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+is article proposes a novel class of bivariate distributions that are completely defined by stating their conditionals as Poisson
exponential distributions. Numerous statistical properties of this distribution are also examined here, including the conditional
probability mass function (PMF) andmoments of the new class.+e techniques of maximum likelihood and pseudolikelihood are used
to estimate themodel parameters. Additionally, the effectiveness of the bivariate Poisson exponential conditional (BPEC) distribution is
compared to that of the bivariate Poisson conditional (BPC), the bivariate Poisson (BP), the bivariate Poisson–Lindley (BPL), and the
bivariate negative binomial (BNB) distributions using a real-world dataset. +e findings of Akaike information criterion (AIC) and
Bayesian information criterion (BIC) reveal that the BPEC distribution performs better than the other distributions considered in this
study. As a result, the authors claim that this distribution may be used to fit dependent and overspread count data.

1. Introduction

In many areas of application, it is appropriate to study
discrete bivariate variables. For example, problems arise in
many social, economic, and physical phenomena [1], and in
insurance risk applications, those number of cases in dis-
tinctive classifications will be regularly randomized (the
readers are referred to Wu and Yuen [2], Yuen et al. [3], and
Morata [4] for more details). Several authors have discussed
these problems from different points of view, which include
traffic accidents by Cacoullos and Papageorgiou [5] and
Papageorgiou [6, 7] and the problem associated with crime
utilizing the method of Miethe et al. [8]. Also, Lee [9] and
Karlis and Ntzoufras [10] modeled scores “points and goals”
of two competing teams in sports and pointed out that they
are highly correlated. Modeling dependence on goals scored
by teams competing in international football matches was

studied by McHale and Scarf [11], and evaluated risks and
spot errors using scarce data were discussed by Ahooyi et al.
[12]. Several discrete bivariate models have been proposed in
the literature (see, for example, Marshall and Olkin [13],
Mishra [14], Özel [15–17], Reilly and Sapkota [18], Lee and
Cha [19], and Jiang et al. [20]). +e specific conditional
distributions are one of the most important ways to get
flexible bivariate distributions. Moreover, the important role
of functional equations has been emphasized in establishing
results in this regard which is highlighted by Castillo and
Galambos [21–23], Arnold [24], Arnold et al. [25–27],
Kottas et al. [28], and Gharib and Mohammed [29]. +e use
of this type of distribution in risk analysis and economics is
relatively new; however, some applications were done by
Sarabia et al. [30, 31].

In this paper, another class of bivariate model for
Poisson exponential conditionals will be considered. A
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discrete random variable X is said to have a one-parameter
Poisson exponential distribution (PED) for modeling
countable data if its probability mass function (PMF) is

P(Z � z) �
α

(1 + α)
z, α> 0, z � 0, 1, . . . . (1)

If the parameter of the Poisson model follows a con-
tinuous exponential distribution, then equation (1) is a
mixture of Poisson and exponential distributions denoted by
Z ∼ PE(α). +is distribution is applicable to biological
datasets, traffic datasets, thunderstorm datasets, and other
discrete datasets. +e scientific properties and estimation for
parameter have been examined by Fazal and Bashir [32];
also, its requisition turns out that it will be a great substi-
tution cost from claiming Poisson and Lindley distributions.
In this paper, a new class of bivariate distribution has been
proposed which is fully characterized by specifying its
conditionals as Poisson exponential distribution. Finally, the
performance of this distribution is compared with other
distributions considering a real-life dataset.

2. Bivariate Poisson Exponential Conditionals

Consider a general bivariate model (J, K) whose conditional
distributions must satisfy the following two conditions:

J | K � k ∼ PE η1(k)( , (2)

K | J � j ∼ PE η2(j)( , (3)

where η1(k) and η2(j) are some positive functions and PE
denotes a Poisson exponential distribution. +ese equations
lead us to discuss the next theorem.

Theorem 1. 8e discrete bivariate model with
J | K � k ∼ PE(η1(k)) and K | J � j ∼ PE(η2(j)) can be
described by the following distribution:

PJ,K(j, k) � N θ1, θ2, θ3(  
− 1 exp θ1k − θ3jk + θ2j ,

j, k � 0, 1, . . . , θ1, θ2 < 0, θ3 ∈R,
(4)

where [N(θ1, θ2, θ3)]
− 1 is the normalizing constant such that

PJ,K(j, k) summates to 1.

