
Apache Airavata Resource Allocation System
A Tool for Allocating Resources in Science Gateways

Harsha Phulwani
Science Gateways Research

Center
Indiana University

Bloomington, IN, USA
haphulwa@iu.edu

Marlon Pierce
Science Gateways Research

Center
Indiana University

Bloomington, IN, USA
marpierc@iu.edu

Madrina Thapa
Science Gateways Research

Center
Indiana University

Bloomington, IN, USA
mthapa@indiana.edu

 Sudhakar Pamidighantam
Science Gateways Research

Center
Indiana University

Bloomington, IN, USA
pamidigs@iu.edu

Suresh Marru
Science Gateways Research

Center
Indiana University

Bloomington, IN, USA
smarru@iu.edu

Marcus Christie
Science Gateways Research

Center
Indiana University

Bloomington, IN, USA
machrist@iu.edu

ABSTRACT
Science Gateways provide user environments and a set of
supporting services that help researchers make effective
and enhanced use of a diverse set of computing, storage,
and related resources. In a software framework like
Airavata, the distributed computing resources such as
local clusters, supercomputers, computational grids, and
computing clouds are shared among multiple researchers.
Hence it requires an allocations process to track the
demand for their resources, understand the scientific
objectives of their users, and decide among competing
needs when faced with user demand that is greater than
the available resources can supply. We describe the
design and a prototype implementation in this
presentation.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
PEARC '18 , July 22–26, 2018, Pittsburgh, PA, USA
© 2018 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-6446-1/18/07.
https://doi.org/10.1145/3219104.3229271

CSS CONCEPTS
Computational service allocation

•Software and its engineering→Software design
engineering;

KEYWORDS
Apache Airavata, Science Gateways, SEAGrid,
Computational Services, Resource Allocation, Resource
Sharing

1 INTRODUCTION
Science gateways provide access to advanced

resources for science and engineering researchers,
educators, and students. Through science gateways,
broad communities of researchers can access diverse
resources which can save both time and money for
themselves and their institutions[1]. One of the important
services provided by the science gateways includes
computational services i.e. access to supercomputers,
cloud computing, and clusters. Thus it is imperative to
have a resource allocation system in any science
gateway. Resource allocation system software component
is mainly responsible for keeping track of requests
submitted by the computational service users and also
track of its usage.

A key missing component in Apache Airavata today is
to give science gateway administrators the ability to assign
and manage allocations to their users to make sure that
certain users do not use up the gateway’s entire

1

mailto:pamidigs@iu.edu
mailto:smarru@iu.edu
mailto:machrist@iu.edu

PEARC 18, July 2018, Pittsburgh, Pennsylvania USA

computational services. The Resource Allocation Manager
enables tenant gateways to define allocation policies and
available resources. Users of gateways (typically
researchers and educators) can request appropriate
resources to accomplish their research objectives by
justifying their need for the resource(computational
service). There are two types of allocations possible -
community and campus. In this paper, we are focussed
on community allocation type only. Users who request for
computational services can be divided into two broad
categories. Users with allocations on a resource i.e
resource in third-party organizations such as XSEDE
Scholars (PIs) or with exclusive access to resources
example personal laptop's, server etc. Users without any
allocation are the usually the ones interested in community
allocation type thus we will be considering only them in
this paper.

2 Need for resource allocation system in a
science Gateway
In the current production deployment of Apache

Airavata there is no way to track the computational usage
on the resources deployed. With the implementation of
an allocation manager, all resource usages can be
monitored and tracked. This implementation would allow
users to request for resources and justify the usage.
Then, the request will enter a process a pipeline where
reviewers will review the request, comment about it and
the gateway administrator can accept or reject the request
and its reviews and finally provide the allocation. A
transparent user interface for this process reduces the
dependencies on notification system or emails. Also,
having defined seperate user roles and different screens
for each user type keeps the process simple and
clutter-free. The administrator will benefit from a
comprehensive view that provides allocations and users
that have access to them at the for available resources in
the interface itself. Once the allocation is approved, the PI
can then create groups for that allocation. The same
tracking of resources can then be applied at the group
level. This will ensure that one particular person is not
hogging all the resources. Having an allocation manager
where we know how much each user used can help the
administration to gather more resources or reduce which
will keep them prepared for future changes. Each user can
also be charged based on only how much he used instead
of a fixed amount. This Resource Management System
has a application in validation of tasks for allocation and
charging and preparing automated workflows and critical
for resource management for NSF supported open
academic resources and commercial resources and
clouds.

