizing the likelihood function. Most 

of the minimization methods are iterative. Some of these methods are discuss in the 

following section. 
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3.2.3.1 Gauss-Newton algorithm 

This method is also known as GAUSS method. The Gauss-Newton algorithm is a 

method for finding least squares estimates in non-linear problems. The algorithm 

consists of obtaining a sequence of linear least squares estimates that converge to the 

least squares estimate in the non-linear problem. This procedure requires as initial 

guess (estimate) forθ , say ( )1θ  and defines a series of estimates  ( )rθ  that converge to 

the least squares estimateθ̂ .  

 

Suppose ( )aθ  is an approximation to the least square estimate θ̂  of a non-linear 

model. For θ  close to ( )aθ , we use a linear Taylor expansion  

( ) ( )( ) ( ) ( )( ).                                                       (3.7)a a af f Fθ θ θ θ≈ + −  

Where ( ) ( )( ). .a aF F θ= . Appling this to the residual vector ( )r θ , we have 

( ) ( )r y fθ θ= −  

         ( )( ) ( ) ( )( ).a a ar Fθ θ θ≈ − − . 

Substituting in ( ) ( ) ( )S r rθ θ θ′=  leads to  

( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( )2 . . .    (3.8)a a a a a a a a aS r r r F F Fθ θ θ θ θ θ θ θ θ θ
′ ′′ ′≈ − − + − −

 

The right hand side is minimized with respect to θ  when  

( ) ( ) ( ) ( ) ( )( )
1

. . .a a a a aF F F rθ θ θ
−

′ ′
− =  

             ( )aδ= , (say).                                      

(3.9)  

  

This suggest that, given a current approximation ( )aθ , the next approximation should 

be  

( ) ( ) ( )1                                                                               (3.10)a a aθ θ δ+
= +
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This provides an iterative scheme for obtainingθ̂ . The approximation of ( )S θ  by the

quadratic ( )2.4 , and the resulting updating formulae ( )2.5  and ( )2.6 , are usually

referred to as the Gauss-Newton method. It forms the basis of a number of least 

squares algorithms. The Gauss-Newton algorithm is convergent, i.e., ( ) ˆaθ θ→  as

a → ∞ , provided that ( )1θ is close to enough to *θ  (true value ofθ ) and n  is large 

enough. 

3.2.3.2 Newton-Raphson method 

Newton-Raphson is one of the popular Gradient methods of estimation. In Newton-

Raphson method we find the values of jβ that maximize a twice differentiable

concave function, the objective function ( )g β . In this method we approximate ( )g β

at tβ  by Taylor series expansion up to the quadratic terms 

( ) ( ) ( )( ) ( ) ( )( )1

2
t t t t t tg g G Hβ β β β β β β β β β′

≈ + − + − −

Where, ( )
t

t

i

g
G

β

β
β

∂
=

∂
is the gradient vector and ( )

2

t

t

i k

g
H

β

β
β β

∂
=

∂ ∂
is the 

Hessian matrix. This Hessian matrix is positive definite, the maximum of the 

approximation ( )g β  occurs when its derivative is zero.

( ) ( )( ) 0t t tG Hβ β β β+ − =

( ) ( )
1

 (3.11) t t tH Gβ β β β
−

= −

This gives us a way to compute 1tβ + , the next value in iterations is,

( ) ( )
1

1t t t tH Gβ β β β
−

+ = −

The iteration procedures continue until convergence is achieved. Near the maximum 

the rate of convergence is quadratic as define by  

2
1 ˆ ˆt t

i i i icβ β β β+ − ≤ −
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for some 0c ≥  when t
iβ  is near îβ  for all i . Thus we get estimates îβ  by Newton-

Raphson methods. 

 

3.2.3.3 Steepest Descent method 

Steepest descent is well known Gradient method. In the Gradient method the direction 

vector δ  is usually chosen to be, 

n nPδ γ= −  

Where, nγ  is the gradient vector of the objective function ( )3.4 . In the steepest 

descent initially we obtained by choosing, 

                                                                                             (3.12)n kP I=

 

in all iteration, where k  is the dimension of the parameter space. 

 

Although this method is very simple, its use cannot be recommended in most cases, 

since it may converge very slowly if the minimum is in a long and narrow valley, that 

is, if the objective function is ill-conditioned. It is clear that using the same direction 

matrix nP  in each iteration does not allow a flexible adjustment to different shapes of 

the objective function surface. However, the steepest descent method can be valuable 

if it combined with Marquardt algorithm. 

 

3.2.3.4 Marquardt method   

The Marquardt method developed by Marquardt in 1963, sometimes referred to as the 

Marquardt-Levenberg method, can be used to modify procedures that do not 

guarantee a positive definite direction matrix nP .  

 

This utilizes the fact that  

                                                                                          (3.13)n n nP Pλ+

 

is always positive definite if nP  is positive definite and the scalar nλ  is sufficiently 

large. A possible choice for nP  is the identity matrix. Typically this method is used in 
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combination with the Gauss algorithm and ( ) ( )n nZ Zθ θ′ is modified rather than its

inverse. Thus the new direction matrix is given by 

( ) ( )
1

 (3.14)n n n n nP Z Z Pθ θ λ
−

′= +

Where, kI  can be used as nP . For a nλ close to zero, this method is equivalent to the

Gauss algorithm. 

Marquardt’s method appears to perform very well in practice even if the initial 

parameters vector 1θ  is not close to the minimum of the objective function.

3.2.3.5 Quadratic Hill Climbing method 

The Quadratic hill climbing method had developed by S. M. Goldfeld, R. E. Quandt 

and H.F. Trotter in 1966. In this method we modify the Hessian of the objective and 

use as the direction matrix, i.e.,  

[ ]
1

 (3.15)n n n kP H Iλ
−

= +

This is a modification of Newton method, where the essence is to take that step at 

each iteration that maximizes a quadratic approximation to the function ( )3.4  on a

sphere of suitable radius (see Goldfeld and Quandt (1973), pp.-5). 

3.2.3.6 Rank one Correlation method 

In this algorithms approximate the inverse of the Hessian of the objective function in 

each iteration by adding a correction matrix to the approximate inverse of the Hessian 

used, i.e., 

1  (3.16)n n nP P M+ = +

Where, nM is the correction matrix and nP  is an approximation to 1
nH − . In the ( )1n + st

step 1nP + is used as the direction matrix. The first order approximation of the gradient, 

( )1 1 1n n n n nHγ γ θ θ+ + +≈ + −
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which leads to  

( ) ( )1
1 1 1n n n n nH γ γ θ θ−

+ + +− ≈ −  

if the Hessian is non-singular. Replacing 1
1nH −

+  in this equation by ( )3.16 , we get, 

( )1                                                                           (3.17)n n n nM γ γ η+ − =

 

Where, ( ) ( )1 1n n n n n nPη θ θ γ γ+ += − − − . Hence we get different correction matrices 

fulfilling ( )3.17 , i.e., 

( )1

n nn
n

n n n

M
η η

η γ γ+

′
=

′ −
. 

This is the only symmetric matrix of rank one which meets the requirements of 

( )3.17 , the resulting algorithms is therefore called the rank one correction method. 

This method developed by Broyden in 1965. 

 

3.2.3.7 Davidon-Fletcher-Powell method 

Davidon-Fletcher-Powell method is developed by Davidon in 1959, and Flecher and 

Powell in 1963. Where the correction matrix define by, 

( )
( )( )

( ) ( )

1 1

1
1 1

n n n n n nn n
n

n n n
n n n n n

P P
M

P

γ γ γ γζ ζ

ζ γ γ γ γ γ γ

+ +

+
+ +

′′ − −
= −

− ′− −
 

If the step length nt  for each step n n n nt Pζ γ= −  is selected so as to minimize 

( )n nH θ ζ+  for the given nθ , nγ  and nP . Then 1n n nP P M+ = +  will always be positive 

definite. Therefore, choosing nP  as the step direction in the n th iteration guarantees 

an acceptable step. 

 

3.2.3.8 Method of scoring 

This is a feature of Gauss algorithm, which can be used for maximum likelihood 

estimation. For this method the direction matrix is given by, 

1
2 ln

n

n

l
P E

θ
θ θ

−

∂
= −

∂ ∂
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Where, l  is the likelihood function. Thus, using the negative log likelihood function 

as the objective function, the Hessian is approximated by its expected value. 

3.2.3.9 Brown-Dennis method 

Brown and Dennis developed the Brown-Dennis method in 1971, suggesting the 

possibility of combining the GAUSS algorithm with a Quasi-Newton method. Instead 

of the inverse Hessian of the objective function, we approximate the Hessian of 

( )1f θ  iteratively; that is, we choose

, 1 , ,  (3.18)t n t n t nF F M+ = +

Where, ,t nF  is an approximation to 

2

 (3.19)
n

tf

θ

δ

δθδθ ′

From 

( )
2

n 1
1 1

 +  (3.20)
n n n

t t t
n

f f f

θ θ θ

δ δ δ
θ θ

δθ δθ δθδθ
+

+ +

≈ −
′

It follows that ,t nM  should satisfy 

( ), 1 ,  (3.21)t n n n t nM θ θ μ+ − =

With 

( )
1

, , 1  (3.22)
n n

t t
t n t n n n

f f
F

θ θ

δ δ
μ θ θ

δθ δθ
+

+= − + −

For instance, a correlation matrix of rank one such as 

( )

( ) ( )

, 1
,

1 1

 (3.23)t n n n
t n

n n n n

M
μ θ θ

θ θ θ θ

+

+ +

′−
=

′− −

could be used. The direction matrix for this algorithm is 
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( ) ( ) ( )
1

,
, 1

 (3.24)
T

n n n t t n t n
t t

P Z Z y f Fθ θ θ

−

′
′=

′= − −

3.2.3.10 Direct search method 

When the first partial derivatives of the objective function do not exist or are different 

to compute then Direct search method play a effective role. 

Starting from some initial ( )1k ×  parameter vector 1θ , a search is performed in k

directions 1 2, ,..., kδ δ δ , which are at least linearly independent but often orthogonal. A

topical iteration is 

1  (3.25)n n n jtθ θ δ+ = +

The step length nt  is chosen such that ( ) ( )1n nH Hθ θ+ ≤ . The methods differ in how 

they select step length and direction and when they apply a new set of direction 

vectors. 

Non-linear estimation procedure yields complicated computation then the linear 

estimation procedure. In most situation non-linear estimation problem can be solved 

by minimizing the error sum square estimation method using any of the optimization 

method (see Goldfeld and Quandt (1973), pp.-16). 

3.3 Computational Issues 

The estimation of non-linear model is not straight forward, in this analysis we 

introduce computational procedure for estimating such non-linear models. We use the 

GAUSS (See Aptech, 1995), the SAS system version 8.0, SPSS version 12.0 and 

MATLAB version 13.0. 

Non-linear module of SPSS results in faster solution but most of the time it fails to 

converge. To save computational time we use SPSS. The most sensitive element in 

SPSS is the starting point, which is useful to converge the estimates. SPSS cannot 
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switch the optimization algorithm and affected by starting points. So, we consider the 

GAUSS and SAS constrained optimization module for our computations.  

The GAUSS constrained optimization module is used to find the optimal estimated 

value of the parameters in the non-linear model ( )2.8 . The most critical element in

GAUSS optimization is also the starting point. Accuracy of the results and the number 

of iteration required to converge depend on the starting values. When the optimization 

did not work, we tried different starting points as there seem to be no general methods 

for using starting points. As a result, we force (by pressing Alt+C) to get the estimated 

value and this value is used further as a starting point. The GAUSS optimization 

module is also affected by local maxima.   

GAUSS consider four line search method in optimization procedure, i.,e., Steplength, 

STEPBT, HALF and BRENT method. Default method is STEPBT, which is the best 

method. The Steplength method will generate fast iteration but slower convergence 

and the BENT method will generate slow iteration but faster convergence. The 

optimization module also considers grid search procedure, where the line is split into 

some grid and the searching is done on the basis of each of these grids. 

The GAUSS optimization module uses Newton-Raphson method as a default 

algorithm. But the switching is done can be manually or allowing more time. When 

the algorithm convergence then the optimum conditions are satisfied and exit from the 

iteration procedure. The iteration may require huge time for too large value of the 

data. In our computation, some situation arises that the GAUSS module does not 

convergence and the optimum conditions are not satisfy. The GAUSS optimization 

module also fails to switch different algorithm quickly, so we use the SAS system 

version 8.0 in our computations. In some cases, all of these softwares failed to 

converge. We left them unsolved as they require extensive study on estimation of 

strictly non-linear methods and require more time. 

The SAS system switching optimization algorithm is vary quickly, even when it is fail 

to convergence the system can gives the estimated value. By default the SAS system 
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consider Gauss-Newton optimization algorithm. Besides it the system considers 

Marquardt methods and other methods discuss in section (3.2.3.4). Whenever 

convergence problem is encounter then it improves by switching the algorithms. 
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Chapter 4 

Analysis 

4.1 Introduction 

In this chapter we discuss the analysis procedure and compare the restricted and 

intrinsically nonlinear model with intrinsically linear model. By using different model 

selection criteria we select the best model for different manufacturing industries of 

Bangladesh.  

The organization of the present chapter is as follows. Section 4.2 discusses the Cobb-

Douglas production function. Section 4.3 consist name of different manufacturing 

industry in Bangladesh that we consider in this study. Section 4.4 discusses the results 

and comments. In section 4.5, we discuss the model selection criteria and based on 

them we select the best model. Section 4.6 discusses the hypothesis testing of the best 

model. Some concluding remarks are discussed in section 4.7.   

4.2 Cobb-Douglas Production Function 

The Cobb-Douglas production function is the widely used function in Econometrics. 

A famous case is the well-known Cobb-Douglas production function introduced by 

Charles W. Cobb and Paul H. Douglas (1928), although anticipated by Knut Wicksell 

(1901: p.128, 1923) and, some have argued, J. H. von Thünen (1863). They have 

estimated it after studying different industries in the world, for this it is used as a 

fairly universal law of production. 

The Cobb-Douglas production function with multiplicative error term can be 

represented as, 

                                                                                   (4.1)P AL K Uα β=  

where, P  is the output; L  is the Labor input; K  is the Capital input; A  is a constant; 

U  is the random error term. α  and β  are positive parameters and 0α > , 0β > , 

0L >  and 1α β+ = . 
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The Cobb-Douglas production function with additive error term can be represented as, 

                                                                               (4.2)P AL K Uα β= +

Where, P  is the output; L  is the Labor input; K  is the Capital input; A  is a constant; 

U  is the random error term. α  and β  are positive parameters and 0α > , 0β > , 

0L >  and 1α β+ = . 

4.3 Selected Manufacturing Industries of Bangladesh for this Study 

We are going to apply the production functions on the basis of some selected 

manufacturing industries of Bangladesh. When we have gone to different industries to 

collect necessary data and information required for preparing the thesis, we did not 

get all the necessary information for obvious reasons. For example, many industries 

do not supply their man-hours and capital input data possibly to keep these 

information secret. Consequently a good number of industries show their production 

cost much higher than the gross output. So we get in many cases a biased and 

unrealistic scenario. For this reason any study related to production function, these 

primary data cannot be used.  

In recent publications of “Statistical Yearbook of Bangladesh” and “Report on 

Bangladesh Census of Manufacturing Industries (CMI)” published by BBS, we get 

the published secondary data for the major manufacturing industries of Bangladesh. 

We have chosen the following manufacturing industries for the ongoing analysis. 

1) Food manufacturing

2) Manufacturing of Textile

3) Manufacturing of Wearing apparel except footwear

4) Manufacturing of Leather & Leather products

5) Manufacturing of Leather footwear

6) Manufacturing of Wood & cork products

7) Manufacturing of Furniture & fixtures (wooden)

8) Manufacturing of Paper & paper products

9) Manufacturing of Printing & publications

10) Manufacturing of Drugs & pharmaceuticals
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11) Manufacturing of Industrial chemical 

12) Manufacturing of Other chemical products 

13) Manufacturing of plastic products 

14) Manufacturing of Pottery & China-ware 

15) Manufacturing of Glass & glass products 

16) Manufacturing of Non-metalic mineral products 

17) Manufacturing of Iron & steel basic industries 

18) Manufacturing of Fabricated metal products 

19) Manufacturing of Non-electrical machinery 

20) Manufacturing of Electrical machinery 

21) Manufacturing of transport equipment 

 

4.4 Results and Discussion 

In case of Cobb-Douglas production function with multiplicative error terms i. e., for 

intrinsically linear model, we get the following estimates: 

 

Table 4.1 The estimates of intrinsically linear Cobb-Douglas production function.  

