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Abstract—Streaming processing and batch data processing are
the dominant forms of big data analytics today, with numerous
systems such as Hadoop, Spark, and Heron designed to process
the ever-increasing explosion of data. Generally, these systems are
developed as single projects with aspects such as communication,
task management, and data management integrated together. By
contrast, we take a component-based approach to big data by
developing the essential features of a big data system as indepen-
dent components with polymorphic implementations to support
different requirements. Consequently, we recognize the require-
ments of both dataflow used in popular Apache Systems and the
Bulk Synchronous Processing communication style common in
High-Performance Computing (HPC) for different applications.
Message Passing Interface (MPI) implementations are dominant
in HPC but there are no such standard libraries available for
big data. Twister:Net is a stand-alone, highly optimized dataflow
style parallel communication library which can be used by big
data systems or advanced users. Twister:Net can work both
in cloud environments using TCP or HPC environments using
MPI implementations. This paper introduces Twister:Net and
compares it with existing systems to highlight its design and
performance.

Index Terms—Big-data, Collectives, Streaming, MPI, HPC

I. INTRODUCTION

Many prominent big data systems exist today for the pur-

pose of processing the enormous wealth of data available in

terms of velocity, volume, and veracity. Streaming processing

and batch data processing are the dominant forms of big

data analytics, with Function as a Service (FaaS) emerging

as a new paradigm. Systems such as Spark [1] and Hadoop

primarily focus on batch data, while Heron [2], Flink [3], and

Storm target streaming data. As opposed to these systems, the

high performance computing (HPC) community uses Message

Passing Interface (MPI) and its implementations as their

framework of choice for large-scale parallel applications.

From an execution perspective, we can identify four key

aspects of a parallel program whether it is designed for

data processing or HPC: 1. Acquiring computing resources,

2. Spawning processes/threads and managing them on the

allocated resources to execute the user program, 3. Commu-

nication layer between the parallel processes, and 4. Man-

aging the data including both static and intermediate data.

The HPC community has developed different technologies to

abstract out these layers including resource schedulers such

as Slurm [4], MPI, and OpenMP [5] for process and thread

management, communication using MPI, and in-memory dis-

tributed data management using PGAS [6]. These systems

are mostly independent and allow a user to pick and choose

depending on application requirements. For example, one can

use only MPI where the application manages both threads and

data of the program. In another setting, MPI plus OpenMP can

be used where OpenMP manages the threads within an MPI

process.

MPI is the dominant standard for HPC applications whereas

big data adopted the dataflow model. Every parallel program

including big data applications and HPC applications can

be modeled as a graph with nodes doing computations and

edges representing the communication. Dataflow programming

model has become popular in data analytics due to its sim-

plicity and ease of use. With this model, big data frameworks

represent a computation as a generic graph where nodes of

the graph can be executed on different machines depending

on the requirements of the application. This generic graph

structure adopted by big data systems allows one to model

both streaming and batch applications.

The big data systems are mostly designed in a monolithic

approach with the above mentioned functions developed in

a single project with tight integration between them and

only exposing higher level abstractions. With the advent of

Mesos [7] and Yarn [8], the resource scheduling layer is

being separated from most big data systems, but other layers

mostly remain within the same framework. Such designs make

it harder to evolve functionality independently and adhere

to standards. In general with higher level abstractions the

usability increases but the performance decreases. Multiple

abstractions at different levels will allow users to pick the

correct abstraction for the correct application considering

performance, usability, and software engineering aspects. Also,

we note that these systems are designed with assumptions at

different components making them suitable for a limited set

of applications [9].

Big data systems do not view parallel operations in terms of

communications but rather as higher level API’s on data sets.

By doing so they can hide the communications under higher

level APIs such as task and data transformation APIs. As a

result, such communications are in general loosely defined

by separate implementations without a standard specification.

Even though every big data framework is designed according
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to the same dataflow model, different systems have their

own primitives with slightly varying semantics depending

on the implementations. The communication implementations

found in the current frameworks are tightly integrated and not

exposed as APIs to be used as libraries. In this paper, authors

recognize the need to have a separate communication library

supporting dataflow style big data communications.