Proof. According to (2) and (3), we can write the joint
density P(j, k) as a product of a marginal and a conditional
density in both ways to get

η1(k)

1 + η1(k)( 
j

⎛⎝ ⎞⎠hK(k) �
η2(j)

1 + η2(j)( 
k

⎛⎝ ⎞⎠hJ(j), (5)

where hJ(j) and hK(k) are the marginal PMFs of J and K,
respectively.

Denoting

g(k) � log η1(k)hK(k) , (6)

f(j) � log η2(j)hJ(j) , (7)

equation (5) readily reduces to

g(k) − x log 1 + η1(k)(  − f(j) − k log 1 + η2(j)(  � 0,

(8)

which is a special case of the functional equation


n
m�1 fm(x)gm(y) � 0, whose most general solution is given

by Aczel [33] as follows:

α2(j) � exp −θ1 +θ3j(  −1, . . . ,η1(k) � exp −θ2 +θ3k(  −1.

(9)

Substituting these expressions in (6) and (7), we can get
the marginal PMF as

hJ(j) �
N θ1, θ2, θ3(  

− 1

exp −θ1 + θ3j(  − 1
exp −θ2j( , j � 0, 1, . . . ,

(10)

hK(k) �
N θ1, θ2, θ3(  

− 1

exp −θ2 + θ3k(  − 1
exp −θ1k( , k � 0, 1, . . . .

(11)

Finally, in accordance with (10) and (11), the class of
discrete bivariate distribution with Poisson exponential
conditionals is that given by (4), which describes the
complete class of the BPEC distribution that has the three
parameters θ1, θ2 (intensity parameters for K and J, re-
spectively), and θ3 ∈R (interaction or dependence pa-
rameter), where θ3 � 0 corresponds to independence
between J and K.

Figure 1 shows the three-dimensional curve of the BPLC
given by (4) for the special cases for θ1, θ2, and θ3. □

3. Properties of the Bivariate Poisson
Exponential Class

In this part, the fundamental properties of the new bivariate
distribution are contemplated.

We first know that the class (4) has the three parameters
θ1, θ2, and θ3, while [N(θ1, θ2, θ3)]

− 1 is the normalizing
constant and is given by

N θ1, θ2, θ3(  � 
∞

j�0


∞

k�0
Exp θ1k − θ3jk + θ2j 

� 
∞

j�0

e
− θ1+ θ3− θ2( )j

e
θ1+θ3j

− 1
.

(12)

3.1. Conditional PMF and Moments. +e particular mani-
festations of the conditional distributions to the new model
would provide

PJ|K(j | k) �
exp −θ2 + θ3k(  − 1
exp − θ2 + θ3k( ( 

j
, j, k � 0, 1, . . . , (13)

PK|J(k | j) �
exp −θ1 + θ3j(  − 1
exp − θ1 + θ3j( ( 

k
, j, k � 0, 1, . . . , (14)
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i.e.,

J | K � k ∼ PE exp −θ2 + θ3k(  − 1( ,

K | J � j ∼ PE exp −θ1 + θ3j(  − 1( .
(15)

+e conditional distributions are given by (13) and (14),
satisfying the compatibility conditions, and are studied by
Arnold et al. [26], which guarantees the existence of the
discrete bivariate model (4).

+e regression functions for these conditional distri-
butions are

E(J | K � k) �
1

exp −θ2 + θ3k(  − 1
,

E(K | J � j) �
1

exp −θ1 + θ3j(  − 1
.

(16)

+ese regression functions are nonlinear and decreasing
(increasing) if θ3 > 0 (θ3 < 0) (see Figure 2).

+e first moment of the pair (J, K) is obtained by direct
calculations using (4), and we find that

E(JK) � 
∞

j�0

N θ1, θ2, θ3(  
− 1

je
− θ1+ θ2+θ3( )j( )

e
−θ1 + e

θ3j
 

2 . (17)

Special Classes. Class (4) can be classified by suitable se-
lections for the parameters θ1, θ2, and θ3 into the following
two subclasses.

(a) Subclass I (subclass with two parameters):

PJ,K(j, k) � N θ1, θ2, θ3(  
− 1 exp θ1k − θ3jk + θ2j ,

j, k � 0, 1, . . . , θ1, θ2 < 0, θ3 ∈R.