Industry 

name 
Intercept 

Calcula

ted   t  

value 

Capital 

elasticity 

(α ) 

Calculated 

t  value 

Labor 

elasticity 

( β ) 

Calculated 

t  value 

Return 

to scale 

(α β+ ) 

1
γ

α β
=

+
2R  

Chemical 2.477 2.293 0.489 10.366 0.717 3.765 1.206 0.830 0.955 

Drugs 7.761 2.138 0.580 2.294 -0.174 -0.385 0.406 2.463 0.325 

Electrical 

machinery
6.877 6.879 0.326 1.949 0.499 1.757 0.825 1.212 0.848 

Food -1.550 -2.069 1.230 7.739 -0.074 -0.327 1.155 0.865 0.982 

Furniture 0.925 0.385 0.698 2.788 0.713 1.917 1.411 0.708 0.654 

Glass 5.449 3.815 0.387 4.786 0.432 1.368 0.819 1.221 0.830 

Iron -1.110 -0.508 0.007 0.056 2.154 5.257 2.161 0.463 0.804 

Leather 

footwear 
4.301 3.683 0.575 3.330 0.369 2.083 0.944 1.060 0.969 

Leather 6.470 9.316 0.313 2.147 0.660 3.254 0.973 1.028 0.968 

Metal -0.256 -0.120 0.439 3.186 1.083 5.998 1.522 0.657 0.822 

Mineral 3.287 3.578 0.810 9.838 0.052 0.540 0.862 1.159 0.922 
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Industry 

name 
Intercept 

Calcula

ted   t  

value 

Capital 

elasticity 

(α ) 

Calculated 

t  value 

Labor 

elasticity 

( β ) 

Calculated 

t  value 

Return 

to scale 

(α β+ ) 

1
γ

α β
=

+
2R  

Non 

Electrical 

machinery

8.162 2.413 0.122 0.559 0.547 2.28 0.669 1.494 0.301 

Other 

Chemical 
1.879 1.083 0.717 10.544 0.473 1.776 1.190 0.840 0.942 

Paper 6.367 1.512 0.310 0.565 0.573 0.973 0.883 1.132 0.552 

Plastic 4.550 2.183 0.664 1.693 0.090 0.094 0.754 1.326 0.697 

Pottery 2.526 2.464 0.542 3.360 0.577 2.245 1.119 0.894 0.901 

Printing -1.188 -0.715 -0.025 -0.038 2.016 2.189 1.991 0.502 0.962 

Textile 6.766 2.050 0.478 4.214 0.236 1.228 0.714 1.401 0.577 

Transport 5.142 4.783 0.250 1.806 0.863 2.417 1.113 0.899 0.929 

Wearing 3.572 3.244 0.236 0.874 0.926 3.373 1.162 0.861 0.990 

Wood 2.016 1.364 0.728 5.705 0.317 5.120 1.045 0.957 0.900 

 

The estimates are obtained by applying Ordinary Least Square (OLS) method. The 4th 

column represents the estimates of Capital elasticity; the 5th column represents the 

calculated value of t  statistic; the 6th and 7th column refers the Labor elasticity and its 

calculated value of t  statistic respectively. The 8th and 9th column of the table 

represents the returns of scale and the economy of an industry respectively. The last 

column of the table represents the value of 2R .  

 

There are economies of scale in the manufacturing of Iron & steel basic industries, 

Printing & publication, Fabricated metal products, Furniture & fixtures (wooden), 

Industrial chemicals, Other chemical products, Wearing apparel except footwear, 

Food, Pottery & China-ware, Transport equipment and Wood & cork products since 

1γ < . There are diseconomies of scale in the Leather footwear, Leather & leather 

products, Paper & paper products, Non-metalic mineral products, Electrical 

machinery, Glass & glass products, Plastic products, Textile, Non-electrical 

machinery and Drug & pharmaceutical industries.  
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Table 4.2 The estimates of Cobb-Douglas production function with additive error 

term (intrinsically nonlinear) and without any restriction on parameters of the 

industries under study. 

Industry 
name 

Intercept 
Standard 

error 

Capital 
elasticity 

(α ) 

Standard 
error 

Labor 
elasticity 

( β ) 

Standard 
error 

Returns 
to scale 
(α β+ ) 

2R  

 
1

γ
α β

=
+

 

Chemical 9.6485 12.3953 0.6143 0.0767 0.4524 0.1604 1.0667 0.949 0.937 

Drugs 266409.3 1229527 0.3182 0.4522 -0.1119 0.8862 0.2063 0.083 4.847 

Electrical 

machinery 
2949.46 3249.9 -0.1346 0.2121 1.1920 0.3820 1.0574 0.873 0.946 

Food 0.3123 0.4473 1.402 0.1306 -0.394 0.1372 1.008 0.972 0.992 

Furniture 0.0457 0.1161 1.396 0.2620 0.106 0.3074 1.502 0.914 0.666 

Glass 580.129 554.006 0.4204 0.1157 0.2198 0.2479 0.6402 0.85 1.562 

Iron 0.0245 0.0697 0.151 0.1464 2.204 0.2580 2.355 0.874 0.425 

Leather 

footwear 
0.0085 0.0098 1.224 0.0733 0.269 0.0334 1.493 0.995 0.670 

Leather 780.0625 611.9324 0.286 0.1044 0.684 0.1777 0.97 0.96 1.031 

Metal 0.4375 1.1731 0.602 0.1870 0.88 0.2352 1.482 0.795 0.675 

Mineral 75.1416 193.1749 0.809 0.17926 -0.067 0.0738 0.742 0.8 1.348 

Non 

electrical 

machinery 

3668.83 9771.5 -0.416 0.0992 1.604 0.2955 1.188 0.77 0.842 

Other 

chemical 
4.2748 8.1292 1.073 0.1323 -0.097 0.4043 0.976 0.965 1.025 

Paper 1.0666 7.7612 0.802 0.8280 0.461 0.7636 1.263 0.611 0.792 

Plastic 22444.34 39583.7 0.491 0.2749 -0.408 0.6431 0.083 0.527 12.048 

Pottery 22.9491 44.6271 0.899 0.2729 -0.18 0.2763 0.719 0.883 1.391 

Printing 23.8531 63.5103 -0.326 1.0426 2.001 1.5326 1.675 0.863 0.597 

Textile 16730.75 54810.3 0.378 0.1235 0.132 0.1587 0.51 0.499 1.961 

Transport 65.6149 135.1517 0.316 0.1343 0.86 0.2709 1.176 0.892 0.850 
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Industry 
name 

Intercept 
Standard 

error 

Capital 
elasticity 

(α ) 

Standard 
error 

Labor 
elasticity 

( β ) 

Standard 
error 

Returns 
to scale 
(α β+ ) 

2R  

 
1

γ
α β

=
+

 

Wearing 1065.44 1572.4 1.043 0.4667 -0.449 0.5655 0.594 0.932 1.684 

Wood 2320.71 4925.3 0.315 0.1736 0.275 0.0690 0.590 0.789 1.695 

 

There are economies of scale in the manufacturing of Chemical, Electrical machinery, 

Food, Furniture & fixtures (wooden), Iron & steel basic, Leather footwear, Fabricated 

metal products, Non electrical machinery, Paper & paper products, Printing & 

publications, Transport equipment since 1γ < . 

There are diseconomies of scale in the Drugs & pharmaceuticals, Glass & glass 

products, Leather & leather products, Non-metalic mineral products, Other chemical 

products, Plastic products, Pottery & China-ware, Textile, Wearing apparel except 

footwear, Wood & crock products industries.  

 

In Cobb-Douglas production function, we know that, the Capital and Labor elasticity 

are positive, so we use the nonlinear estimation procedures. Under this restriction we 

get the following estimates of the manufacturing industries under study.  

 

Table 4.3 The estimates of Cobb-Douglas production function with additive error 

term (intrinsically nonlinear) and putting restriction on parameters of the industries 

under study. 

Name of Industry Intercept 
Capital 

elasticity 
(α ) 

Labor 
elasticity 

( β ) 

Returns to 
scale 

(α β+ ) 

1
γ

α β
=

+
 

Chemical 9.64825 0.61429 0.45239 1.06668 0.93749 

Drugs 1.15421 1.06239 0 1.06239 0.94127 

Electrical machinery 2.85917 0 1.70804 1.70804 0.58547 

Food 0.01789 1.33397 0 1.33397 0.74964 

Furniture 0.04564 1.39531 0.10634 1.50165 0.66593 

Glass 580.1568 0.42038 0.21982 0.6402 1.56201 
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Name of Industry Intercept 
Capital 

elasticity 
(α ) 

Labor 
elasticity 

( β ) 

Returns to 
scale 

(α β+ ) 

1
γ

α β
=

+
 

Iron 0.02452 0.15062 2.20455 2.35517 0.42460 

Leather footwear 0.00851 1.22373 0.26919 1.49292 0.66983 

Leather 780.16 0.28655 0.68451 0.97106 1.02980 

Metal 0.43754 0.60164 0.88004 1.48168 0.67491 

Mineral 98.91466 0.75564 0 0.75564 1.32338 

Non-electrical 
machinery 

3.27594 0 1.78538 1.78538 0.56010 

Other chemical 2.92618 1.04445 0 1.04445 0.95744 

Paper 1.06585 0.80162 0.46125 1.26287 0.79185 

Plastic 13084.06 0.32799 0 0.32799 3.04887 

Pottery 60.7963 0.73152 0 0.73152 1.36702 

Printing 8.87988 0 1.58091 1.58091 0.63255 

Textile 16743.19 0.37752 0.13172 0.50924 1.96371 

Transport 65.66222 0.31633 0.85981 1.17614 0.85024 

Wearing 1749.324 0.67873 0 0.67873 1.47334 

Wood 2321.932 0.31543 0.27466 0.59009 1.69466 

 

There are economies of scale in the manufacturing of Chemical, Drugs & 

pharmaceuticals, Electrical machinery, Food, Furniture & fixtures (wooden), Iron & steel 

basic, Leather footwear, Fabricated metal products, Non-electrical machinery, Other 

chemical products, Paper & paper products, Printing & publications, Transport equipment 

since 1γ < . There are diseconomies of scale in the Glass & glass products, Leather & 

leather products, Non-metalic mineral products, Pottery & China-ware, Textile, Wearing 

apparel except footwear, Wood & crock products industries.  
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4.4.1 Interpretations of the Cobb-Douglas estimates  

Holding capital input constant we see that 1%  increase in the labor input led on an 

average about 0.717% , 0.452%  and 0.452%  increase in the output of “Chemical 

industry” for the model with intrinsically linear, intrinsically nonlinear and 

intrinsically nonlinear with restricted parameters. We get increased output of the 

selected industries in the following table for three different models.  

 

Table 4.4 Rate of change of output for a given change in labor input of the industries 

under study.  

Serial 
number 

1% increase in labor 
input for 

% increased in output for 

Intrinsically 
linear model  

Intrinsically 
nonlinear 

model  

Intrinsically 
nonlinear with 

restricted 
parameters model 

1 Chemical 0.717 0.452 0.452

2 Drugs -0.174 -0.112 0.000

3 Electrical machinery 0.499 1.192 1.708

4 Food -0.074 -0.394 0.000

5 Furniture 0.713 0.106 0.106

6 Glass 0.432 0.220 0.220

7 Iron 2.154 2.204 2.205

8 Leather  0.369 0.684 0.269

9 Leather footwear 0.660 0.269 0.685

10 Metal 1.083 0.880 0.880

11 Mineral 0.052 -0.067 0.000

12 
Non electrical 

machinery 0.547 1.604 1.785

13 Other chemical 0.473 -0.097 0.000

14 Paper 0.573 0.461 0.461

15 Plastic 0.090 -0.408 0.000

16 Pottery 0.577 -0.180 0.000

17 Printing 2.016 2.001 1.581

18 Textile 0.236 0.132 0.132

19 Transport 0.863 0.860 0.860

20 Wearing 0.926 -0.449 0.000
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Serial 
number 

1% increase in labor 
input for 

% increased in output for 

Intrinsically 
linear model  

Intrinsically 
nonlinear 

model  

Intrinsically 
nonlinear with 

restricted 
parameters model 

21 Wood 0.317 0.275 0.275

 

We may comment here that Iron & steel basic industries, Printing & publication and 

Fabricated metal products follows the forms of labor intensive production function 

when we consider the intrinsically linear model. Also we observed that Electrical 

machinery industries, Iron & steel basic industries, Non electrical machinery 

industries and Printing & publication follows the forms of labor intensive production 

function for intrinsically nonlinear and intrinsically nonlinear with restricted 

parameters model. 

 

From the above table, we observed that, if we do not put any restriction on the 

parameters, we get negative labor elasticity of substitution for some industries. But we 

know that labor elasticity of substitution is positive. Thus, we put the restriction on 

the parameters to get the results.  

 

Again holding labor input constant we see that 1%  increase in the capital input led on 

an average about 0.4889% , 0.6143%  and 0.6143%  increase in the output of 

“Chemical industry” for the model with intrinsically linear, intrinsically nonlinear and 

intrinsically nonlinear with restricted parameters. We get increased output of the 

selected industries in the following table for three different models.  

 

Table 4.5 Rate of change of output for a given change in capital input of the industries 

under study.  

Serial 
number 

1% increase in capital 
input for 

% increased in output for 

Intrinsically 
linear model  

Intrinsically 
nonlinear 

model  

Intrinsically 
nonlinear with 

restricted 
parameters  model 

1 Chemical 0.4889 0.6143 0.6143 
2 Drugs 0.4400 0.3182 1.0624 
3 Electrical machinery 0.3257 -0.1346 0.0000 
4 Food 1.2297 1.4020 1.3340 
5 Furniture 0.6982 1.3960 1.3953 
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Serial 
number 

1% increase in capital 
input for 

% increased in output for 

Intrinsically 
linear model 

Intrinsically 
nonlinear 

model 

Intrinsically 
nonlinear with 

restricted 
parameters  model 

6 Glass 0.3867 0.4204 0.4204 
7 Iron 0.0072 0.1510 0.1506 
8 Leather  0.5749 0.2860 1.2237 
9 Leather footwear 0.3134 1.2240 0.2866 
10 Metal 0.4393 0.6020 0.6016 
11 Mineral 0.8101 0.8090 0.7556 

12 
Non electrical 
machinery 0.1218 -0.4160 0.0000 

13 Other chemical 0.7172 1.0730 1.0445 
14 Paper 0.3102 0.8020 0.8016 
15 Plastic 0.6644 0.4910 0.3280 
16 Pottery 0.5415 0.8990 0.7315 
17 Printing -0.0248 -0.3260 0.0000 
18 Textile 0.4780 0.3780 0.3775 
19 Transport 0.2496 0.3160 0.3163 
20 Wearing 0.2358 1.0430 0.6787 
21 Wood 0.7281 0.3150 0.3154 

We may comment here that only Food manufacturing industries follows the forms of 

capital intensive production function when we consider the intrinsically linear model. 

Also we observed that Food, Furniture & fixtures (wooden), Leather footwear, Other 

chemical products, Wearing apparel except footwear industries follows the forms of 

capital intensive production function for intrinsically nonlinear model. But Drugs &, 

Food, Furniture, Leather & leather products, Other chemical products manufacturing 

industries follows the forms of capital intensive production function for intrinsically 

nonlinear with restricted parameters model.  

From the above table, we observed that, if we do not put any restriction on the 

parameters, we get negative capital elasticity of substitution for some industries. But 

we know that capital elasticity of substitution is positive. Thus, we put the restriction 

on the parameters to get the results.  

Rate of change of output for a given change in labor input for the major industries of 

Bangladesh can be displayed as:  
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Figure 4.1 Graph of the Rate of change of output for a given change in labor input 

for the major industries of Bangladesh. 

 

From the above figure, we observed that, Iron & steel basic industry provides highest 

percent increase in output for 1%  increase in labor input for three models.  