Twister2 [10], [9] is our component-based approach to big

data whereby the authors are developing the four essential

abstractions required by a parallel program independently of

each other. Twister:Net is the communication component of

Twister2, which has been developed as a stand-alone library

for big data applications supporting dataflow communications.

Bulk Synchronous Parallel (BSP) communication as imple-

mented by MPI can be used in Twister2 as well. Twister2 plans

to incorporate Harp [11], which is a BSP implementation for

big data systems. The dataflow communications in Twister:Net

are implemented on top of TCP and MPI communications,

allowing it to be deployed in both HPC and cloud environ-

ments. In this paper we present, dataflow communications of

Twister:Net and compare it to the existing big data frameworks

in order to show it can achieve equivalent performance or

better with existing frameworks. Also, we look at MPI com-

munications and big data requirements and compare different

applications in those settings. The contributions of this paper

are:

1) Define a dataflow communication model for big data to

include both streaming and batch data

2) Present Twister:Net as an implementation of this model

and show that it can achieve better or equal performance

compared to streaming and batch systems

The rest of the paper is organized as follows. Section II

describes dataflow and communication requirements for big

data. Section III explains the Twister:Net library. The experi-

ments conducted to evaluate the system and their results are

described in Section IV. We conclude the paper with related

work and future work in sections V and VI respectively.

II. DATAFLOW FOR BIG DATA

Dataflow has been recognized and accepted as the preferred

mechanism for processing large data sets. A dataflow program

models a computation as a graph with nodes of the graph

doing user-defined computations and edges representing the

communication links between the nodes. The data flowing

through this graph is termed as events or messages. It is

important to note that even though by definition dataflow

programming means data is flowing through a graph, it may

not necessarily be the case physically, especially in batch

applications. Big data systems employ different APIs for

creating the dataflow graph. For example, Flink and Spark

provide distributed data set-based APIs for creating the graph

while systems such as Storm and Hadoop provide task-level

APIs.

For a dataflow program (DFP) or a bulk synchronous

program (BSP) executing in parallel, peer-to-peer communi-

cations and collective communications are used for sharing

Fig. 1. Dataflow vs. BSP graph structure

data between parallel tasks. Collective communications define

data transfer between a set of tasks in contrast to one-to-one

communications as in the case of peer-to-peer. The collective

communication patterns as identified by the parallel computing

communities are available through MPI [12] implementations.

Heavily used collective operations include Broadcast, Scatter,

Gather, Reduce, Barrier, AllGather, and AllReduce [13]. The

parallel computing community found that these communi-

cations can be optimized for latency and throughput using

special algorithms that send the messages among the tasks

and determine the routing of messages. These algorithms are

termed collective algorithms and are available through MPI

implementations.

MPI has been the standard communication API for high

performance computing for the last two decades. It boasts a

solid API with a mathematical foundation to support highly

scalable parallel applications. There are many implementations

of the MPI standard available and the mainstream MPI imple-

mentations enable applications to scale to hundreds of thou-

sands of cores due to their superior collective communication

algorithms, efficient use of memory and support of different

networking hardware.

The graph structure of a parallel program is defined by

the communications and execution of tasks. One can build

every parallel execution graph using basic communication

operations such as send and receive. When developing higher

level communication patterns as in collective communications,

a certain structure of the graph can be assumed in order to

make the communication operations efficient. MPI collective

operations assume that the tasks producing the data and the

receiving tasks are in the same communicator. Big data relaxes

these requirements and allows collective operations between

any set of tasks. This difference is highlighted in Fig. 1

where it shows the BSP and Dataflow graph structures for

an allReduce operation. For BSP operation the sending and

receiving are done in the same process while for dataflow this

can be different. Such relaxed graphs are necessary for big data

processing applications due to data locality considerations and

streaming processing dataflow graphs.