(18)

(1) θ3 � 0, J, K are independent, and (4) reduces to
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Figure 1: +e three-dimensional curve of the BPLC under different scenarios. (a) BPEC with θ1 � −0.2, θ2 � −0.7, and θ3 � 0.3. (b) BPEC
with θ1 � −0.2, θ2 � −0.7, and θ3 � −0.3. (c) BPEC with θ1 � −1.7, θ2 � −1.5, and θ3 � 0.4. (d) BPEC with θ1 � −1.7, θ2 � −

1.5, and θ3 � −0.4.
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PJ,K(j, k) � N θ1, θ2, 0(  
− 1 exp θ2j(  exp θ1k( ;

j, k � 0, 1, . . . , θ1 < 0, θ2 ∈R,
(19)

where [N(θ1, θ2, 0)]− 1 � 1/(eθ1 − 1)(eθ2 − 1).
It is clear from (19) that the two random variables
(RVs) J and K are independent, with the following
marginal densities:

PJ|K(j | k) �
exp −θ2(  − 1
exp − θ2( ( 

j
, j, k � 0, 1, . . . , (20)

PK|J(k | j) �
exp −θ1(  − 1
exp − θ1( ( 

k
, j, k � 0, 1, . . . , (21)

i.e.,
J | K � k ∼ PE exp −θ2(  − 1( ,

K | J � j ∼ PE exp −θ1(  − 1( .
(22)

(2) θ1 � θ2, and (4) reduces to

PJ,K(j, k) � N θ2, θ2, θ3(  
− 1 exp (j + k)θ2 − θ3jk ,

j, k � 0, 1, . . . , θ2 < 0, θ3 ∈R,

(23)

where

N θ2, θ2, θ3(  
− 1

� 
∞

x�0

e
θ2+θ3( )j

−e
θ2 + e

θ3j
,

PJ|K(j | k) �
exp −θ2 + θ3k(  − 1
exp − θ2 + θ3k( ( 

j
, j, k � 0, 1, . . . ,

PK|J(k | j) �
exp −θ1 + θ3j(  − 1
exp − θ1 + θ3j( ( 

k
, j, k � 0, 1, . . . ,

(24)

i.e.,

J | K � k ∼ PE exp −θ2 + θ3k(  − 1( ,

K | J � j ∼ PE exp −θ2 + θ3j(  − 1( .
(25)

(3) θ2 � 0, and (4) becomes

PJ,K(j, k) � N θ1, 0, θ3(  
− 1 exp θ1k − θ3jk ,

j, k � 0, 1, . . . , θ1 < 0, θ3 ∈R,
(26)

where

N θ1, 0, θ3(  
− 1

� 
∞

x�0

e
θ3j

−e
θ1 + e

θ3j
,

PJ|K(j | k) �
exp θ3k(  − 1
exp θ3k( ( 

j
, j, k � 0, 1, . . . ,

PK|J(k | j) �
exp −θ1 + θ3j(  − 1
exp − θ1 + θ3j( ( 

k
, j, k � 0, 1, . . . ,

(27)

i.e.,

J | K � k ∼ PE exp θ3k(  − 1( ,

K | J � j ∼ PE exp −θ1 + θ3j(  − 1( .
(28)

(4) θ1 � 0, and (4) reduces to

PJ,K(j, k) � N 0, θ2, θ3(  
− 1exp −θ3jk + θ2j ,

j, k � 0, 1, . . . , θ2 < 0, θ3 ∈R,
(29)

where
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Figure 2: +e regression curve of j on k (k on j) of BPEC distribution for θ3 � 0.5> 0 (θ3 � −0.5< 0).
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N 0, θ2, θ3(  
− 1

� 
∞

k�0

e
θ3k

−e
θ2 + e

θ3k
,

PJ|K(j | k) �
exp −θ2 + θ3k(  − 1
exp − θ2 + θ3k( ( 

j
, j, k � 0, 1, . . . ,

PK|J(k | j) �
exp θ3j(  − 1
exp θ3j( ( 

k
, j, k � 0, 1, . . . ,

(30)

i.e.,

J | K � k ∼ PE exp −θ2 + θ3k(  − 1( ,

K | J � j ∼ PE exp θ3j(  − 1( .
(31)

(b) Subclass II (subclass with one parameter):
(1) θ1 � θ2 � θ3, θ3 > 0, and (4) reduces to