 

Rate of change of output for a given change in capital input for the major industries of 

Bangladesh can be displayed as:  
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Figure 4.2 Graph of the Rate of change of output for a given change in capital input 

for the major industries of Bangladesh. 
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From the above figure, we observed that, Food manufacturing industry provides 

highest percent increase in output for 1%  increase in capital input for three models.  

 

4.4.1.1 Returns to scale 

Returns to scale refer to the response of output to a proportionate change inputs. It can 

be increasing or decreasing or it may even remain constant. These three typical cases 

are described bellow: 

• Increasing returns to scale: If doubling the input of a system results in more 

than double output, then the system is said to have an increasing returns to 

scale. In case of Cobb-Douglas production function, we have increasing 

returns to scale when 1α β+ > . 

• Decreasing returns to scale: If doubling the input of a system results in less 

than double output, then the system is said to have a decreasing returns to 

scale. In case of Cobb-Douglas production function, we have increasing 

returns to scale when 1α β+ < . 

• Constant returns to scale: If doubling the input of a system results in exactly 

double output, then the system is said to have a decreasing returns to scale. In 

case of Cobb-Douglas production function, we have increasing returns to scale 

when 1α β+ = . 

Table 4.6 Industries having increasing returns to scale of the three models under 

study. 

 

Intrinsically linear model Intrinsically nonlinear model 
Intrinsically nonlinear with 
restricted parameters  model 

Chemical Chemical Chemical 

Furniture Furniture Furniture 

Iron Iron Iron 

Metal Metal Metal 

Printing Printing Printing 

Transport Transport Transport 

Food Food Food 

Other chemical  Other chemical 

Pottery   

Wearing   
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Wood   

 Leather footwear Leather footwear 

 Electrical machinery Electrical machinery 

 Non electrical machinery Non electrical machinery 

 Paper Paper 

  Drug 

 

Table 4.7 Industries having decreasing returns to scale of the three model under study. 

 

Intrinsically linear model  Intrinsically nonlinear model  
Intrinsically nonlinear with 
restricted parameters model 

Drugs Drugs  

Glass Glass Glass 

Plastic Plastic Plastic 

Textile Textile Textile 

Leather Leather Leather 

Mineral Mineral Mineral 

Electrical machinery   

Leather footwear   

 Other Chemical  

Non electrical machinery   

 Pottery Pottery 

Paper   

 Wearing Wearing 

 Wood Wood 

 

Table 4.8 Increasing returns to scale for the industries under study. 

Serial 
number 

Name of industry 

Increasing returns to scale ( 1α β+ > ) 

Intrinsically 
linear model 

Intrinsically 
nonlinear model 

Intrinsically 
nonlinear with 

restricted  model 
1 Chemical 1.2055 1.0667 1.0667 
2 Drugs   1.0624 
3 Electrical machinery  1.0574 1.7080 
4 Food 1.1560 1.0080 1.3340 
5 Furniture 1.4114 1.5020 1.5017 
7 Iron 2.1614 2.3550 2.3552 
8 Leather footwear   1.4929 
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9 Leather  1.4930  
10 Metal 1.5223 1.4820 1.4817 

12 
Non-electrical 
machinery 

 1.1880 1.7854 

13 Other chemical 1.1901  1.0445 
14 Paper  1.2630 1.2629 
16 Pottery 1.1189   
17 Printing 1.9912 1.6750 1.5809 
19 Transport 1.1126 1.1760 1.1761 
20 Wearing 1.1618   
21 Wood 1.0451   

 

Table 4.9 Decreasing returns to scale for the industries under study. 

Serial 
number 

Name of industry 

Decreasing returns to scale ( 1α β+ < ) 

Intrinsically 
linear model 

Intrinsically 
nonlinear model 

Intrinsically 
nonlinear and 

restricted  model 
2 Drug 0.6688 0.2063  

3 Electrical machinery 0.8251   

6 Glass 0.8188 0.6402 0.6402 

8 Leather footwear 0.9435 0.9700  

9 Leather  0.9731  0.9711 

11 Mineral 0.8625 0.7420 0.7556 

12 
Non-electrical 
machinery 

0.6693   

13 Other chemical  0.9760  

14 Paper 0.8834   

15 Plastic 0.7539 0.0830 0.3280 

16 Pottery  0.7190 0.7315 

18 Textile 0.7138 0.5100 0.5092 

19 Wearing  0.5940 0.6787 

20 Wood  0.5900 0.5901 
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Figure 4.3 Bar diagram for increasing returns to scale for the industries under study. 

 

From figure 4.3 we observed that Iron & steel basic industries has highest increasing 

returns to scale.  

0

0.2

0.4

0.6

0.8

1

1.2

2 3 6 8 9 11 12 13 14 15 16 18 19 20

Serial number of industries

R
et

ur
ns

 to
 s

ca
le

Intrinsically linear model 

Intrinsically nonlinear model 

Intrinsically nonlinear with
restricted parameters model

 

Figure 4.4 Bar diagram for decreasing returns to scale for the industries under study. 

 

From the figure 4.4, we may observe that, Leather footwear, Leather & leather 

products and Other chemical products industries though not exactly but almost appear 

to follow the concept of constant returns scale.  

 

From the above discussion we may conclude that three models give different outputs. 

So that, in order to forecast about the production of manufacturing industries, we need 
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to identify the appropriate model. For this purpose, we select better model by model 

selection criteria.  

4.5 Model Selection Criteria 

To find the appropriate production function we use model selection criterion. The 

model that minimizes the criterion is the best model. The general form of model 

selection criteria is represented as,  

( ) 2 ln(max  ) ( , )Crit m imized likelihood f n m= +

Where, m denotes a model, n  is the number of sample size and ( ),f n m is a function

of n  and number of independent parameters in the model m . The first term on the 

right hand side is a measure of fidality of the model to the data (or goodness of fit) 

and the second term is a “penalty function” which penalizes higher dimensional 

model. 

In practice, one should use these criteria to identify a small group of best models. By 

increasing the number of the variables in a model the residual sum of squares 2ˆtu

will decrease and 2R  will increase, but at the cost of a loss in degrees of freedom. 

In general, simpler models are recorded for two technical reasons. First, the inclusion 

of too many variables makes the relative precisions of individual coefficients worse. 

Second, the resulting loss of degrees of freedom would reduce the power of tests 

performed on the coefficients.  

The recent years several criteria for choosing among models have proposed. These 

entire take the form of residual sum of squares (ESS) multiplied by a penalty factor 

that depend on the complexity of the model. Some of these criteria are discuss below. 

4.5.1 Finite Prediction Error (FPE) 

Akaike (1970) developed Finite Prediction Error procedure, which is known as FPE. 

The statistic of this procedure can be represented as, 

ESS T K
FPE

T T K

+
=

−
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where, T  is the number of observations and K  is the number of estimated parameter 

(See Ramanathan, 1989, pp-165-167). 
 

4.5.2 Akaike Information Criteria (AIC) 

Akaike (1974) also developed another procedure which is known as Akaike 

Information Criteria. The form of this statistic is given below, 

2K

TESS
AIC e

T
=  

 

The value of AIC deceases when some variables are dropped (See Ramanathan, 1989, 

pp-165-167). 
  

4.5.3 Hunnan and Quinn (HQ) criterion 

Hunnan and Quinn (1979) developed a procedure which is known as HQ  criteria. 

The statistic of this procedure can be represented as  

( )( )2 /
ln

k TESS
HQ T

T
=  

 

The value of HQ  will decrease provided there are at least 16 observations (See 

Ramanathan, 1989, pp-165-167). 
 

4.5.4 SCHWARZ criterion  

Craven and Wahba (1978) developed a procedure which is known as 

( ) SCHWARZ BIC  criteria. The form of this procedure is represented as  

/K TESS
SCHWARZ T

T
=  

The value of SCHWARZ will also decrease provided there are at least 8 observations 

(See Ramanathan, 1989, pp-165-167). 
 

4.5.5 SHIBATA criterion 

Craven and Wahba (1981) developed a procedure which is known as SHIBATA  

criteria.  

The form of this procedure is represented as  
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2ESS T K
SHIBATA

T T

+
= . 

When some variables dropped SHIBATA  will increase (See Ramanathan, 1989, pp-

165-167). 

 

4.5.6 Generalized Cross Validation (GCV) 

Generalized Cross Validation (GCV) is another procedure which is developed by 

Craven and Wahba (1979). The form of the statistic is given below 

2

1
ESS K

GCV
T T

−

= −  

If one or more variables are dropped then GCV  will decrease (See Ramanathan, 

1989, pp-165-167). 

 

4.5.7 Rice criterion 

The model selection criteria Rice developed by Craven and Wahba (1984). The form 

of this criterion can be represented as  

1
2

1
ESS K

RICE
T T

−

= − . 

(See Ramanathan, 1989, pp-165-167). 

 

4.5.8 SGMASQ criterion 

The form of this criterion can be represented as  

1

1
ESS K

SGMASQ
T T

−

= − . 

If SGMASQ  decreases (that is 2R  increases) when one or more variable dropped, 

then GCV and RICE  will also decreases (See Ramanathan, 1989, pp-165-167). 

 

Among the above criteria, BIC  and HQ  are consistent in this sense that if the set of 

candidate models contains the true model, then these two criteria select the true model 

with probability 1 asymptotically. Shibata (1980) shows that AIC  is asymptotically 

efficient, in the sense that it selects the model that is closest to the unknown true 

model asymptotically. 
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From Table 4.10 given in Appendix A we observe that, the Cobb-Douglas production 

function with additive error ( )2.8  performs better for the selected manufacturing

industries based on the data under study period. Thus the strictly nonlinear models 

(which are nonlinear with additive error terms) seem to be better than 

intrinsically linear model (which are nonlinear with multiplicative error terms).  

4.6 Hypothesis Testing 

To investigate the model that is the model is well fitted or not, we have consider the 

following the null hypothesis, 

0 : 0H θ = , i.e., the model is not fitted well, 

against the alternative hypothesis, 

0 : 0H θ ≠ , i.e., the model is fitted well, 

where θ  is the vector of parameters, i.e., ( )    Aθ α β ′=  for the model ( )2.8 .

Under the null hypothesis, the test statistic is, 

( )

( ) ( )

2

2

/ 1

1 /

R k
F

R n k

−
=

− −

where, k  is the number of parameter and n  is the number of observations. 

We reject 0H , if 
( )

( ) ( ) ( ) ( )

2

0.05, 1 ,2

/ 1

1 / k n k

R k
F F

R n k
− −

−
= >

− −
, which implies that model is 

fitted well. 

The analytical results of the hypothesis testing are presented in the following table: 

Table 4.11 The values of test statistic of intrinsically nonlinear model for selected 

manufacturing industries.  

Name of Industry 2R F

Chemical 0.94929 121.6798 

Drugs 0.85125 37.19748 

Electrical machinery 0.87074 43.78624 
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Name of Industry 2R F

Food 0.95603 141.3281 

Furniture 0.91378 68.88854 

Glass 0.8499 36.80446 

Iron 0.8743 45.21042 

Leather footwear 0.99588 1571.17 

Leather 0.96029 157.1867 

Metal 0.79501 25.20886 

Mineral 0.78839 24.21688 

Non-electrical machinery 0.47428 5.863996 

Other chemical 0.96451 176.6502 

Paper 0.61092 10.20608 

Plastic 0.5107 6.784284 

Pottery 0.87927 47.33915 

Printing 0.86192 40.57416 

Textile 0.49885 6.470169 

Transport 0.89209 53.73538 

Wearing 0.92919 85.29494 

Wood 0.78928 24.34662 

From Table 4.9 we observe that 2R  is highly significant for all the manufacturing 

industries, we can say that the intrinsically nonlinear model ( )2.8  is fitted well

according to the null hypothesis 0 : 0H θ = . 

In order to forecast the production of manufacturing industries, we use the following 

production function: 
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Table 4.12 Estimated intrinsically nonlinear Cobb-Douglas production functions for 

the manufacturing industries under study. 

Serial number Name of Industry 
Estimated intrinsically nonlinear Cobb-Douglas 

production function 

1 Chemical  0.61429 0.452399.64825P K L=  

2 Furniture  1.39531 0.106340.04564P K L=  

3 Glass  0.42038 0.21982580.1568P K L=  

4 Iron  0.15062 2.204550.02452P K L=  

5 Leather footwear  1.22373 0.269190.00851P K L=  

6 Leather  0.28655 0.68451780.16P K L=  

7 Metal  0.60164 0.880040.43754P K L=  

8 Paper  0.80162 0.461251.06585P K L=  

9 Textile  0.37752 0.1317216743.19P K L=  

10 Transport  0.31633 0.8598165.66222P K L=  
11 Wood  0.31543 0.274662321.932P K L=  

 

 

4.7 Concluding Remarks 

From Table 4.10 given in Appendix A, we observe that, the Cobb-Douglas production 

function with additive error ( )2.8  performs better for the selected manufacturing 

industries based on the data under study period. Thus the strictly nonlinear models 

(which are nonlinear with additive error terms) seem to be better than 

intrinsically linear model (which are nonlinear with multiplicative error terms). 

Also from Table 4.11, we observe that intrinsically nonlinear model fits well. For 

forecasting the output of the manufacturing industries we use the estimated 

production function given in Table 4.12. For the rest of the analysis, we use the 

strictly nonlinear model. 
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Chapter 5 

Autocorrelation 

5.1 Introduction 
The purpose of this chapter is to survey the literature on some existing tests and other 

related issues about autocorrelation. When we are dealing with time series data, a 

number of special problems arise that often result in the violation of some of the 

important assumptions of a regression model. Autocorrelation is one of the most 

serious problems that arise due to such violation.  

In the presence of autocorrelation, OLS estimates and forecasts based on them are still 

unbiased and consistent, but they are not BLUE and hence inefficient. Since, the 

estimated variances of the parameters become biased and inconsistent, so the test of 

hypothesis will not be valid and give us misleading conclusions in the presence of 

autocorrelation. For this reason, it is particularly important to describe the existing test 

and hence we remove the autocorrelation from the data and finally we re-estimate the 

parameters. 

The organization of the present chapter is as follows. Section 5.2 discusses about the 

nature of autocorrelation. In section 5.3 we introduce the general forms of 

autocorrelation. Section 5.4 discusses the sources of autocorrelation. A discussion 

about the problems of autocorrelation is made in section 5.5 and section 5.6 represents 

some existing test for autocorrelation. In section 5.7 we discuss the results obtained 

form the data for different industries under study. Section 5.8 represents some 

transformations that are used to remove autocorrelation. Finally, section 5.9 contains 

some results of removing autocorrelation. 

5.2 Nature of Autocorrelation 
Autocorrelation is a special case of correlation; this is the situation, when the 

successive residuals tend to be highly correlated. Its existence implies that the total 

effect of a random error is not instantaneous, but is also felt in future periods, and, 

after some reflection. It is clear that this is a reasonable assumption for many 

economic relationships. So, it is a common phenomenon in most economic variables. 
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The method of least squares has several desirable properties, provided the error terms 

satisfy a number of assumptions. Among them one important assumption is that the 

successive values of the random disturbance term are independent that is, 

0],[ =ji uuE , for ji ≠ . 

If this assumption is not satisfied and there exists such dependence that is 

0],[ ≠ji uuE , for ji ≠ , we say that there exists autocorrelation in the disturbance 

terms. For example, if we are predicting the growth of stock dividends, an 

overestimate in one year is likely to lead to overestimates in succeeding years, or, if 

we are dealing with quarterly time series data involving the regression of output on 

labor and capital inputs and if say there is a labor strike affecting output in one 

quarter. Hence, the disruption caused by a strike this quarter may very well affect 

output next quarter. 

Autocorrelated values of the disturbance term may be observed for many reasons. 

Sometimes autocorrelation occurs due to omitted explanatory variables. It is because, 

if an autocorrelated variable is excluded from the set of explanatory variables, 

obviously its influence will be reflected in the random variable u , whose values will 

be autocorrelated. On the other hand, if we adopt a mathematical form which differs 

from the true form of the relationship, the u ’s may show autocorrelation. 

Autocorrelation may also occur due to interpolations in the statistical observation and 

for mis-specification of the true random disturbance term u . 

The problem of autocorrelation is usually more common in time series data. In time 

series data, the observations are ordered in chronological order. Therefore, there are 

likely to be inter-correlations among successive observation especially if the time 

interval between successive observations is short, such as a day, a week or a month 

rather than a year. 