3 Proposed solution
Resource Allocation system's main usage is to make

sure that every user of the gateway gets the resource
rather than few users using up the entire resource. The
most important step was establishing a security model.
There are three roles i.e admin, reviewer, and PI(principal

investigator) (Refer Table 1) defined to facilitate the
allocation process.

Security Roles Access Rights

Admin View all the request submitted by the
PIs, reviews submitted by the
reviewers for a request and finally
approve or reject a request.

Reviewer View only the requests assigned to
him/her for review.

Principal
Investigator

View only his/her requests.

Table1. Security model used in Resource Allocation

The basic workflow of the Resource Allocation
system would be that the PI would submit a resource
request with all the required details. If the requested
allocation units are less than a certain threshold small
value defined in the gateway, then the request gets
approved automatically. This provides new users quick
access to the resources for testing features and the gives
an idea how the gateway works. If the request is for larger
allocation the administrator assigns reviewers to assess
the request. Reviewers assigned provide their reviews
and the administrator approves or reject the request
based on the reviews and the availability of the resources.
(See figure 1).

Figure 1: Basic workflow of Resource Allocation
System.

Resource Allocation system was planned to be
implemented as a microservice so that it could be
seamlessly integrated with Apache Airavata. The
Resource Allocation system leverages authentication and
authorization interface developed for the Apache Airavata
gateway. The User interface which communicated with the
Resource Allocation microservice is developed in Django
which is in coherence with Apache Airavata Django
gateway. Resource Allocation in itself will act as a
microservice exposing Thrift RPC endpoints for the other
Airavata Django user interfaces to consume. The User
Detail callback is a utility which is used to fetch the User
details from Django gateway database (See figure 2).

The idea was to keep everything modular so that in
future it is easy to maintain and scale. After the request for
the resource has been submitted reviewed, accepted, and

2

Apache Airavata Resource Allocation System

an allocation is created, it is necessary to track its usage
too. The Allocation Manager system which is yet another
microservice will keep track of the service units used out
of the total service units allocated to a PI/user.

Figure 2: Example of a figure caption. (figure caption
Demonstrates the use of existing Authentication and
Authorization interfaces provided by Apache
Airavata-Django-Portal.

4 DESIGN AND CORE SERVICES

After considering all the use cases of the Resource
Allocation system in a software framework like Airavata,
we implemented the architecture discussed above in the
Proposed Solution section. The choice to use Apache
Thrift was made to expedite the development and
implementation of efficient and scalable backend services.
Apache Thrift forms a Remote procedure call (RPC) and
enables efficient and reliable communication across
various programming languages which makes it easy to
plug it in Apache Airavata Django Portal [2].
Object-Relational Mapping enables the underlying
databases such as Derby and MySQL to be plugged in
seamlessly to Apache Airavata. Apache OpenJPA was
used as ORM solution to as it simplifies storing objects in
the database [3].

Each request submitted by the user has general
information regarding the request along with the specific
resource request details like applications to be used,
specific resources for that application and service units
requested on each of the resources. We created two
database tables UserAllocationDetail and
UserSpecificResourceDetail to save general information
regarding the request submitted by the user and specific
resource details respectively. When a new request is
submitted by the PI, an entry is made in the
UserAllocationDetail table and a unique id (Allocation
Project Id) is generated and which then is used to save
details about the specific resource associated with the
request. Each PI can submit only one request per year, in
case there is a need for an additional resources he/she
should create a new specific resource to be added to the
existing request.