PJ,K(j, k) � N θ3(  
− 1 exp (j − jk + k)θ3 ,

j, k � 0, 1, . . . , θ3 < 0,
(32)

where

N θ3(  
− 1

� 
∞

y�0

e
2θ3k

−e
θ3 + e

θ3k
,

PJ|K(j | k) �
exp (k − 1)θ3  − 1
exp (k − 1)θ3 ( 

j
, j, k � 0, 1, . . . ,

PK|J(k | j) �
exp (j − 1)θ3  − 1
exp (j − 1)θ3 ( 

k
, j, k � 0, 1, . . . ,

(33)

i.e.,
J | K � k ∼ PE exp (k − 1)θ3  − 1( ,

K | J � j ∼ PE exp (j − 1)θ3(  − 1( .
(34)

4. Estimation of the Parameters of BPLC

Suppose that (j1, k1), (j2, k2), . . . , (jn, kn) are random
samples from BPEC(θ1, θ2, θ3) class with density function
given in (4).

4.1. Maximum Likelihood Estimation (MLE) for the
Parameters. +e log-likelihood function l(θ) of
BPEC (θ1, θ2, θ3) is given by

l(θ) � −n log N θ1,θ2,θ3( (  +θ1

n

i�1
ki −θ3 

n

i�1
jiki +θ2

n

i�1
ji.

(35)

+e maximum likelihood estimates of θ1, θ2, and θ3 can
be obtained by solving

zN(θ)/zθ1
N(θ)

�
1
n



n

i�1
ji, (36)

zN(θ)/zθ2
N(θ)

�
1
n



n

i�1
ji, (37)

zN(θ)/zθ3
N(θ)

� −
1
n



n

i�1
jiki, (38)

where N(θ) is given by (12).
+e implicit nature of systems (36)–(38) suggests the

numerical derivation of the MLE of parameters θ1, θ2,
and θ3.

4.2. Pseudolikelihood Estimation for the Parameters. +e
pseudolikelihood method is an alternative estimation
technique that does not include the normalizing constant
(see Besag [34, 35] and Arnold and Strauss [36, 37]). +e
pseudolikelihood function can be written as

PL(θ) � 
n

i�1
Pj|k ji | ki( Pk|j ki | ji( ,

PL(θ) � 
n

i�1

exp −θ2 + θ3k(  − 1
exp − θ2 + θ3k( ( 

j

exp −θ1 + θ3j(  − 1
exp − θ1 + θ3j( ( 

k
.

(39)

+erefore, we have the following logarithmic form of the
pseudolikelihood function:

logPL(θ) � 
n

i�1
log exp −θ2 + θ3ki(  − 1 

− 
n

i�1
ji −θ2 + θ3ki( 

+ 

n

i�1
log exp −θ1 + θ3ji(  − 1 

− 
n

i�1
ki −θ1 + θ3ji( .

(40)

+e maximum pseudolikelihood estimates of θ1, θ2, and
θ3 can be obtained by solving the following:
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z logPL θ1, θ2, θ3( 

zθ1
� − 

n

i�1

exp −θ1 + θ3ji( 

exp −θ1 + θ3ji(  − 1
+ 

n

i�1
ki,

z logPL θ1, θ2, θ3( 

zθ2
� − 

n

i�1

exp −θ2 + θ3ki( 

exp −θ2 + θ3ki(  − 1
+ 

n

i�1
xi,

z logPL θ1, θ2, θ3( 

zθ3
� 

n

i�1

ji exp −θ1 + θ3ji( 

exp −θ1 + θ3ji(  − 1
+ 

n

i�1

ki exp −θ2 + θ3ki( 

exp −θ2 + θ3ki(  − 1
+ 2

n

i�1
jiki.

(41)

5. Application

We consider a dataset in this paper which was obtained from
Mitchell and Paulson [38] and is presented in Table 1.
Utilizing these data, we should gauge and estimate the
parameters θ1, θ2, and θ3 of class (4). +e information in-
cludes flight aborts count data from 109 aircrafts, and the
variables J and K represent the flight aborts in the first and
second sequential six months of a one-year period.

+e frequencies of the observed data provide several (j,
0) and (0, k) data, indicating a negative correlation between j
and k.+erefore, we fit BPC, BP, BPL, and BNB distributions
to the data since these distributions can be fitted to bivariate
data with positive, zero, or negative correlation.