There exists fourth-order autocorrelation in seasonal data. Although the incidence of 

autocorrelation is predominantly associated with time series data, it can occur in cross 

sectional data. The autocorrelation that occurs in cross sectional data is called spatial 
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autocorrelation that is correlation in space rather than over time, (See Gujarati, 2003, 

pp.- 405). 

 

5.3 General Form of Autocorrelation 
There are many possible forms of autocorrelation, and each one lead to a different 

structure for the error covariance matrix, which are describe by different time series 

models. For forecasting purposes a model that describes the behaviors of a variable 

(or a set of variables) in terms of past values called time series model. Depending on 

the structure of the error u , time series models are different. To analysis the time 

series models, we can commonly group them to each of the following categories; 

i. Standard time series models 

ii. Financial time series models. 

 

Standard time series models are those models where only the autocorrelation feature 

is present. An autoregressive (AR) process, A moving average (MA) process, An 

autoregressive moving average (ARMA) process and An autoregressive integrated 

moving average (ARIMA) process are the example of Standard time series models. 

When heteroscedasticity occur with autocorrelation in time series contexts then the 

models are known as Financial time series models. To forecast prices of financial 

assets, such as stock prices and exchange rates. These asset prices are characterized 

by the phenomenon known as volatility clustering, that is periods in which they 

exhibit wide swings for an extended time followed by a period of comparative 

tranquility. The ARCH (autoregressive conditional heteroscedasticity) and GARCH 

(generalized autoregressive conditional heteroscedasticity) models can capture such 

volatility clustering. We discuss about structures of these models in the following 

sections. 

 

5.3.1 Autoregressive (AR) process 
The most popular form of autocorrelation and one that has proved to be useful in 

many application is known as the first-order autoregressive disturbance or AR(1)  

process, is of the form, 
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( )1                                                                                  5.1t t tu uρ ε−= +  

where, ( )1,0~ Ntε . 

 

If we consider the model as, 

1 1 2 2                                                                      (5.2)t t t tu u uρ ρ ε− −= + +  

then we say that tu  follows second-order autoregressive AR(2)  process. 

In general, 

1 1 2 2                                                 (5.3)t t t p t p tu u u uρ ρ ρ ε− − −= + + + +   

where, follows tu  an autoregressive process of order p  or )AR( p  process. 

 

5.3.2 Moving average (MA) process  
In some cases, only the particular error terms are correlated while all others have a 

zero correlation. This can be modeled by a moving average (MA) error process. The 

first order moving average or )1MA(  process is, 

( )1                                                                                   5.4t t tu ε θε −= +  

The second-order moving average )2MA(  process is of the form, 

1 1 2 2                                                                     (5.5)t t t tu ε θ ε θ ε− −= + +  

The general form of moving average or )MA(q  process is,  

1 1 2 2                                                   (5.6)t t t t q t qu ε θ ε θ ε θ ε− − −= + + + +  
 

5.3.3 Autoregressive moving average (ARMA) process 
The autoregressive moving average or ARMA(1,1) process is the case where, 

( )1 1                                                                       5.7t t t tu uρ ε θε− −= + +

More generally, 

1 1 2 2 1 1                  (5.8)t t t p t p t t q t qu u u uρ ρ ρ ε θ ε θ ε− − − − −= + + + + + + +  

is an ),ARMA( qp  process, where p  and q  represents autoregressive and moving 

average parameters respectively. 

 

5.3.4 Autoregressive integrated moving average (ARIMA) process 
A very popular process in econometric time series is the autoregressive integrated 

moving average (ARIMA) process. Time series models are based on the assumption 

that it is stationary. But many of the econometric time series are nonstationary that is 

integrated. If a time series is integrated of order one i.e., I(1) , its first differences are 
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I(0) , i.e., stationary. Similarly, if a time series is I(2) , its second difference is I(0) . 

In general, if a time series is )I(d , then after differencing it d times we get an I(0)  

series. Therefore, if we take difference a time series d  times and then apply the 

),ARMA( qp  model to it, then the time series model is ),,ARIMA( qdp  where, p  is 

number of autoregressive terms, d  the number of times the series has to difference 

and q  the number of moving average terms. The )1,1,1ARIMA(    process can be 

written as, 

( )1 1                                                                 5.9t t t tu uρ ε θε− −Δ = Δ + +  

where, 1−−=Δ ttt uuu  and 211 −−− −=Δ ttt uuu  are the first differences of tu . 

 

The )2,2,2ARIMA(    process is of the form, 

( )2 2 2
1 1 2 2 1 1 2 2                               5.10t t t t t tu u uρ ρ ε θ ε θ ε− − − −Δ = Δ + Δ + + +

where, 21
2

−− −−=Δ tttt uuuu , 3211
2

−−−− −−=Δ tttt uuuu  and 4322
2

−−−− −−=Δ tttt uuuu  

are second differences of tu . 

 

Similarly, ),,ARIMA( qdp  is, 

( )1 1 1 1                 5.11d d d
t t p t p t t q t qu u uρ ρ ε θ ε θ ε− − − −Δ = Δ + + Δ + + + +

where, dΔ  indicates the d –th difference of tu . 

 

5.3.5 Autoregressive Conditional Heterocedasticity (ARCH) process 
The problem of autocorrelation is a feature of time series data and heteroscedasticity 

is a feature of cross-sectional data. When heteroscedasticity occur in time series 

contexts, then the current disturbance variance is depend on the previous disturbance 

information’s. Hence the conditional disturbance variance is, 

2 2 2 2
0 1 1 2 2var( )                                (5.12)t t t t p t pu u u uσ α α α α− − −= = + + + +

 thus arise an autoregressive conditional heteroscedasticity (ARCH) process, 

developed by Engle (1982). 

The first-order autoregressive conditional heteroscedasticity or ARCH(1)  process is, 

1
22

0 1 1( )                                                                          (5.13)t t tu uε α α −= +

where, (0,1)t Nε , and the disturbance term is distributed as, 2
0 1 10, ( )t tu N uα α −+ .  
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And the second-order autoregressive conditional heteroscedasticity process or 

ARCH(2)  is, 

1
22 2

0 1 1 2 2( )                                                            (5.14)t t t tu u uε α α α− −= + +  

Thus the autoregressive conditional heteroscedasticity process of order p or 

ARCH( )p is, 

1
22 2 2

0 1 1 2 2( )                                        (5.15)t t t t p t pu u u uε α α α α− − −= + + + +

 

 
5.3.6 Generalized Autoregressive Conditional Heterocedasticity (GARCH) 
process 
A generalization of the ARCH model where the conditional variance of tu  is 

dependent not only on the past squared disturbance but also on past conditional 

variances is called the Generalize Autoregressive Conditional Heteroscedasticity 

(GARCH) process, introduced by Bollerslev (1986). 

The first-order Generalized Autoregressive Conditional Heteroscedasticity process or 

GARCH(1,1)  is, 

1
22 2

0 1 1 1 1( )                                                             (5.16)t t t tu uε α α γ σ− −= + +

where, 2 2
0 1 1 1 10, ( )t t tu N uα α γ σ− −+ + . 

 

More generally,  
1
22 2 2 2

0 1 1 1 1( )                    (5.17)t t t p t p t q t qu u uε α α α γ σ γ σ− − − −= + + + + + +

 

is the GARCH( , )p q  process. It expresses the conditional variance as a linear 

function of p  lagged squared disturbances and q  lagged conditional variances. 

 

5.3.7 Autoregressive multiplicative seasonal process 
A variable may be more closely related to its value in the same quarter (month, week, 

etc.) of the previous year than to its value in the immediately preceding quarter. Then 

we can introduce an autoregressive multiplicative seasonal AR(1) SAR(1)×  process 

as, 
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4
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,

( ) 5.18
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t t t t
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φ α ε

φ α φ ε

α φ αφ ε

−

− −

− − −

− − −

= +

= + +

= + − +

= + − +

This is seen to be a special case of a general AR(5) , (See Johnston, 1997, pp.- 235). 

5.3.8 Moving average multiplicative seasonal process 
A moving average multiplicative seasonal MA(1) SMA(1)× process is define as, 

4

4 1

4 1 5

1 4 5

,

,

( )  (5.19)

.

t t t

t t t

t t t t

t t t t

z z

z

z z z

z z z

β ε

β θε ε

β θ β ε

θ β θβ ε

−

− −

− − −

− − −

= +

= + +

= + − +

= + − +

This is seen to be a special case of a general MA(5) , (See Johnston, 1997, pp.- 235). 

Besides the above models, there are PAR (Periodic autoregressive) models, SPAR 

(Semi-periodic autoregressive) models etc. The models that are discussed above have 

a unique important place in the field of Economics and Business Statistics, since the 

series relating to prices, consumption and production of various commodities; money 

in circulation, bank deposits and bank clearings, sales and profits in a departmental 

store, agriculture and industrial production, national income and foreign exchange 

reserves, price and dividend of shares in a stock exchange market, etc.  

5.4 Sources of Autocorrelation 
Autocorrelation may arise from a good number of causes. Some of them are discussed 

as follows: 

5.4.1 Omitted explanatory variables 
If this occurs, since it is known that most economic variables are autocorrelated, then 

the error will be autocorrelated.  Including the omitted variable into the equation 

should get rid of this problem. 

5.4.2 Misspecification of the mathematical form of the model 
For different economic problem we use different mathematical model as the problem 

required.  But if we fail to adopt the correct relationship the random variable u  may 
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be autocorrelated. For instance, if we specify a linear form when the true form of the 

model is non-linear then the errors may reflect some dependence. 

 

5.4.3 Interpolation in the statistical observations 
This cause arises usually when we work with secondary or published, especially time 

series data. Because most of the published time series data involves some 

interpolation and smoothing process which averages out the true disturbances over 

successive periods. Consequently, the successive value of u  is interrelated and 

exhibit autocorrelation pattern.  

 

5.4.4 Misspecification of the true random error 
It may well be expected in many cases for the successive values of u  may be related 

due to purely random factors, such as wars, drought, change in taste, etc, which have 

an effect over successive periods. In such a case ( ) 0 0t t jE u u j− ≠ ∀ ≠  and the true 

pattern of the tε  value will really be miss-specified.  This may be called ‘true 

autocorrelation’ since the root cause of the auto-regressiveness lies in the nature of the 

error term. 

 

5.5 Problems of Autocorrelation 

Autocorrelation is the most serious problem, which arises in time series analysis. 

When the random disturbance term exhibits autocorrelation in the regression model, 

the use of ordinary least squares procedures has a number of important consequences. 

We summarize some of these problems in the following: 

i) If we estimate the model in the presence of autocorrelation, the estimates of 

the parameters are no longer BLUE and will be inefficient. Hence, forecasts 

based on these estimates will be still unbiased but they will be also inefficient 

with larger variances. 

ii) The variance of the error term may be seriously underestimated, that is the 
residual sum of squares, i.e., 2

î
i

ε  may result in the estimate variances being 

much less than the true variance, since 

2

2
î

is
n k

ε

=
−

. 
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iii) As a consequence of the problem with the residual sum of squares, the value 

of multiple correlation coefficients )( 2R  becomes overestimate indicating 

better fit than actually exists and the estimated t –statistics in such a case will 

tend to appear more significant than they actually are. Therefore, the tests of 

hypothesis will not be valid in the presence of autocorrelation. 

iv) When there exists positive autocorrelation in the random disturbance terms 

and the independent variable grows over time, the estimated standard errors 

will be smaller than the true ones and hence will seriously underestimate the 

variance, standard error, thereby inflating t  values. Therefore, the usual t  and 

F  tests are not reliable with autocorrelation. 

 

5.6 Tests for Autocorrelation 

Autocorrelation is a serious problem in any econometric research and there are a good 

number of tests to detect the presence of autocorrelation in the data namely graphical 

method, the Runs test, the 2χ test of independence of residuals, the Vonn Neumann 

ratio test, Durbin-Watson d test and so on. These test procedures are briefly described 

below: 

5.6.1 Graphical method 

In this method the regression residuals are plotted on a graph sheet either against their 

own lagged values or against time. This process gives a rough idea about the 

existence of autocorrelation in the disturbance term.  

 

5.6.2 The Runs test 

If the residuals are plot against time, then it could be seen that there are several 

residuals that are negative, then there is a series of positive residuals and finally there 

are several residuals that are again negative. If we assign a ‘ + ’sign for a positive 

residual and a ‘ − ’ sign for a negative residual, we get several runs which is defined as 

an uninterrupted sequence of one symbols or attribute, such as +  or − , now let us 

assume 

 N = Total number of observations 1 2( )N N= +   

 1N = Number of positive residuals or ‘ + ’ symbol 
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 2N = Number of negative residuals or ‘ − ’ symbol 

 n =  Number of runs 

 

Then under the null hypothesis that the successive outcomes (the residuals) are 

independent of each other and assuming that 1 10N >  and 2 10N > , the number of run 

is asymptotically normally distributed with 

 Mean: ( ) 1 22
1

N N
E n

N
= +  

 Variance: ( ) 2 1 2 1 2
2

2 (2 )

( 1)n

N N N N N
V n

N N
σ

−
= =

−
 

 

If the hypothesis of randomness is sustainable, the number of runs obtained in a 

problem, is expected to lie between ( ) 1.96 nE n σ±  with 95  percent confidence. 

Therefore, the decision rule for this test be obtained as follows- 

 

The null hypothesis of randomness is to be accepted with 95  percent confidence if  

( ) ( )1.96 1.96n nE n n E nσ σ− ≤ ≤ +  

otherwise the null hypothesis is rejected. 

 

5.6.3 Durbin-Watson d  test 

The Durbin-Watson statistic is a test statistic used to detect the presence of 

autocorrelation in the residuals from a regression analysis. This test was developed by 

James Durbin and Geoffrey Watson in 1951. It uses what is usually referred to as the 

Durbin-Watson d  statistic and is based on the sum of the squared differences in 

successive values of the estimated disturbance terms.  

If tu  is the residual associated with the observation at time t , then the test statistic is 

( )
( )

2

1
2

1

ˆ ˆ
                                                                           5.20

ˆ

n

t t
t

n

t
t

u u
d

u

−
=

=

−

=
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5.6.3.1 Assumptions involved in d  statistic 

The Durbin-Watson d  statistic involves the following assumptions: 

• The regression model includes an intercept term. If such term is not present, as 

in the case of regression through the origin, it is essential to return the 

regression including the intercept term to obtain the Residual Sum of Squares 

(RSS). 

• The explanatory variables are non-stochastic or fixed in repeated sampling. 

• The disturbances tu  are generated by first order autoregressive scheme: 

1t t tu uρ ε−= + . 

• The regression model does not include lagged values of the dependent 

variables as one of the explanatory variables. 

• There is no missing observation in the data. 

• The error term tu  is assumed to be normally distributed. 

 

5.6.3.2 Decision taken in Durbin-Watson test 

The probability distribution of the d  statistic given in ( )5.20  is difficult to derive 

because, as Durbin and Watson have show, it depends in a complicated way on the X  

values present in a given sample. This should be understandable because d  is 

computed from ˆtu , which are of course, dependent on the given X ’s. Therefore 

unlike the t , F  or 2χ  test, there is no unique critical value, which will lead to the 

rejection or acceptance of the null hypothesis that there is no first order serial 

correlation in the disturbances tu . However, Durbin and Watson were successful in 

deriving a lower bound Ld  and an upper bound Ud  such that if the computed d  these 

critical values, a decision can be made regarding the presence of positive or negative 

serial correlation. Moreover, these limilts depends only on the number of observations 

N  and the number of explanatory variables and do not depend on the values taken by 

these explanatory variables. 

 

The actual test procedure can be explained which shows that the limits of d  are 0  

and 4 . This can be established as follows; 
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( )ˆ2 1 ρ≈ −

where 
1

2

2

1

ˆ ˆ
ˆ

n

t t
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n

t
t

u u

u
ρ

−
=

=

= , is the sample first order coefficient of correlation, an estimate of 

ρ .

Now from the above relation 

ˆ 1ρ =  suggests 0d ≈  

ˆ 0ρ =  suggests 2d ≈  

ˆ 1ρ = −  suggests 4d ≈  

From these functional expressions, we have two important conclusions. These are: 

i) Values of d  lies between 0  and 4 , and

ii) If there is no autocorrelation i.,e., ˆ 0ρ =  then 2d = .