A dataflow communication pattern defines the edges of an

execution graph. For instance, a single node can broadcast a

message to multiple nodes in the graph. This means that there

is an edge from a source node to every receiving node. Reduce

is the opposite of a Broadcast operation where multiple nodes
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Fig. 2. Model of a communication operator

link to a single node. Apart from these operations, Gather, Join

and Union are used extensively. Each of these operations can

accept keys and group messages and they are termed keyed

operations.

A. Dataflow Communication Requirements

Batch processing deals with complete data sets as opposed

to partial data sets as in stream processing. Stream processing

does not necessarily imply real-time data analytics and can

work on stored data. Batch data processing pipelines for big

data are executed stage by stage where whole cluster resources

are used by one part of the computation graph at any given

time. On the other hand, stream processing executes every part

of the graph on a stream of events as needed. To facilitate

the execution of the complete graph, different parts of the

dataflow graph need to be deployed across machines and the

communications are done from one set of tasks to another.

A big data application requires the data to be partitioned in

a hierarchical manner due to memory limitations. In general,

data is first partitioned according to the number of parallel

tasks and then each partition is again split into smaller

partitions. This hierarchical approach is implicit in streaming

applications, as only a small portion of the data is available

at any given time.

Because of the data locality and processing requirements,

the computation graph of a dataflow program can contain a dif-

ferent number of parallel tasks at different stages. Furthermore,

streaming applications require the nodes of the graph to be

deployed in different CPUs in order to handle a higher rate of

messages. Big data applications mostly deal with unstructured

data like text records. These records do not have specific data

sizes defined. Because of this, the communication operations

cannot assume the data sizes across the participating tasks.

When transferring data, keys are used to group the data.

The communication requirements of dataflow programs

for big data are summarized below. Twister:Net is designed

according to these requirements.

1) The communications are between a set of tasks in an

arbitrary task graph.

2) Handle communications larger than available memory.

3) Dynamic data sizes across communicating tasks.

4) Batch is modeled as a special case of streaming.

5) Keys are part of the abstraction.

Fig. 3. Twister:Net Architecture

Fig. 4. Reduce Operation as a Graph Extension, left: Optimized graph right:
Default graph

III. TWISTER2:NET

The abstractions of Twister2 include: 1. Data Access, 2. Re-

source, 3. Communication, 4. Task, and 5. Data Management.

Each layer is generic and can have multiple implementations

to support the needs of specific applications. For example,

Twister2 supports different resource schedulers including HPC

schedulers like Slurm and big data schedulers such as Au-

rora [14], Mesos [7], and Kubernetes [15].

Twister:Net is an open source library 1 implemented using

Java language. Its base operators are non-blocking and one

can build blocking communications by using the non-blocking

semantics. The architecture of Twister:Net is shown in Fig-

ure 3. The bottom layer is the network access API, which

allows one to plug in different networking providers such as

OpenMPI [16] and TCP. This layer assumes a reliable channel

by the underlying provider. The MPI implementation uses the

ISend/IRecv operations to build the dataflow operations and

by default we use OpenMPI [17]. TCP implementation uses

Java NIO and creates MPI ISend/IRecv semantics to be used

by Twister:Net.

On top of this layer, the buffer management and data serial-

ization are implemented. The data serialization frameworks are

pluggable and we use Kryo as the default serializer for Java

objects. Also, various communication operations are built on

these layers. The disk-based storage can be used by operations

when they need to transfer data between disk and memory in

order to handle larger data transfers. The top level provides

the API layer for the base abstractions.

A. Communication Model

The dataflow communications are modeled as an extension

to the dataflow graph. The generic form of a dataflow com-

munication as modeled by Twister:Net is as follows.

Operation(S, D, E, M, T,
Optional Op..., C)

KeyedOperation(S, D, E, M,
T, K, KT,

1https://github.com/DSC-SPIDAL/twister2
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Optional Op..., C)
S = Source tasks, D = Destination tasks,
E = Edges, M = Message, T = Data Type,
Op = Optional Stateful operators
C = Callback
K = Key
KT = Key data type

For dataflow style collectives, the source tasks and destina-

tions tasks can be mutually exclusive. Each operation needs

an edge identifier (Integer) to distinguish from other operators

happening simultaneously. Some operators may require more

than one edge number. We support Java Objects and primitive

array types as message types and will expand to other formats

such as protocol buffers. If keyed operations are used, each

message can have a key.