+e statistic measures for the given data are j � 0.62,
s21 � 1.03; k � 0.72, s22 � 1.07, Cov(j, k) � −0.169, and ρ �

−0.16. Table 2 presents the estimated parameters of the
BPEC model and its mean square error (MSE).

+e joint PMF of bivariate Poisson conditional distri-
bution can be defined as BPC(λ1, λ2, λ3) and defined as
follows (Arnold and Strauss [36]):

P(J � j, K � k) � C λ1, λ2, λ3( 
λj
1λ

k
2λ

jk
3

j!k!
,

j, k � 0, 1, 2, . . . , λ1, λ2 > 0, 0< λ3 ≤ 1,

(42)

where C(λ1, λ2, λ3) is constant. +e conditionals K | J and
J | K are λ2λ

j
3 and λ1λ

k
3, respectively.

+e joint PMF of BP (λ1, λ2, α) distribution is (Laksh-
minarayana et al. [39])

P(J � j, K � k) � e
− λ1− λ2λ

j
1λ

k
2

jk
1 + α e

− j
− e

− cλ1  e
− k

− e
− cλ2  ,

j, k � 0, 1, 2, . . . , λ1, λ2 > 0,

(43)

where c � 1 − e− 1, E(J) � Var(J) � λ1, E(K) � Var(K) �

λ2,Cov (J, K) � αλ1λ2c2e− c(λ1+λ2), and α can be chosen such
that P(Y1, Y2) will be the PMF.

+e joint PMF of BPL(θ1, θ2, m1, m2, c) distribution is
(Zamani et al. [40])

P(J � j, K � k) �
θ21 j + θ1 + 2( θ21 j + θ1 + 2( 

θ1 + 1( 
j+3 θ2 + 1( 

k+3

· 1 + α e
− j

− c1  e
− k

− c2  ,

j, k � 0, 1, 2, . . . , θ1, θ2 > 0,

(44)

where

c1 � E e
− J

  �
θ21

1 + θ1

θ1 + 2 − e
− 1

 

θ1 − e
−1

+ 1 
2,

c2 � E e
− K

  �
θ22

1 + θ2

θ2 + 2 − e
− 1

 

θ2 − e
−1

+ 1 
2.

(45)

+e joint PMF of BNB(θ1, θ2, m1, m2, c) distribution is
(Famoye [41])

P(J � j, K � k)

�
m

−1
1 + j − 1

k

⎛⎝ ⎞⎠θj
1 1 − θ1( 

m− 1
1

m
−1
2 + j − 1

k

⎛⎝ ⎞⎠θk
2 1 − θ2( 

m− 1
2 1 + c e

− j
− c1  e

− k
− c2  ,

j, k � 0, 1, 2, . . . , θ1, θ2 > 0, 0<m1, m2 < 1,

(46)
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where

c1 � E e
− J

  �
1 − θ1

1 − θ1e−1 

m− 1
1

,

c2 � E e
− K

  �
1 − θ2

1 − θ2e−1 

m− 1
2

,

(47)

and the mean, variance, and covariance are

E(J) � m
−1
1

θ1
1 − θ1

,

E(K) � m
−1
2

θ2
1 − θ2

,

Var(J) � m
−1
1

θ1
1 − θ1( 

2,

Var(K) � m
−1
2

θ2
1 − θ2( 

2,

Cov(J, K) � cc1c2 
i

mα−1
i θie

− 1

1 − θie
−1 −

m
−1
i θi

1 − θi

 .

(48)

We used the Mathematica package to estimate the pa-
rameters of BPEC distribution.

+e new distribution BPEC is more appropriate as we
can see in Table 3 as compared to the BPC, BP, BPL, and
BNB distributions, where the BPEC distribution gives the
largest value for the AIC and BIC statistics compared to
other models.

6. Conclusion

In this work, a BPEC model is presented by determining
conditional discrete Poisson exponential distributions.
+erefore, we obtained the statistical properties and special
classes for BPEC distribution. +e estimation of BPEC
parameters through the techniques for MLE and MPLE is
presented. In view of the findings presented in Table 1, the
MPLE is better than MLE because the MPLE technique uses
conditional distributions which in our case do not suffer
from the problem caused by the normalizing constant.
Moreover, the AIC and BIC depict that BPEC distribution
adequately fits the considered dataset compared to the BPC,
BP, BPL, and BNB distributions.
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