Therefore, the calculated value of d  turns out to be sufficiently close to 2 , it can be 

assumed that there is no first order autocorrelation, either positive or negative. If 

ˆ 1ρ = + , indicating perfect positive correlation in the residuals, then 0d ≈ . Therefore, 

the closer d  is to 0 , the greater is the evidence of positive serial correlation. If 

ˆ 1ρ = − , indicating perfect negative correlation in the residuals, then 4d ≈ . Hence, 

the closer d  is to 4 , the greater is the evidence of negative serial correlation in the 

residuals. 

Since the exact value of d  can never be known, there exists a range of a values within 

which we cannot take any decision whether there exists positive or negative 

autocorrelation. Specifically, for the two-tailed Durbin-Watson test, we have well 

defined five regions for the value of d  as shown bellow in a tabular form: 
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Table 5.1: Durbin-Watson d  test: Decision rules 

Null hypothesis Decision If 

No positive autocorrelaiton Reject 0 Ld d< <  

No positive autocorrelaiton No decision L Ud d d< <  

No negative autocorrelaiton Reject 4 4Ld d− < <  

No negative autocorrelaiton No decision 4 4U Ld d d− < < −  

No autocorrelaiton positive 
or negative 

Do not reject 4U Ud d d< < −  

 

 5.6.3.3 Drawback of Durbin-Watson d  test 

We have mentioned that Durbin-Watson d test is widely used in empirical analysis. 

But this test has a great drawback. If it falls in the inconclusive region, one cannot 

conclude regarding the presence or absence of autocorrelation. To solve this problem, 

several authors have proposed modifications of the Durbin-Watson d  test. This 

modification states that, in many situations, it has been found that the upper limit Ud  

is approximately the true signigicance limit and therefore in case the estimated d  

value lies in the inconclusive region, one can use the following modified d  test 

procedure; given the level of significance α - 

• 0 : 0H ρ =  vs 1 : 0H ρ >  

Decision: If the estimated Ud d< , 0H  is to be rejected in favor of 1H , at level α , 

i.,e., there is statistically significant positive autocorrelation. 

• 0 : 0H ρ =  vs 1 : 0H ρ <  

Decision: If the estimated 4 Ud d− < , 0H  is to be rejected in favor of 1H , at level α , 

i.,e., there is statistically significant evedence of negative autocorrelation. 

• 0 : 0H ρ =  vs 1 : 0H ρ ≠  

Decision: If the estimated Ud d<  or 4 Ud d− < , 0H  is to be rejected in favor of 1H , 

at level 2α , i.,e., there is statistically significant evedence of autocorrelation, positive 

or negative. 
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This modification is just a rough and ready procedure, which should not be 

recommended in general, since the exact significance level of the test will almost 

certainly differ from the nominal 5%  or 1%  significance level being used. However, 

since the consequences of acceptance 0H  when autocorrelation is present are almost 

certainly serious than the consequences of incorrectly assuming it to be absent, one 

might have a preference for rejecting the null hypothesis in case of doubt (J. Johnston, 

1984).  

5.6.4 Durbin’s h -test 

If the model contains lagged regressand as a regressor, the DW d -test is not 

appropriate. For such models, Durbin (1970) utilizes the theory of LM test to develop 

the h -statistic, which is applicable in the presence of lagged dependent variable. This 

test is known as Durbin’s h -test. Let us consider the model as, 

0 1 1 2 2 1                                  (5.21)t t t k kt t ty x x x y uβ β β β γ −= + + + + + +

where, 1−ty  is the lagged values of ty , γ  is the regression coefficient of one period 

lagged value of ty . The test statistic of h -test is, 

( )
1/ 2

1
21  (5.22)

ˆ(1 ( ))

n
h d

nv γ
= −

−

where, d is the DW statistic as defined in (5.20) , n  is the sample size and )(ˆ γv  is the 

estimate of variance of γ  from least squares analysis. For large sample size, Durbin 

has shown that under the null hypothesis, the h -statistic (5.22)  follows the standard 

normal distribution. 

To apply the test, we proceed as follows: First, we estimate the model (5.21)  by OLS 

and then )(ˆ γv  is estimated. Next we determine the value of d  using the equation 

(5.20) . Using the values of these estimates we compute the h -statistic using (5.22) . 

Now if the sample size is reasonably large and if the computed h  exceeds 1.96, we 

can conclude that there is evidence of first-order autocorrelation in the model. 
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5.6.5 Detection of higher order autocorrelation: The Breusch-Godfrey (BG) test 

To avoid some of the pitfalls of the Durbin-Watson d  test of autocorrelation, 

statisticians Breusch and Godfrey have developed a test of autocorrelation that is 

general in the sense that it follows for  

i) non-stochastic regressors, such as the lagged values of the regressand 

ii) higher order autoregressive schemes, such as ( )1AR , ( )2AR , etc. and 

iii) simple or higher order moving average of white noise error terms. 

 

The Breusch-Godfrey (BG) test is also known as the Lagrange Multiplier test. Engle 

(1982) has shown that, for large sample, the sample size )(n  is multiplied by the 

unadjusted 2R , which is obtained from the auxiliary regression has the chi-square 

distribution with degrees of freedom equal to the number of restrictions in the null 

hypothesis. Thus in this case, 2)( RpnLM −= , follows chi-square distribution with 

)( pn −  degrees of freedom, (See Ramanathan, 1995). 

 

To illustrate this test let us write the model for t  time periods as, 

1 2                                                                             (5.23)t t ty x uβ β= + +

with  

1                                                                                  (5.24)t t tu uρ ε−= +

where, ),0(~ 2
εσε NIDt  

 

The steps for the LM test are described as follows: 

Step 1 0: 210 ==== pH ρρρ  

0oneleast at : ≠iaH ρ , pi  , ,2 ,1= .      

Step 2 Estimate the model (2.91)  by OLS and then obtain the estimated residuals 

from this model as, ttt xyu 21
ˆˆˆ ββ −−= . 

Step 3 Regress tû  against all the independent variables )(X  in equation (5.23)  and 

pttt uuu −−−
ˆ,,ˆ,ˆ 21 . We refer this regression as the auxiliary regression. The 

effective number of observations used in this auxiliary regression is )( pn − . 
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Step 4 Now, we compute the value of 2)( Rpn − , where, 2R  is obtained from the 

auxiliary regression run in Step 2. If the calculated value of 2)( Rpn −  

exceeds the critical value of chi-square distribution with )( pn −  degrees of 

freedom then we reject the null hypothesis. 

 

5.7 Test Results 

In the present study, we have considered Durbin-Watson d  test procedure to detect 

the presence of autocorrelation. Most of the cases d  statistic fails to detect 

autocorrelation. The limits of d  are obtained at 5%  level of significance. Here for 

2k = , 16n = , 0.982Ld =  and 1.539Ud = , where, k  is the number of explanatory 

variables excluding the constant term and n  is the total number of observations. 

 

In case of inconclusive situation of d  statistic, Run test is used to detect the presence 

or absence of autocorrelation where d  statistic failed to detect. But in the present 

study we are not able to adopt the Run test because of the small number of 

observations. So to solve this problem, several authors have proposed modifications 

of the Durbin-Watson d  test but they are rather involved and are beyond the scope of 

this text or study. 

 

By using model selection criteria we observe that the Cobb-Douglas model with 

additive error term is better. Thus the strictly nonlinear models (which are non 

linear with additive error terms) seem to be better than intrinsically linear model 

(which are non linear with multiplicative error terms).  

 

The computer program SPSS and SAS performs an exact d  test (it gives the p  value, 

the exact probability, of the computed d  value) and those with access to this program 

may want to use that test in case the usual d  statistic lies in the indecision zone. In 

many situations, however, it has been found that the upper limit Ud  is approximately 

the true significance limit and therefore, in case the estimated d values lies in the 

indecision zone, one can use the modified d  test procedure (D. N. Gujarati, 1995). 



87 

After applying the test we found, there exists positive autocorrelation of some 

manufacturing industries under the study. 

Table 5.2 Result for testing autocorrelation for the Cobb-Douglas production function 

with additive error terms in different industries by applying Durbin-Watson test. 

Name of 
industry 

Durbin 
Watson 

( )d
( )4 d−

Comment based on 
Durbin-Watson d  test 

Comment based on 
modified d  test 

Chemical 2.017 1.983 No autocorrelation 

Drug 1.187 2.813 
No decision about no 
positive autocorrelation 

Positive 
autocorrelation 

Electrical 
machinery 

1.702 2.298 No autocorrelation 

Food 1.988 2.012 No autocorrelation 

Furniture 1.235 2.765 
No decision about 
positive autocorrelation 

Positive 
autocorrelation 

Glass 1.652 2.348 No autocorrelation 

Iron 1.021 2.979 
No decision about 
positive autocorrelation 

Positive 
autocorrelation 

Leather 
footwear 

0.591 3.409 Positive autocorrelation 

Leather 0.922 3.078 Positive autocorrelation 

Metal 1.401 2.599 
No decision about 
positive autocorrelation 

Positive 
autocorrelation 

Mineral 1.643 2.357 No autocorrelation 

Non-electrical 
machinery 

2.254 1.746 No autocorrelation 

Other chemical 0.681 3.319 Positive autocorrelation 

Paper 0.311 3.689 Positive autocorrelation 

Plastic 0.866 3.134 Positive autocorrelation 

Pottery 2.113 1.887 No autocorrelation 

Printing 1.704 2.296 No autocorrelation 
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Name of 
industry 

Durbin 
Watson 

( )d  
( )4 d−  Comment based on 

Durbin-Watson d  test 
Comment based on 

modified d  test 

Textile 1.21 2.79 
No decision about 
positive autocorrelation 

Positive 
autocorrelation 

Transport 2.171 1.829 No autocorrelation  

Wearing 1.796 2.204 No autocorrelation  

Wood 0.902 3.098 Positive autocorrelation  

 

5.8 Treatment for Autocorrelation 

5.8.1 Reformulation of model 

If autocorrelation exists in the model, we have to take remedial action to correct it. 

Since the nature and cause of the autocorrelation are generally unknown, so there is 

no estimation procedure that can guarantee the elimination of autocorrelation. The 

solution here is reformulating the model to include the quadratic term and 

transforming the original model so that there is no autocorrelation. 

 

5.8.1.1 Specify a more general dynamic structure 

Let,  

                                                                            (5.25)t t ty X uα β= + +

 

Where, ty and tX  are respectively the values of dependent and explanatory variables 

at time t ,α , β  are the parameters of the model and tu  is the random disturbance 

term. 

 

Let us consider the following model that relates the dependent variable to its own 

lagged value, an explanatory variable and its lag, 

1 1 2 2 3 3 1, 1                                           (5.26)t t t t ty y y yβ β β ε β− − −= + + + <

  

Where, tε assumed to have mean zero and constant variance and be serially 

independent. 
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When variables are expressed as deviations from the mean the model ( )5.25  

becomes, 

                                                                                   (5.27)t t ty X uβ= +

 

 

Solving for tu  in terms of the others and substituting for it in equation, 

1 , 1 1,                                                                 (5.28)t t tu uρ ε ρ−= + − < <

  

 

We get, ( )1 1t t t t ty X y Xβ ρ β ε− −− = − + , which can be rearranged as follows, 

1 1                                                         (5.29)t t t t ty y X Xρ β βρ ε− −= + − +

 

 

Comparing equations ( )5.26  and ( )5.27  we observe, 1β ρ= , 2β β= , 3β ρβ= −  and 

the parameters satisfy the nonlinear restriction, 

3 1 2 0                                                                                   (5.30)β β β+ =

 

If this restriction is satisfied by equation ( )5.26  then the model reduces to the static 

model as in equation ( )5.27  with autoregressive error structure in equation ( )5.28 . 

After formulation the model ( )5.26  we test the non-linear restriction ( )5.30   on it 

and if it is accepted, the model is simplified along the lines of equations ( )5.27  

and ( )5.28 . 

 

5.8.1.2 Model formulation of first differences 

In empirical econometric work, a common way to get around the problem of spurious 

regression is to formulate models in terms of first difference, which is the difference 

between the value at time t  and that at time 1t − . Here we estimate, t t ty Xβ εΔ = Δ + . 

where, 1t t ty y y −Δ = −  and 1t t tX X X −Δ = − . The solution of using first differences 

might not always be appropriate and to seed whether it is appropriate or not, the first 

difference model can be rewritten as, 
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1 1   (5.31)t t t t ty y X Xβ β ε− −= + − +  

Hence comparing this equation with (5.26) , we see that this model is a special case 

with 1β  and 2 3 0β β+ = . Now, we test these two restrictions first and if both are 

accepted, then a first difference specification is used. The first difference 

transformation is appropriate if the coefficient of autocorrelation is very high.  

5.8.2 Estimation procedures 

When the modified functional forms do not eliminate autocorrelation, several 

estimation procedures are available that will produce more efficient estimates than 

those obtained by the OLS procedure. These methods need to be applied only for time 

series data. 

5.8.2.1 Generalized least squares (GLS) estimation 

When ρ  is a known parameter, the GLS estimate is best linear unbiased and it is 

given by, 

( )
11 1ˆ   (5.32)X X X yβ ψ ψ

−− −′ ′=

Also, we can calculate β̂  using the following steps: 

Step 1: Find a matrix P  such that 1P P ψ −′ =

Step 2: Calculate the transformed observation y Py∗ = and X PX∗ =

Step 3: Apply least squares to the transformed model, 

 (5.33)y X eβ∗ ∗ ∗= +

Where, e Pe∗ = , to obtain the generalized least square estimator, 

1

ˆ  (5.34)X X X yβ
−

∗ ∗ ∗ ∗′ ′=

. 

This estimator is identical to the one in ( )5.32 . To find the transformed matrix P, we

first need to specify the inverse of ψ using direct multiplication, it can be shown that, 
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2

2

2

1 0 0 0

1 0 0

0 1 0 0
 (5.35)

0 0 0 1

0 0 0 1

ρ

ρ ρ ρ

ρ ρ
ψ

ρ ρ

ρ

−

− + −

− +
=

+ −

−

Then it is possible to show that the appropriate transformation matrix is, 

21 0 0 0 0

1 0 0 0

0 0 0 0
 (5.36)

0 0 0 1 0

0 0 0 1

P

ρ

ρ

ρ

ρ

−

−

−
=

−

Appling this matrix to step (ii) we get the transformed matrix y∗ and X ∗ . 

5.8.2.2 Cochrane-Orcutt iterative procedure 

The Cochrane-Orcutt iterative procedure requires the transformation of the regression 

model, 

1 2 1 ...  (5.37)t t tk ty X kX uβ β β= + + + +

to a form in which the OLS procedure is applicable. Now, rewriting equation ( )5.37

for the period 1t −  we get, 

( )1 1 2 ( ) 11 1 ...                                          (5.38)t k t k k tty X X uβ β β− − −−
= + + + +

Multiplying ( )5.38  term by ρ and substituting from ( )5.37 , we get,

( )1 1 2 2 ( )1 2(1 ) ...   (5.39)t t t k tk t k k tty y X X X Xρ β ρ β β ε− −−
− = − + − + + − +

where, 1t t tu uρ ε−= + .

The equation ( )5.39  can be rewritten as follows,
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1 2 2 3 3 ...   (5.40)t t t k tk ty X X Xβ β β β ε∗ ∗ ∗ ∗ ∗= + + + + +

Where, 1t t ty y yρ∗

−= − , 1 1(1 )β β ρ∗ = − and ( )1ti ti t iX X Xρ∗

−
= − for 2,3,...,t T=  and

2,3,...,i k= . 

The transformation that generates the variables y∗  and the X ∗ ’s is known as 

generalized differencing. Hence the error term in equation ( )5.40  satisfied all the

properties needed for applying the least squares procedure. If ρ  is known we can 

apply OLS method to ( )5.40  and the estimates that are obtained becomes BLUE.

5.8.2.3 Hildreth-Lu search procedure 

A frequently used alternative to Cochrane-Orcutt procedure is the Hildreth-Lu search 

procedure in which we first choose a value of ρ  (say 1ρ ), then using this value we 

transform the variables and estimate the equation ( )5.40  by OLS.

From these estimates we derive ˆ
tε  from equation ( )5.40   and the error sum squares

associated with it. Let it be 1( )ESSε ρ . Next we choose a different value of ( )2ρ and

then estimate 2( )ESSε ρ  in the same way as for 1( )ESSε ρ .