The communication model of Twister:Net is shown in

Fig. 2. Each operation created in a single process can be shared

by multiple tasks in that process and can accept a stream

of messages. For streaming cases, the stream is unbounded,

while for batch cases bounded stream is assumed with the last

message marked as the end of the stream. For the streaming

mode of communications, the operators do not buffer data and

forward them accordingly. For batch operations, the operators

can buffer data to increase the throughput. With batch com-

munication, a special flag is used by sources to signal the end

of the flow.

1) Streaming mode - Each operation only considers a single

datum as an entity and an infinite stream of events

2) Batch mode - Multiple data items are considered into a

single operation with a finite stream of events

Furthermore, each of these communication modes can oper-

ate with keys. If required, a communication can use the disks

in order to handle data sets that do not fit the available memory.

Twister:Net has implemented the following dataflow collec-

tive operations; 1. Reduce, 2. AllReduce, 3. KeyedReduce, 4.

Gather, 5. AllGather, 6. KeyedGather, 7. Partition, 8. Keyed

Partition and 9. Broadcast. Twister:Net supports both stream-

ing and batch versions of these operations. These basic opera-

tions represent most of the operations supported by current big

data frameworks. For example, Join can be implemented using

a keyed partition as in a sorted merge join. Fig. 4 shows the

dataflow graph of reduce and how it is optimized using a tree

structure and stateful operators. For operations like Reduce

and Gather messages flow through this optimized graph. We

implemented the AllReduce operation as a reduce + broadcast

and AllGather operation as gather + broadcast. For keyed

operations, we create an optimized routing to each destination

of the operation. Messages are routed according to the correct

destination using these underlying structures. For example for

a keyed reduce, we create multiple trees each pointing to a

single destination.

Unlike MPI, where the collective operations are control

driven, Twister:Net dataflow operations are event driven,

meaning once created they will react to events coming to them.

Stateful operations Communication operators can keep

state about streams of messages passing through them. For

example with batch operations, messages can be gathered and

presented once the operation completes. For example, such

stateful operators can be used to create a combiner for Hadoop

like gathers.

Thread Safety Different threads can progress the commu-

nication as well as perform message packing and callback han-

dling. Depending on the underlying channel implementation,

the network side of the communication can be thread-safe or

not. For example, MPI can be compiled with different levels

of thread safety, and if such a compilation is used the channel

can be thread-safe.

Dynamic messages Unlike in MPI programs where mostly

structured data is used, the dataflow communications deal with

unstructured data such as text records. With MPI a user has

to take additional steps like knowing the data sizes (which

may require additional operations), serialization before using

operations like Reduce, Gather on such data. Twister:Net by

default support such data and hides the details from the user.

Because of this realization, the framework has to allocate

memory to receive the incoming messages as user is not aware

of the size of the messages the operation receives.

Buffer Management & Back Pressure The buffers are

managed internally by the framework. When a higher level

message is submitted, it is serialized and put into an available

buffer. For parallel operations, it is important to balance the

communications such that one source cannot overproduce data.

At each stage of the communication, the library buffers the

data up to a configurable amount. Once these buffers are filled

the operations will not accept messages from sources or the

network. Buffering can be used to increase the throughput

of the operations at the expense of latency. Because of the

relaxed constraints of the message sizes, fixed size buffers

are employed by sending and receiving sides. If a submitted

message does not fit the buffer size used, it is packed into

multiple buffers before being sent out. The framework deploys

a message length-based protocol to unpack such messages at

the receiver.

Initialization Since we are targeting for deployment on

different environments, Twister:Net can use a pluggable archi-

tecture to bootstrap. When used with MPI, the MPI handles

the connection management and the framework delegates to

MPI. For TCP and other potential transports, a TCP-based

bootstrapping can be used. Every process needs to know a

master TCP process and its address. This can be a client that

submits the job or a master process of the job. The workers

of the communication use a simple handshake protocol with

the master to send it port numbers which the master distributes

among the workers in order for them to know the port numbers

and network addresses and thus establish the communication.