Once the request for resources has been submitted by
the PI, admin assigns the reviewers to review the request.
The reviewers can view only the requests assigned to

them and can add their reviews using the forms available
in the RAS. Reviewer's review is stored in the same
fashion as the PI's request in two different tables -
ReviewerAllocationDetails and
ReviewerSpecificResourceDetails. Once the reviewers
have added their reviews, admin can view them
simultaneously and then decide to approve or reject the
request at each of the individual resources. When an
admin decides to assign allocation to a request he/she is
supposed to specify the service units (amount) to be
allocated and this number should be validated and never
be greater than the total number of available units on that
specific resource. As a request might have more than one
resource associated with it unique status for and each
resource i.e. pending, approved or rejected, will be
available to be set and provided to the PI. The status of
the request is cumulative of all the sub statuses of the
specific resources that constitutes it. For example, if the
request has three specific resources and all are approved
then the final status of the request is also approved. If all
the three specific resources are rejected then the final
status of the request is also rejected. Likewise, if all any
of three specific resources are approved and others could
be pending or rejected then the final status of the request
would be partially approved. (Refer table 2)

Specific
Resource 1
substatus

Specific
Resource 2
substatus

Specific
Resource 3
substatus

Final Request
status

PENDING PENDING PENDING PENDING

APPROVED APPROVED APPROVED APPROVED

REJECTED REJECTED REJECTED REJECTED

APPROVED REJECTED PENDING PARTIALLY
APPROVED

Table2. Specific resource substatus and final request
status

5 Implementation
We implemented the interfaces in a prototype Django
version of SEAGrid science gateway. We started off by
creating 3 groups in an existing django.seagrid.org
organization using the group management utilities, - User
group, reviewer group, admin group. We then used
keycloak authentication to decide which user is logged in
and which group he belongs to. After the group is
identified, we loaded the screens according to each role.
User: If a user is signed in then, a user can create
requests, view all requests, edit any request and view
status of his request. Please refer to user screens below
for more detail (Figure 3 and 4).

Figure 3: User(PI) Dashboard

3

PEARC 18, July 2018, Pittsburgh, Pennsylvania USA

Figure 4: New request create/edit form

Admin: If an admin is signed in, an admin can view all the
requests, assign reviewers to the pending request, view
reviewers comments about the request and then
approve/reject the request. Please refer to admin screens
below for more detail (Refer figure 5 and 6)

Figure 5: Admin Dashboard

Reviewer: If a reviewer is signed then, then he can view all
requests assigned to him and he will have a side-by-side
view of what the user submitted, and what he has to
comment about each field. She then has the option to
save the review. Please refer to reviewer screens for more
detail (see figure 7).

6 FUTURE WORK
In terms of future work, group integration is one of the

most important things which will enable an allocation to be
divided among groups. This will enable tracking the
allocation not only for a single PI but for a whole group
that the PI assigns. After the allocation is approved, there
would be a separate option for the PI to create a new
group, add or remove people from that group, and divide
the allocation amongst different people. Also, this
application mainly does the work of assigning allocation
but enforcing allocation is not addressed here. Currently,
when a user submits an experiment, there is no validation
happening to check if he has resources available to
complete the experiment. Our API can be called in one of
the Helix workflows deployed in Apache Airavata before
the the experiments are launched to check if enough
allocation is available. And once the experiment finishes,
the workflow should also call our API to update the
allocation used for the experiment. Then, at each step of
the allocation processing pipeline from user submitting the
request, reviewers getting assigned, reviewers submitting
feedback, admin accepting/rejecting, users should be
notified through email, a notification manager has to be
integrated . It would also make sense then to mine the
data about each user and its usage patterns. How much

each user is using, at what dates is she most active.This
would make the administration be prepared for a better
resource management.

Figure 6: Admin’s Request view to compare user and
reviewer submitted details

Figure 7: Reviewer’s request view - form to add review
for a request

7 CONCLUSIONS
In this paper we have presented a generic design for

the implementation of allocation manager in Science
Gateways. As the adoption of gateways accelerates,
more and more users will request for resources and
having a way to enforce this allocation will provide optimal
use of computational resources. The goal was to create an
application using such an architecture which would be
easily expandable using Apache Thrift and Django
framework. The paper discusses the need for such an
application, its underlying architecture, data models used,
API functionality and the workflow used for this
application. We further described the implementation of
the application in detail, keycloak authentication and group
based authorization.

REFERENCES
[1] https://en.wikipedia.org/wiki/Science_gateway.
[2] https://en.wikipedia.org/wiki/Apache_Thrift.
[3] https://en.wikipedia.org/wiki/Apache_OpenJP

4