By varying the value of ρ  from 1−  to 1+  in some systematic way (say, at steps of 

length 0.05 or 0.01), we get a series of values of ( )ESSε ρ . Then we choose that ρ  

for which ESSε  is minimum. This is the final value of ρ  that globally minimizes the 

error sum of squares of the transformed model. Then equation ( )5.40  is estimated

with this final ρ  as the optimum solution.  

The above procedures can be applied to remove autocorrelation if we are able to 

detect autocorrelation properly, which are uses the estimated autocorrelation 

coefficient predefined by any other test such as Durbin-Watson test.
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5.8.2.4 Theil-Nagar procedure 

Theil and Nagar have suggested that in small samples ρ  can be estimated as 

2 2

2 2

1
2ˆ  (5.41)

d
n k

n k
ρ

− +

=
−

where, n =  total number of observations, d =  Durbin-Watson d , and k =  number of 

coefficients (including the intercept) to be estimated. 

5.9 Results 

From Table 5.2 we observed that, the autocorrelation is present in Drug, Furniture, 

Iron, Leather footwear, Leather, Metal, Other chemical, Paper, Plastic, Textile and 

Wood industry for Cobb-Douglas model with additive error terms. In order to remove 

this autocorrelation at first we estimate the value of ρ  by Theil-Nagar method since it 

is based on small sample size. Then we fit again the model for transformed data and 

we get the following estimates by SAS program. 

Table 5.3 Result for testing autocorrelation for the Cobb-Douglas production function 

with additive error in different industries by applying Durbin-Watson test 

(transformed data). 

Name of industry ρ̂  Durbin-Watson ( )d Comment 

Drug 0.457749 2.043 No autocorrelation 
Furniture 0.432874 2.260 No autocorrelation 
Iron 0.543773 2.483 No autocorrelation 
Leather footwear 0.766607 2.473 No autocorrelation 
Leather 0.595077 2.496 No autocorrelation 
Metal 0.34685 2.067 No autocorrelation 
Other chemical 0.719968 1.896 No autocorrelation 
Paper 0.911709 1.646 No autocorrelation 
Plastic 0.624097 2.280 No autocorrelation 
Textile 0.44583 1.701 No autocorrelation 
Wood 0.605441 2.066 No autocorrelation 

Form Table 5.3 we observed that the problem of autocorrelation successfully removed 

by taking suitable steps. 

After removing the autocorrelation problem we again estimate the parameters of the 

production function and are given in the following table. 
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Table 5.4 Results for intrinsically nonlinear Cobb-Douglas production function 
(transformed data). 

Name of industry Intercept 
Capital elasticity 

( )α
Labor elasticity ( )β

Drug 79.5673 0.7709 0.0000 
Furniture 0.3762 1.1344 0.1325 
Iron 0.0014 0.1676 2.6591 
Leather footwear 0.0052 2.4482 0.0146 
Leather 528.3416 0.3364 0.6449 
Metal 12.5420 0.5046 0.6669 
Other chemical 0.3071 1.1225 0.1525 
Paper 0.7952 0.6766 0.8622 
Plastic 18961.1100 0.0744 0.0609 
Textile 148795.4400 0.1786 0.0899 
Wood 28943.7300 0.1247 0.2013 

5.10 Concluding remarks  
We observed that, there exists a positive autocorrelation of some manufacturing 

industries. So, we successfully remove the problem of autocorrelation and re-estimate 

the parameters by using SAS program.  
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Chapter 6 

Multicollinearity 

6.1 Introduction 

The most important stage of an econometric research is assessing the model and the 

method of model estimation by econometric criteria. The acceptability of any set of 

parameter estimates depends on whether they possess all the econometric criteria. If 

these criteria are not satisfied, a model through theoretically good enough might 

perform imprecisely. Eventually the standard errors of the parameter estimates may be 

very high or the marginal effects of the explanatory variables may be entangled. 

Therefore these problems should be encountered and eliminated as far as possible.  

Various problems arise in empirical econometric analysis. Among these problems the 

multicollinearity is one of the fatal problems. 

This chapter is organized into the following sections. Section 6.2 represents the 

literature about multicollinearity. In section 6.3, we discuss about the reasons of 

multicollinearity and section 6.4 describe of types of multicollinearity. Section 6.5 

represents the consequence of multicollinearity. In section 6.6, we discuss different 

test procedure of detecting multicollinearity. Section 6.7 represents the results of the 

study of multicollinearity detection. Section 6.8 contains some method of removing 

multicollinearity. Lastly in section 6.9 consists of some concluding remarks. 

6.2 Multicollinearity 

Multicollinearity means interrelationship among the explanatory variables and when 

this is strong, it is difficult to separate the effects of explanatory variables on the 

explained variable. The term ‘Multicollinearity’ is due to Ranger Frisch (1934) refers 

to a situation where the variables dealt with subject to two or more relations. 

Multicollinearity is an inherent phenomenon. 
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One of the main assumptions of the classical linear regression model is that there is no 

multicollinearity among the explanatory variables included in the regression model. If 

the main assumption is violated we say that there is multicollinearity in the data. 

So, there can be two extreme cases: 

• If the explanatory variables are perfectly linearly correlated (correlation

coefficient 1= ), then the parameters become indeterminate.

• If the explanatory variables are perfectly interrelated at all (correlation

coefficient 0= ), the explanatory variables are orthogonal and there is no

problem.

In linear regression analysis, the term “multicollinearity” refers to the existence of 

more than one exact linear relationship. But this distinction is rarely maintained in 

practice, and multicollinearity refers to both the cases (Gujarati 1988). 

In linear regression and econometrics, neither of the two extreme cases (orthogonality 

or perfect linear relationships among the columns) is often met in practice, because it 

is very rare for any two variables to be no or exactly interrelated. Usually the lack of 

orthogonality is not serious enough to affect the analysis. Multicollinearity is thus a 

persistent problem in regression as well as in econometrics. It is not a condition that 

either exists or does not exists in regression (economic) magnitudes. There is no 

conclusive evidence concerning the degree of multicollinearity which, if present, will 

affect seriously the coefficient estimates. 

A distinction is often made between exact multicollinearity and near multicollinearity 

defines as: Exact multicollinearity exists when the rank of the data matrix is less than 

the number of columns i.,e., at least two columns of the data matrix are exactly 

linearly dependent. Near multicollinearity exists when the columns of the data matrix 

are approximately or nearly dependent i.,e., the relationship is not exact but strong. 

Near multicollinearty is the prevalent case in so such econometric work, especially 

with time series data, is one of high but not exact multicollinearity (Johnston 1988). 

Professor Ranger Frisch, awarded the first Nobel memorial prize in Economics, was 

the first research to seriously study the multicollinearity problem in 1934 and was 
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responsible for the introduction of the term ‘multicollinearity’ in his book “Statistical 

Confluence Analysis by Means of Complete Regression System”. Before 1960 there 

were no much works or publications about multicollinearity. During the time period 

1960-1990, a lot of research has been done on multicollinearity and many methods, 

informal and formal, have been developed for detecting multicollinearity and its 

remedies in single equation linear regression model.  

Longley (1967) used a famous set of data to demonstrate the numerical consequences 

of highly intercorrelated predictor. Beaton, Rubin and Barone (1976), Dent and 

Canvander (1977) and Judge et al. (1980) continue this discussion especially in 

numerical and theoretical consequences of multicollinearity. In the case of 

polynomials, the collinearity of the predictors is, in a sense, self-introduced and is 

often resolved by simply centering the data (see Marquardt and Snee (1975) and 

Bradley and Srivastava (1979)). 

 

The consequences of linear dependencies in the predictors were emphasized in two 

papers by Hoerl and Kennard (1970a, b) where they proposed the concept of ‘ridge 

regression’ as an alternative to OLS in such situations. The ‘ridge trace’ provided 

graphic evidence of the effect of multicollinearity in the coefficient estimates. The 

quest for the appropriate ‘biasing parameter’, the concepts and characterizations of 

ridge regression and discussions of its effectiveness as well as applications of the 

technique have been the subject of roughly 25 papers in Technometrics in the past 

twelve years (Hocking 1983). In addition, many related techniques have been 

proposed and related to ridge regression in papers by Marquardt (1970), Mayer and 

Wilke (1973) and Hocking, Speed and Lynn (1976).Walker and Birch (1988) show 

that when ridge regression is used to mitigate the effects of multicollinearity, the 

influence of some observations can be drastically modified. 

 

Gaylon and Merrill (1968) recommended taking additional data in a carefully 

designed experiment. Mason, Gunst and Webster (1975) discussed the sources of 

multicollinearity and distinguished between multicollinearities that are inherent in the 

system and those that may be unique to the sample. Willan and Watts (1978) suggests 

that we should be restrained from predicting too far from the original data and 
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recommended an ellipsoidal region of “effective predictability” (see O. Beilley 1975, 

1976).  

 

6.3 Reasons of Multicollinearity  

Problems of multicollinearity may arise mainly for two reasons: 

• There is tendency of economic variables to move together over time. Economic 

magnitudes are influenced by the same factors. Therefore, one such influencing 

factor become operative, all the variables tend to change in the one direction. For 

example, income, saving, investment, consumption, prices and employment tend 

to rise in the periods of boom and decreases in the periods of depression. In time 

series data, therefore, growth and trend factors are the main causes of 

multicollinearity. 

• Multicollinearity arises due to the use of lagged values of certain explanatory 

variables in the regression model. For example, to estimate the consumption 

function, past income may also be included as a separate variable along with the 

present incomes. Hence the problem of multicollinearity is generally observed in 

distributed lag models.    

 

6.4 Types of Multicollinearity        

Multicollinearity can be of the following two types 

i) Perfect Multicollinearity 

ii) Nearly Perfect  Multicollinearity 

 

6.4.1 Perfect multicollinearity 

If the explanatory variables are perfectly linearly correlated, that is if the correlation 

coefficient for this variables is equal to unity, then this type of multicollinearity is 

called “Perfect or exact multicollinearity”. 

 

For the regression model involving k -explanatory variables, 1 2, ,..., kX X X  an exact 

multicollinearity is said to exist if the following condition is satisfied- 

1 1 2 2 ... 0                                                            (6.1)k kX X Xλ λ λ+ + + =  

Where, 1 2, ,..., kλ λ λ  are constants, such that not all of them are simultaneously zero.  
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Assuming ,02 ≠λ equation ( )6.1  can be written as- 

  31
2 1 2

2 2 2

...                                                   (6.2)k
kX X X X

λ λλ

λ λ λ
= − − − −  

 

This shows how 2X  is exactly linearly related to other variables or how it can be 

derived from a linear combination of other explanatory variables. In this situation, the 

correlation coefficient between 2X  and other X  variables is bound to be unity. 

 

6.4.2 Near multicollinearity 

If the explanatory variables are nearly or highly correlated then their exists near 

multicollinearity and this type of multicollinearity is called “Nearly Perfect 

Multicollinearity”. 

 

For the regression model involving k  explanatory variables, 1 2, ,..., kX X X , a near 

linear relationship is said to exist if  

1 1 2 2 ... 0                                                      (6.3)k k iX X X Vλ λ λ+ + + + =  

Where 1 2, ,..., kλ λ λ are constants, such that not all of them are zero simultaneously and 

iV  is a stochastic error term. Assuming ,02 ≠λ  equation ( )6.3  can be written as  

  31
2 1 2

2 2 2 2

...                                          (6.4)k i
k

V
X X X X

λ λλ

λ λ λ λ
= − − − − −  

This shows that 2X  is not an exact linear combination of other X ’s because it 

requires error term iV  to be determined. In this situation, the correlation coefficient 

between 2X  variable and other X  variable is not unity.  

 

6.5 Consequences of Multicollinearity 

In case of perfect or exact multicollinearity assumptions of OLS procedures breaks 

down, the regression coefficient of the explanatory variables are indeterminate and 

their standard errors are infinitely large, but this is a rare situation. The most common 

feature of multicollinearity, which have the following consequences: 



100 
 

• The variances and covariances of OLS estimates become larger and hence the 

confidence interval constructed from OLS estimates is wider. Consequently, 

prediction based on OLS estimates becomes less efficient.  

• The effects of regressions on dependent variable are entangled which makes it 

impossible to separate the marginal effects of the regressors. 

• As the standard errors of parameter estimates becomes larger which are used as 

denominators for computing test statistics, the effect (s) of some explanatory 

variables might be shown to be insignificant. 

• As covariance estimates are high, one may get a few significant t -ratios in a 

model with which the coefficient of multiple determination ( )2R  is very high. 

This means that the effect of one regressor is reflected upon the other regressor 

(s) and happens due to entanglement of marginal effect on the regressors. Even 

for this reason, the signs and magnitudes of the coefficients may change.  

 

6.6 Detecting multicollinearity 

All of the Econometricians give the tests of multicollinearity high attention. There are 

several methods for testing multicollinearity. The most commonly known ones are 

Fisher’s confluence analysis, Farrar-Glauber series of tests, thumbs rules, Method of 

Variance Inflation factor etc. But on the belief of some authors Condition Index (CI) 

is the best available multicollinearity diagnostic (Gujarati, 1995). Following is a 

discussion on some test rules regarding multicollinearity.   

 

6.6.1 The High 2R  

The high R2 is a classical symptom of multicollinearity. If 2R  is high, say, in excess 

of 0.8 , in most cases the F -test will reject the null hypothesis that partial slope 

coefficients are significantly equal to zero, but the individual t -test will that very few, 

if not all, partial slope coefficients are statistically different from zero. 

 

6.6.2 High pairwise correlation among regressions 

All pairwise or zero order correlation coefficients can be obtained from the correlation 

matrix Z Z′ . The ( ),i j th element of Z Z′ , ijr  ( )1,2,...,i j k≠ =  gives the simple (total) 
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correlation coefficient between iX  and jX . A suggested rule of thumb is that if the 

pairwise correlation coefficient between two explanatory variables is greater than 0.80 

then multicollinearity is a serious problem (Judge et al. 1982). High pairwise 

correlations are a sufficient but not a necessary condition for the existence of 

multicollinearity because it may exist even though the pairwise correlation coefficient 

is less than 0.50 when number of explanatory variables are more than two (Gujarati, 

1988). Thus, of course, if there are only two explanatory variables in the model, the 

pairwise correlations will suffice. But this method will not provide an infallible guide 

to the presence of multicollinearity in case of more than two explanatory variables 

because it is possible that three or more variables are multicollinear while no pair of 

the variables taken alone are highly correlated. Again, a highly correlation indicates 

multicollinearity, but absence of high correlation can not be viewed as evidence of no 

problem (Belsley et al.1980). 

In this method there is no suitable calibration point, even in case of two regressors, by 

which we can determine which correlation is high that can be considered as 

multicollinearity indicator. By this method we can not identify which variables are 

involved in multicollinear relations, how many linear dependency exist among the 

explanatory variables and which coefficient have been affected by multicollinearity in 

case of more than two explanatory variables model. 

 

6.6.3 Bunch-Map analysis based on Frisch’s ‘Confluence Analysis’ 

Frisch (1934) showed that highly inaccurate results may be obtained without their 

inaccuracy being shown up by the standard errors, and he therefore recommended a 

systematic approach to the problem through what is known as Confluence analysis or 

Bunch-map analysis. 

 

Yet none of the standard errors, the simple correlation coefficients ( ijr ) and the 

overall 2R  (coefficient of determination) criteria by itself is a satisfactory indicator of 

multicollinearity, because 

• Large standard errors may arise for various reasons and not only because of the 

presence of linear relationships among the explanatory variables.  
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• A high ijr  is sufficient but not a necessary condition for the existence of 

multicollinearity. 

• The overall 2R  may be high relative to ijr ’s and yet the estimates may be highly 

imprecise and insignificant (with wrong signs/or large standard error). 

 

However, in order to gain as much knowledge as possible as to the seriousness of 

multicollinearity, a combination of all above criteria may help the detection 

multicollinearity, a method which is in its essence a revised version of Frisch’s 

‘Confluence analysis’ (or ‘Bunch-Map Analysis’). This procedure is to regress the 

dependent variables separately. Thus all the elementary regressions are obtained to 

examine their results on the basis of a priori and statistical criteria. 