Key A message can contain a key of any data type supported

by Twister:Net. When keys are used, an actual message will

contain the key and the content as separate bytes. Each

message contains the overall length of the message and the

key length if a variable length key is used. If a fixed size key

such as a primitive type is used, the key length is not included

in the message.
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B. Communication Spilling to Disk

Big data and HPC applications deal with large data sets

that sometimes cannot be processed and analyzed in-memory

even with large clusters. As a solution, Twister:Net sends data

to disk when a configurable amount of in-memory messages

are accumulated. We implemented direct file based version

and memory mapped files based version using LmdbJava[18]

for achieving this feature. When messages are received, they

are put into a queue and when this queue becomes full, it is

saved into the disk. If key based communication is used, the

values are sorted according to keys before saving to disk. Each

such buffer is saved to a separate file. Sorting and saving are

done by a separate thread. After all the data is received, the

saved values are retrieved from the disk or memory mapped

files and served to the user operator. For example, a gather

operation would collect all the results sent from participating

tasks and store them. Further, we found that the LmdbJava

implementation doesn’t scale to very large data sets in the

gigabytes range and used large amounts of memory. The File

System based approach performed better for some such large

operations.

IV. EVALUATION

We conducted several micro-benchmarks and developed two

applications to compare the performance of Twister:Net with

existing frameworks. We compared Twister:Net performance

with Apache Spark, Flink, and Heron in different situations

as they are designed to process specific workloads. The

experiments were conducted in two clusters. One cluster had

16 nodes of Intel Platinum processors with 48 cores in each

node and 56Gbps Infiniband and 10Gbps network connections.

The other cluster had Intel Haswell processors with 24 cores

in each node with 128GB memory, 56Gbps Infiniband, and

1Gpbs Ethernet connections. 32 nodes of this cluster were

used for the experiments.

In results, DFW and BSP indicates dataflow results and Bulk

Synchronous Parallel (MPI) respectively. In graphs, IB refers

to InfiniBand, 1Gbps and 10Gbps are Ethernet and IPoIB refer

to using sockets over InfiniBand. The type of communication

and the network is shown together in graphs. For example,

DFW-IB means dataflow over InfiniBand.

A. Micro-benchmarks

Fig. 5 and Fig. 6 shows the bandwidth utilization and

latency of Twister:Net in a two-node setting where one task

sends messages to another task in a different node. One task

sends messages of a given size to the other and the second

task acknowledges this message with the originating time

stamp of the message. For BSP case we used ISend/IRecv

with a configurable amount of in-flight messages. Twister:Net

also used the same in-flight message settings. This test was

done to measure the overheads of having additional layers

on top of MPI ISend/IRecv calls. Even though we use MPI

underneath with other layers added, the latency shows that the

overhead is minimal. The bandwidth utilization of Twister:Net

is less compared to MPI because a new byte buffer is created

for each receiving message. This is needed in Twister:Net

because buffer management is done by the library and the

message sizes are dynamic so it cannot use MPI style buffer

management. For the MPI test, we did not create a new buffer

for every message received, thus increasing the bandwidth. The

tests also show the latency of Heron which supports latency

critical applications and bandwidth of Flink with IPoIB, which

supports bandwidth critical applications. These tests show that

Twister:Net can utilize the underneath hardware better than big

data systems.

1) Streaming Benchmarks: We have conducted several

micro-benchmarks with Apache Heron streaming engine to

observe how Twister2 performs in a streaming setting. The

first experiment used a data re-balance communication where

a set of N tasks distributed the data received among another set

of N tasks. In the next benchmark, we used a more involved

reduce communication where a set of tasks sends messages to

a single task in a reduce operation. For the last benchmark,

the broadcast operation is used. A feedback loop is established

from destination tasks to the source tasks to control the flow

of the data and to facilitate the latency measurements. Without

such a loop, it is harder to measure latency as the tasks

are deployed on different machines. The experiments were

conducted on 16 nodes with 256 parallel tasks on the Haswell

cluster. The feedback loop carries a constant size message with

the original message ID.