 

An elementary regression is to be chosen which appears to give the most plausible 

results, on both a prior and statistically criteria. Then introduced the remaining 

explanatory variables gradually into the chosen regression to examine their effects on 

the individual coefficient, on their standards errors and on the overall 2R . A new 

variable is classified as useful, superfluous or detrimental as follows: 

• If the new variables improve 2R  without rendering the individual coefficients 

unacceptable on a priori considerations, the variable is considered useful and 

is retained as an explanatory variable. 

• If the new variable does not improve 2R  and not affect to any considerable 

extent the values of the individual coefficients, it is considered as superfluous 

and is rejected.  

• If the new variable affects considerably the signs or the values of the 

coefficients, it is considered as detrimental and this is an indication of serious 

multicollinearity.  

 

6.6.4 Determinant of Cross-product matrix 

If, some of the columns of the data matrix X  is perfectly multicollinear, the X  is not 

of full column rank p  and hence the rank of the cross product matrix X X′  is less 

than p . Then the determinant of X X′  becomes zero. Multicollinearity in a sample as 



103 
 

a departure of the observed X ’s from orthogonality. The stronger the departure from 

orthogonality that is the closer the value of the determinant to zero, the stronger the 

degree of multicollinearity and the vice versa (Farrar and Glauber1967). Johnston 

(1984) illustrates, by treating some numerical examples, that the determinant declines 

in value with increasing collinearity, tending to zero as collinearity becomes exact. 

When the data is not exact multicollinear but near multicollinear then the value of 

X X′   will be small (Belsley et al.1980) and X X′  will be near to zero (very small) if 

the data is near perfect multicollinear (Hocking 1983; Stewart 1987) where .  denotes 

determinant.  

 

But, still, one does not know what is small. Smallness is a vague concept. Generally, 

0X X′ =  indicates exact multicollinearity and the value of X X′  near to zero 

indicates near multicollinearity (strong but not exact). 

 

The main difficulties in working with determinant are that: 

• There is no calibration scale for assessing what is serious and what is very 

serious. 

• It is excessively sensitive to scaling. Stewart (1987) says that even X  is scaled 

so that its column has length unity, the determinant of the cross-product matrix 

deceases factorially with the increase of the number of variables. 

 

The determinant of Z Z′  falls in the interval [ ]0,1 . The position of Z Z′  in the interval 

[ ]0,1  provides an objective measure of multicollinearity and the closer Z Z′  is to 

zero, the more severe the multicollinear problem. Though X X′  or Z Z′  gives us a 

rough idea about multicollinearity, but it definitely ignores the questions as what is 

the pattern of multicollinearity, which variables are multicollinear, how many linear 

dependency exist among the columns and which regression coefficients are affected 

by multicollinearity and to what extent, etc. 
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6.6.5 Eigen values and Condition Index 

On the belief of some authors, Condition Index (C.I) is the best available 

multicollinearity diagnostic (Gujarati 1995). SAS and SPSS output uses eigen values 

and condition index to diagnose multicollinearity. This method is used to detect the 

degree of multicollinearity in the present study. CI is used calculated by using eigen 

values. The condition number k  can be derived from these eigen values, which is 

defined as: 

( )
( )
Maximum eigen value

Minimum eigen value
k =

And the Condition Index (CI) is defined as: 

1

2Maximum eigen value

Minimum eigen value
CI k= =

If k  is between 100  and 1000  there is moderate to strong multicollinearity; if it 

exceeds 1000  there is multicollinearity. Alternatively, if k  is lies 10  to 30 , there is 

moderate to strong multicollinearity and if the value of CI exceeds 30  then there is 

severe multicollinearity.  

Condition Index is calculated by using eigen values. For the matrix XX ′ , eigen values 

are obtained by solving the matrix equation 0=−′ IXX λ  for λ ; where the elements 

of λ  (say, iλ ) are eigen values of the matrix XX ′  and I  is the unit matrix. The 

formula of CI is:  

)min( i

iCI
λ

λ
=

According to thumb rule, if 3010 ≤≤ CI  there is moderate strong multicollinearity 

and if 30>CI  the problem of multicollinearity is severe. The larger the value of CI, 

the stronger the multicollinearity is. 

6.6.6 Using auxiliary regressions 

This is another procedure that is sometimes suggested as a way of detecting the 

presence and nature of multicollinearity is to regress each of the explanatory variables 
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on the other ( )1k −  regressions (Judge et al. 1982). Since multicollinearity arises 

because one or more of regressors are exact or approximate linear combinations of the 

remaining regressors, one way of finding out which X  variable is related to other X  

variables is to regress each iX  for all 1, 2,...,i k=  on the other ( )1k −  regressors of 

X  and compute the corresponding 2R , which  we designate as 2
iR ; each one of these 

regressions is called an auxiliary regression, auxiliary to the main regression of y  on 

the X ’s. A high 2
iR  indicates a near exact linear dependence among the columns of 

X . Comparison of the 2
iR ’s shows which coefficients are likely to be most seriously 

affected by multicollinearity. But 2
iR ’s do not suffer from extensive multicollinearity, 

if it involves only a few variables. Unfortunately, if there are several complex linear 

associations, this curve fitting exercise may not prove to be of much value as it will be 

difficult to identify the separate interrelationships (Judge et al.1982). There is no 

calibration point which is able to differentiate high 2
iR . This method can not identify 

the nature of linear dependence if the auxiliary regressions again suffer from 

multicollinearity. 

 

6.6.7 The Farrar-Glauber method 

D. E. Farrar and R. R. Glauber (1967) method suggested three test statistic for 

detecting multicollinearity on the basis of the assumptions that  

i) The kn ×  data matrix X  is a sample of size n from a k -variate normal 

population. 

ii) Multicollinearity in a sample as a departure of the observed X ’s from 

orthogonally and  

iii) The null hypothesis is that the columns of X ’s are orthogonal. 

 

The three test statistic are –  

• A chi-square test for detecting the existence and severity of multicollinearity 

in a model including several explanatory variables. 

• An F-test for locating the variable(s) responsible for multicollinearity.  

• A t-test for finding out the pattern of multicollinearity. 
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6.6.8 Method of Variance Inflation Factor (VIF) 

Farrar and Glauber (1967) were the first to suggest looking at the values of the ( ),i j th

element of the inverse correlation matrix to diagnose multicollinearity. Later 

Marquardt (1970) suggested the term “variance Inflation factor” as a measure of 

multicollinearity.  

We partition the data matrix X  as ],[ ii XxX =  where ix  denotes the ith explanatory 

variable and iX  denotes the sub matrix of the ( )1k −  remaining explanatory variables

of X , then we get, 

i i i i

i i i i

x x x X
X X

X x X X

′ ′
′ =

′ ′
; 1, 2,...,i k=

The leading term in 1( )X X −′  is 

( ) ( )
1 1

1[ ]i i i i i i i i i ix x x X X X X x x Mx
− −

−′ ′ ′ ′ ′− =

Where ( )
1

i i i i iM I X X X X
−

′ ′= −  

Thus the sampling variance of the OLS estimate iβ̂  is 

( )
2

ˆ  (6.5)i

i i i

Var
x M x

σ
β =

′
 

Where i i ix M x′  is the residual sum of squares from regression of the thi  explanatory 

variable on the other ( )1k −  explanatory variables and the residual sum of squares

decreases with increasing multicollinearity between the thi explanatory variable and 

the remaining explanatory variables, and thus the sampling variance of iβ̂  increases. 

Not all coefficients will be affected similarly by multicollinearity. We have, 

2 1 i i i
i

i i

x M x
R

x x

′
= −

′

Where i ix x′  is the total sum of squared derivations for thi explanatory variable 

(corrected) 

or, 2(1 )i i i i i ix M x x x R′ ′= − .
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Therefore,  ( )
2

2

1ˆ *                                                                    (6.6)
1i

i i i

Var
x x R

σ
β =

′ −
 

 

In the orthogonal case 02 =iR , letting ioβ̂  denote the estimate of iβ̂ , then 

( )
2

îo
i i

Var
x x

σ
β =

′
 

Thus if 2
iR  increases, ( )6.6  shows that ( )iVar β̂  increases when i ix x′  is fixed. When 

2
iR  nearer to one ( )iVar β̂  tends to infinity. Thus if i ix x′  is held to fixed, the 

magnification of the sampling variance with increasing multicollinearity is given by  

( )
( ) 2

ˆ
1

                                    ( 6 .7 )
ˆ 1

i

ii o

V a r

RV a r

β

β
=

−
 

Johnston (1984) shows by some illustrative conclusions that the relationship is highly 

non-linear and the magnification factor increases dramatically as 2
iR  exceeds 0.9 . 

This magnification factor is known as ‘Variance Inflation Factor’ (due to Marquardt 

1970) and is written as  

2

1
                                                                                   (6.8)

1i
i

VIF
R

=
−

 

 

Clearly a high variance inflation factor indicates high 2
iR  (near unity), and hence 

points to the presence of multicollinearity. This measure is therefore, of some use as 

an overall indication of multicollinearity. This factor also indicates which variance of 

the estimate is inflated by the existence of multicollinearity. It is difficult to say, since 

the numerical value of VIF  lies from one to infinity and there is no cutoff point to 

differentiate, which value of  VIF  is large. Its weaknesses like those off correlation 

matrix, auxiliary regression etc., lie in its inability to distinguish among several co-

existing near dependencies and can not identify which variables are involved. 

Marquardt (1970) suggests a rule of thumb that iVIF  is greater than 5  indicates 

harmful multicollinearity (Chatterjee and Price 1977; Vinod and Ullah 1981). This 

measure is therefore, some use as an overall indication of multicollinearity.  
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6.7 Test Results 

In the present study, we have used CI method for investigating the presence of 

multicollinearity in the data and results are presented below. 

 

Table 6.1 Results for testing multicollinearity. 

Name of Industry Condition Index ( )CI  Comment 

Chemical 108.7907 Severe multicollinearity 
Drug 71.5807 Severe multicollinearity 
Electrical machinery 115.5392 Severe multicollinearity 
Food 175.1538 Severe multicollinearity 
Furniture 98.0506 Severe multicollinearity 
Glass 60.7156 Severe multicollinearity 
Iron 92.2044 Severe multicollinearity 
Leather footwear 173.1511 Severe multicollinearity 

Leather 136.6657 Severe multicollinearity 
Metal 71.9928 Severe multicollinearity 
Mineral 67.3298 Severe multicollinearity 
Non electrical machinery 87.2222 Severe multicollinearity
Other chemical 201.8131 Severe multicollinearity 
Paper 271.991 Severe multicollinearity 
Plastic 96.3403 Severe multicollinearity 

Pottery 129.5811 Severe multicollinearity 
Printing 468.4329 Severe multicollinearity 
Textile 75.6827 Severe multicollinearity 
Transport 77.2806 Severe multicollinearity 
Wearing 320.6777 Severe multicollinearity 
Wood 104.4159 Severe multicollinearity 

 

From the above table we observed that there is severe multicollinearity presents in the 

data for each industry. 

 

6.8 Solution of the Problem of Multicollinearity 

There is no doubt that the problem of multicollinearity should be encountered. But the 

solutions that may adopted to remove this problem may vary depending on the 

severity of multicollinearity, on the availability of sources of data, on the importance 
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of factors which are multicollinear, on the purpose for which the function is being 

estimated and some other consideration.  

Among the different remedial measures, the most commonly used ones are briefly 

discussed bellow 

6.8.1 Increases the sample size 

Multicollinearity can be removed or reduced to an acceptable level by increasing the 

sample size by gathering more observations. High covariance among estimated 

parameters resulting from multicollinearity, in an equation can be reduced by 

increasing the sample size, because these covariances are inversely related to the 

sample size.  

6.8.2 Introduction to additional equation in the model 

Multicollinearity can be removed or reduced to an acceptable level by introducing 

additional equations in the model to express meaningfully the relationship between 

multicollinear X ’s. The addition of new equation transforms the single equation or 

original model to simultaneous equation model. The reduced form method can then be 

applied to avoid multicollinearity. 

6.8.3 Dropping explanatory variable (s) 

In case of several multicollinearity, one of the simplest ways is to drop one or more of 

the multicollinear variables. But in dropping a variable from the model, we may face 

the problem of specification bias, which arises from incorrect specification of the 

model used in the analysis. 

Hence the remedy may create a worse situation than the problem itself in some 

situation because while multicollinearity prevent precise estimation of the parameters 

of the model, omitting a variable may seriously mislead as to true value of the 

parameters.  
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6.8.4 Pooling cross section and Time series data 

This method is a special case of the method of Restricted Least Square method 

because in this method, at first, one of the parameters of the original function is 

estimated and then this estimated parameter is used as a restriction on the original 

function to estimate the remaining parameter (s). 

6.8.5 Transformation of variables 

One of the most important reasons for high multicollinearity between the variables in 

time series data is that the variables tend to move in the same direction. One of the 

ways to minimize this dependency is to transform the form of the variables. For that 

the following process is followed- 

If the relation 

1 1 2 2 3 3 ...                             (6.9)t o t t t k kt tY X X X X Uβ β β β β= + + + + + +

Holds at time t, it must also at time (t-1) because the origin of time is arbitrary any 

way. Therefore we have     

1 1 1( 1) 2 2( 1) ( 1) 1...                        (6.10)t o t t k k t tY X X X Uβ β β β− − − − −= + + + + +

If we subtract ( )6.10  from ( )6.9 , we obtain

1 1 2 2 ...  (6.11)t t t k kt tY X X X Uβ β βΔ = Δ + Δ + + Δ + Δ

where, 1 1 1 1( 1),  ( )t t t t t tY Y Y X X X− −Δ = − Δ = −  and so on.

Equation ( )6.11  is known as the first difference form, because we run the regression

not on the original variables but on the difference of the successive values of the 

variables.  

The first difference regression model often reduces the severity of multicollinearity 

because although the levels of iX  and ( )jX i j≠  may be highly correlated, there is 

no reason to believe that their difference will also be correlated. 
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In this method, there is a loss of one observation due to the differencing procedure 

and therefore, the degrees freedom is reduced by one. 

6.9 Concluding Remarks 

In the present study the remedial measures like increases the sample size and 

Introduction to Additional Equation in the Model can not be applied to reduce the 

problem of multicollinearity because the deficiency of data. Pooling Cross Section 

and Time series data is beyond the scope of the study. Therefore, we have used the 

method of Transformation of variables to reduce the problem of multicollinearity. But 

the problem of multicollinearity is so serve in this study that it could not be taken care 

of properly by it. In this study, we consider only two explanatory variables, so we 

cannot use Dropping variable method.  
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Chapter 7 

Summary and Conclusions 

The growth of a country can be measured by Gross Domestic Product (GDP). GDP is 

substantially affected by the industrial output. Industrial gross output is a function of a 

capital and labor input mainly. If the effect of labor and capital input to output is at a 

satisfactory level in an industry or in a group of industries, then industrial investment 

will increases. As a result, the number of industries will increase, which will directly 

affect GDP and also will decrease the unemployment rate. This is why industrial 

input-output relationship is so important for any industry as well as for the overall 

industrial sector of a country.  

A firm’s output decision depends critically on the quantities of inputs it uses to 

produce the desired level of output. The production function analysis helps a firm to 

select the optimal combination of inputs by which it can produce the desired level of 

output with minimum cost and maximum profitability. In the present study, the 

productivity behavior in some selected manufacturing industries in Bangladesh, we 

use the concept of production function.  

In this thesis, we investigate production behavior of some manufacturing industries by 

linear and nonlinear Cobb-Douglas production function. As dependent variable, we 

consider the Gross output of an industry and we choose two independent variables, 

which are Total fixed assets and Total person engaged.  

In chapter four, we estimate the parameters of intrinsically linear and intrinsically 

nonlinear Cobb-Douglas production function. Here, we also compute the values of 

different model selection criteria and we compare the intrinsically linear and 

intrinsically nonlinear Cobb-Douglas production function. We observed that, the 

Cobb-Douglas-type production function ( )2.8  is the appropriate model than ( )2.7 .

Thus the strictly nonlinear models (which are nonlinear with additive error 

terms) seem to be better than intrinsically linear model (which are nonlinear 
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with multiplicative error terms). To use this selected model for forecasting purpose, 

we fit the model by estimating the parameters. Thus we use numerical nonlinear 

estimation methods to fit the intrinsically nonlinear model. For the intrinsically 

nonlinear model, we observe that the value of 2R  are very high. So it can be say that 

the Cobb-Douglas production function which is intrinsically nonlinear fully fits well 

to the yearly data.  

In Chapter five, we review the literature about some existing tests for detecting 

autocorrelation. This chapter also review some other related issues about 

autocorrelation such as nature of autocorrelation, general forms of autocorrelation, 

problems and remedial measures of autocorrelation. We use Durbin-Watson d  and 

Durbin’s h  test to detect the problem of autocorrelation. From these test, we observe 

that there exists a positive autocorrelation of some manufacturing industries. To solve 

this problem, we estimate the value of ρ  by using Theil-Nagar procedure since our 

sample size is small. Then we again estimate the intrinsically nonlinear model for 

transformed data given in Table 5.4.  

In Chapter six, we discuss the problem about multicollinearity. We use the “Condition 

Index” method to detect the strength of multicollinearity and observe that there exists 

sever multicollinearity among the explanatory variables. In the present study the 

remedial measures like increases the sample size and Introduction to Additional 

Equation in the Model can not be apply to reduce the problem of multicollinearity 

because the deficiency of data. Pooling Cross Section and Time series data is beyond 

the scope of the study. Therefore, we have use the method of Transformation of 

variables to reduce the problem of multicollinearity. But the problem of 

multicollinearity is so serve in this study that it can not be take care of properly by it. 

In this study, we consider only two explanatory variables, so we cannot use Dropping 

variable method. Thus, we are not able to remove the problem of multicollinearity.  

From Table 4.3, we observe that the major manufacturing industries including 

Chemical, Furniture & fixtures (wooden), Iron & steel, Fabricated metal products, 

Printing & publications, Transport equipment, Food, Other chemical products, 
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Leather footwear, Electrical machinery, Non electrical machinery, Paper & paper 

products and Drugs & pharmaceuticals provide good economy according to their 

contribution. We are to improve the efficiency of the industries like Glass & glass 

products, Leather & leather products, Non-metalic mineral products, Pottery & China-

ware, Textile, Wearing apparel except footwear, Wood & crock products mainly to 

ensure a better economy since there is diseconomy of scale for these industries.  

Also from Table 4.4 and Table 4.5, we may say that by enhancing more capital we 

can get more production especially in the Furniture & fixtures (wooden), Food, Drugs 

& pharmaceuticals and Other chemical products industries. The proverb “The more 

the labor input, the more is gross output” is appropriate for the industries like 

Electrical machinery, Iron & steel, Non-electrical machinery and Printing & 

publications.  
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Appendix A 

Table 4.10  Values of different model selection criteria of three models under study. 

Name of the 
industry 

FPE AIC 

Additive 
error 

Multiplicative 
error 

Additive error 
with restricted 

parameter 

Additive 
error 

Multiplicative 
error 

Additive error 
with restricted 

parameter 

Chemical 12532.692 16079.234 12536.271 12476.551 16007.206 12480.114 

Drug 1282500 1371944.9 1652605.41 1276755 1365799.2 1645202.5 

Electrical 
machinery 

74337.5 99879.428 193519.719 74004.501 99432.013 192652.84 

Food 322451.92 463383.7 680624.77 321007.48 461307.95 677575.87 

Furniture 3907.7885 13530.495 3907.38558 3890.2833 13469.885 4635.5796 

Glass 217.22115 238.74623 217.267113 216.2481 237.67675 216.29385 

Iron 141129.81 179930.52 141169.815 140497.61 179124.51 140537.44 

Leather 
footwear 

8400.1923 171926.6 8399.80676 8362.5632 171156.44 8362.1793 

Leather 8288.75 8347.3093 8288.96014 8251.6201 8309.9171 8251.8293 

Metal 33642.788 37811.141 33641.101 33492.084 37641.764 33490.404 

Mineral 58178.365 70628.853 61592.9987 57917.752 70312.467 61317.089 

Non 
electrical 
machinery 

900.49038 3291.6714 2062.08486 896.45659 3276.9262 2052.8476 

Other 
chemical 

15035.577 36825.908 15108.0721 14968.224 36660.944 15040.395 

Paper 51208.654 62323.417 51205.1224 50979.262 62044.235 50975.746 

Plastic 1206.6827 2381.1099 1247.95866 1201.2773 2370.4436 1242.3684 

Pottery 789.23077 2891.8991 814.097687 785.69536 2878.9446 810.45089 

Printing 25229.808 33368.609 25540.4571 25116.789 33219.132 25426.047 

Textile 3564326.9 3832727.9 3564604.69 3548360.3 3815559 3548636.8 

Transport 62334.615 70507.198 62339.6664 62055.384 70191.357 62060.412 

Wearing 2830817.3 8198048.2 2971141.55 2818136.5 8161324.6 2957832.1 



116 
 

Wood 661.71154 1147.2951 661.681388 658.74736 1142.1558 658.71735 

 
Table 4.10 (Continued) 

 

Name of the  
industry 

HQ SCHWARZ 

Additive 
error 

Multiplicative 
error 

Additive error 
with restricted 

parameter 

Additive 
error 

Multiplicative 
error 

Additive error 
with restricted 

parameter 

Chemical 12569.45 16126.4 12573.03627 14421.4 18502.4 14425.492 

Drug 1286261 1375968 1657452.024 1475773 1578697 1901653.6 

Electrical 
machinery 

74555.51 100172 194087.2562 85540.2 114931 222683.21 

Food 323397.6 464743 682620.8455 371046 533216 783195.17 

Furniture 3919.249 13570.2 3918.844813 4496.69 15569.5 4496.23 

Glass 217.8582 239.446 217.9042947 249.956 274.725 250.00934 

Iron 141543.7 180458 141583.8253 162398 207046 162444.16 

Leather 
footwear 

8424.828 172431 8424.440957 9666.1 197836 9665.6606 

Leather 8313.059 8371.79 8313.269258 9537.87 9605.25 9538.1094 

Metal 33741.45 37922 33739.76059 38712.8 43509.3 38710.827 

Mineral 58348.99 70836 61773.63316 66945.9 81272.6 70875.086 

Non 
electrical 
machinery 

903.1313 3301.32 2068.132363 1036.19 3787.73 2372.8418 

Other 
chemical 

15079.67 36933.9 15152.37968 17301.4 42375.6 17384.864 

Paper 51358.83 62506.2 51355.29223 58925.8 71715.6 58921.753 

Plastic 1210.222 2388.09 1251.618558 1388.53 2739.94 1436.0265 

Pottery 791.5454 2900.38 816.4852003 908.168 3327.71 936.7825 

Printing 25303.8 33466.5 25615.35986 29031.9 38397.3 29389.413 

Textile 3574780 3843968 3575058.642 4101472 4410321 4101791.9 

Transport 62517.42 70714 62522.49062 71728.5 81132.7 71734.276 

Wearing 2839119 8222091 2979855.044 3257422 9433497 3418893.6 

Wood 663.6521 1150.66 663.6219084 761.432 1320.19 761.39701 
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Table 4.10 (Continued) 

Name of the 
industry 

SHIBATA GCV 

Additive 
error 

Multiplicative 
error 

Additive error 
with restricted 

parameter 

Additive 
error 

Multiplicative 
error 

Additive error 
with restricted 

parameter 

Chemical 11790.625 15127.174 11793.9918 12989.349 16665.117 12993.058 

Drug 1206562.5 1290711.3 1554753.77 1329230.8 1421934.8 1712821.8 

Electrical 
machinery 

69935.938 93965.515 182061.314 77046.154 103518.76 200571.04 

Food 303359.38 435946.51 640324.619 334201.18 480268.13 705424.86 

Furniture 3676.4063 12729.348 3676.02723 4050.1775 14023.509 4049.76 

Glass 204.35938 224.60994 204.402613 225.13609 247.44548 225.18373 

Iron 132773.44 169276.74 132811.076 146272.19 186486.7 146313.65 

Leather 
footwear 

7902.8125 161746.73 7902.44978 8706.2722 178191.13 8705.8726 

Leather 7797.9688 7853.0608 7798.16645 8590.7692 8651.4623 8590.987 

Metal 31650.781 35572.324 31649.1937 34868.639 39188.875 34866.89 

Mineral 54733.594 66446.882 57946.0449 60298.225 73202.374 63837.278 

Non 
electrical 
machinery 

847.17188 3096.7698 1939.98773 933.30178 3411.6108 2137.2216 

Other 
chemical 

14145.313 34645.427 14213.5152 15583.432 38167.743 15658.569 

Paper 48176.563 58633.214 48173.2402 53074.556 64594.31 53070.896 

Plastic 1135.2344 2240.1232 1174.06637 1250.6509 2467.871 1293.4308 

Pottery 742.5 2720.6682 765.894535 817.98817 2997.2719 843.76117 

Printing 23735.938 31392.836 24028.1932 26149.112 34584.469 26471.081 

Textile 3353281.3 3605790.1 3353542.57 3694201.2 3972382 3694489.1 

Transport 58643.75 66332.43 58648.502 64605.917 73076.286 64611.152 

Wearing 2663203.1 7712637.5 2795218.69 2933964.5 8496762.5 3079401.8 
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Wood 622.53125 1079.3632 622.502885 685.82249 1189.0994 685.79124 

 
 
 
 
 

Table 4.10 (Continued) 
 
 

Name of the 
industry 

RICE SGMASQ 

Additive 
error 

Multiplicative 
error 

Additive error 
with restricted 

parameter 

Additive 
error 

Multiplicative 
error 

Additive error 
with restricted 

parameter 

Chemical 13720 17602.5 13723.91774 10553.8 13540.4 10556.86 

Drug 1404000 1501919 1809168.029 1080000 1155322 1391667.7 

Electrical 
machinery 

81380 109342 211853.1659 62600 84109 162963.97 

Food 353000 507283 745105.0114 271538 390218 573157.7 

Furniture 4278 14812.3 4277.558954 3290.77 11394.1 3290.43 

Glass 237.8 261.364 237.8503133 182.923 201.049 182.96178 

Iron 154500 196977 154543.7976 118846 151520 118879.84 

Leather 
footwear 

9196 188214 9195.577922 7073.85 144780 7073.5215 

Leather 9074 9138.11 9074.230046 6980 7029.31 6980.177 

Metal 36830 41393.2 36828.15266 28330.8 31841 28329.348 

Mineral 63690 77320 67428.12492 48992.3 59476.9 51867.788 

Non 
electrical 
machinery 

985.8 3603.51 2257.440273 758.308 2771.93 1736.4925 

Other 
chemical 

16460 40314.7 16539.36312 12661.5 31011.3 12722.587 

Paper 56060 68227.7 56056.13403 43123.1 52482.9 43120.103 

Plastic 1321 2606.69 1366.186319 1016.15 2005.15 1050.9126 

Pottery 864 3165.87 891.2227316 664.615 2435.28 685.55595 

Printing 27620 36529.8 27960.07934 21246.2 28099.9 21507.753 

Textile 3902000 4195828 3902304.08 3001538 3227560 3001772.4 

Transport 68240 77186.8 68245.52957 52492.3 59374.5 52496.561 

Wearing 3099000 8974705 3252618.114 2383846 6903620 2502013.9 

Wood 724.4 1255.99 724.3669937 557.231 966.143 557.20538 
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Appendix B 
The intrinsically nonlinear Cobb-Douglas type production function can be written as  

32
1t t t ty L K eβββ= +  

In order to estimate the parameters we minimize the following error sum squares 

( ) ( )32

2

1
1

n

t t t
t

S y L K βββ β
=

= −  

In case of nonlinear estimation we use the score vector and Hessian matrix. The 

elements of score vector are given below: 
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Also the elements of Hessian matrix are given below: 
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Gauss Code 1 

@ The following program is used to calculate the 
estimated @ value of the parameters of the nonlinear 
Cobb-Douglas  @ type production Function 

@ MAIN PROGRAM 

new; 
n=16;k=3; 
load x[n,k]=drug.txt; 
x=x; 
y=x[.,1]; 
k=x[.,2]; 
l=x[.,3]; 

bb=8|0.5|.5; 
vv=0; 
bbb=0; 
start=bB; 

@ Call of Gauss optimization subroutines/built-in 
@ functions at the final stage  

library co; 
coset; 
#include co.ext; 
_co_GradProc=&gp; 
_co_HessProc=&Hsp; 
_co_algorithm=2; 
_co_options=("none"); 
p=b[1,1].*(k^b[2,1]).*(l^b[3,1]); 
{bb,f,g,ret}=co(&fct,start); 

bb;f;g; 

@                    SUBROUTINES 
@ The following subroutine-fct estimate optimal 
parameters @ of the model 

proc fct(Bb); 
local ff; 
ff=(y-(Bb[1]*((k^Bb[2]).*(l^Bb[3])))); 
retp(ff'ff); 
endp; 

@ The following subroutine-GP declares gradients of each 
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@ log likelihood function 
 
proc gp(bb); 
local b1,b2,b3,f1,d1,db1,d2,db2,d3,db3, sb; 
B1=BB[1]; 
B2=BB[2]; 
B3=BB[3]; 
sb=zeros(3,1); 
f1=b1*((l^b2).*(k^b3)); 
d1=(y-f1).*((l^b2).*(k^b3)); 
db1=-2*sumc(d1); 
d2=(y-f1).*((ln(l)).*b1*(l^b2).*(k^b3)); 
db2=-2*sumc(d2); 
d3=(y-f1).*((ln(k)).*b1*(l^b2).*(k^b3)); 
db3=-2*sumc(d3); 
sb[1,1]=db1; 
sb[3,1]=db3; 
sb[2,1]=db2; 
 
retp(sb); 
endp; 
 
@ The following subroutine-HSP declares Hessian of each   
@ log likelihood function 
 
proc hsp(bb); 
local 
lnl,b1,b2,b3,f1,hh,f2,db11,db12,db13,db22,db23,db33; 
b1=bb[1]; 
b2=bb[2]; 
b3=bb[3]; 
hh=eye(3); 
f1=b1*((l^b2).*(k^b3)); 
f2=(l^b2).*(k^b3); 
db11=2*sumc(f2^2); 
lnl=ln(l); 
 
db12=2*sumc(((lnl.*f1).*f2)-(((y-f1).*(lnl.*f2)))); 
db13=2*sumc(((ln(k).*f1).*f2)-((y-f1).*(ln(k).*f2))); 
db22=2*sumc(((ln(l).*f1)^2)-((y-f1).*(ln(l)^2).*f1)); 
db23=2*sumc(((ln(k).*f1).*((ln(l).*f1)))- 
((y-f1).*ln(l).*ln(k).*f1)); 
db33=2*sumc(((ln(k).*f1)^2)-((y-f1).*((ln(k)^2).*f1))); 
 
hh=db11~db12~db13|db12~db22~db23|db13~db23~db33; 
vv=hh; 
retp(hh); 
endp; 
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Gauss Code 2 
@ The following program is used to calculate the 
estimated value of the parameters of the restricted and 
strictly and nonlinear Cobb-Douglas type Production 
Function  
@ Main Program 

new; 
rndseed 1; 
format /rd 16,5; 
n=16; k=3; 
load x[n,k]=wood.txt; 
p=x[.,1]; 
k=x[.,2]; 
l=x[.,3]; 
beta=1|.5|.5; 
s=1~.5~.5; 
start4=s'; 
lk=0~9999999|0~9999999|0~9999999; 

@ Call of Gauss optimization subroutines/built-in 
@ functions at the final stage  

coset; 
library co; 
#include co.ext; 
_co_bounds=lk; 
e=rndn(16,1); 
pp=beta[1]*(k^beta[2]).*(l^beta[3])+e; 
{kkd4, f4,g4,ret4}=co(&fct4,start4); 
u=p-kkd4[1]*(k^kkd4[2]).*(l^kkd4[3]); 
ess=u'u; 
tss=(p-meanc(p))'(p-meanc(p)); 
rsq=1-(ess/tss); 
bb=kkd4; 
bb; 
rsq; 
ess; 

@                    SUBROUTINES 
@ The following subroutine-fct4 estimate optimal 
parameters @ of the model 
proc fct4(bb4); 
local z; 
z=(p-bb4[1]*(k^bb4[2]).*(l^bb4[3]))'(p-
bb4[1]*(k^bb4[2]).*(l^bb4[3])); 
retp(z); endp; 
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