Fig. 7 shows that Twister:Net communication times are

well below those of Heron. There are many reasons to ex-

plain these results: 1. Heron does not implement optimized

communication algorithms, 2. Heron uses stream managers as

message routers, meaning the messages generated by parallel

instances in a single node go through a single process, 3.

It uses both protocol message serializations and Kryo-based

object serialization for a single message.

2) MPI Benchmarks: We implemented experiments with

OpenMPI Java binding to compare Twister:Net performance

with direct OpenMPI performance. The experiments were

conducted in order to observe whether there are any drastic

performance drops compared to OpenMPI operations in a one-

to-one mapping setting. We used two tests with one using

Reduce operation and another with Gather operation. In one

test we use a fixed size integer message while for other we

simulate and dynamic object with different sizes. The results

show that Twister:Net Reduce operation is slightly slower than

that of MPI for fixed size messages. This is shown in Fig. 9

with BSP-INT and DFW-INT. For variable length messages as

in BSP-OBJ and DFW-OBJ where Java objects are used, MPI

was slower than DFW because BSP requires an allReduce call

before the actual Reduce call to get the maximum length of

the message among the participating nodes. Also, we need to

send the length of the serialized object in each message and

the max length can be larger than the actual length required

by a particular source. The gather operation of Twister:Net

is slower than MPI due to its relaxed buffer management

compared to MPI. As a first implementation, we believe these

are acceptable results as big data systems perform much
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slower. It is worth noting that these tests are not to show

Twister:Net is better than MPI as we use it underneath. These

tests are to show that we need different semantics for big data

systems and our overheads are not significant.

3) Flink Benchmarks: We compared the performance of

Twister:Net with Flink for measuring the total time. Fig. 8

shows the results of two streaming operations with Flink and

Twister2. This test was conducted on 32 nodes with 640

parallelism. For Reduce operation, each parallel task generates

1000 messages, and for Partition operation each task generates

1 million messages. The total time to finish these messages

was measured. The results show that the partition operation of

Flink has equal performance to Twister:Net for Ethernet but

Twister:Net Reduce operation has far superior performance.

Flink doesn’t implement optimized reduce operations as in

this paper hence the performance is less.

B. Applications

1) Terasort: Terasort is a popular benchmark to measure

the performance of data processing systems. With Terasort, the

data is partitioned into equal-sized chunks so that each task

in the job gets the same amount of data. Next, the algorithm

collects a set of sample records per task and sorts this sample

set to determine an ordered partitioning for the complete data

set. In the third step, the generated global partitioning is used

to send records to the correct task. This phase is generally

known as a shuffling phase. Finally, after all the records are

collected, each task will sort the local set of records and

write the results to disk. This will result in a globally sorted

data set across all the tasks. The parallel version of Terasort

is described in Algorithm [19]. The authors detailed and

discussed Terasort implementations with Spark, Flink, and

MPI in [19].

The Twister2 implementation of Terasort uses Gather,

Broadcast, and Partition operations. Initially, a task reads

the data partition assigned to it. Then a Gather operation is

performed to collect the sample set of records from every task.

This collected sample data set is used to create the ordered

partitioning, which is a set of keys of size N-1 where N

is the number of tasks. Afterward, this key set is broadcast

to all tasks. In order to shuffle the data to the correct tasks,

the Partition operation is used. The data is read part by part

from disk and send over the dataflow operation. The receiving

records are sorted by the framework using the disks. After

all the records are received, every task reads the records

and writes the results to the disk. Fig. 11 shows the total

time of Terasort on 16 nodes with BSP-style implementation,

dataflow implementation and Flink. The BSP implementation

was performing slightly better than the DFW implementation

due to the algorithm used to shuffle the data, which is a

rotating shuffle algorithm [19]. Also, it shows the running

time of terasort on a 32 node cluster with 1 terabytes and

500 Gigabytes data sets and the dataflow implementation

performed equally well compared to BSP implementation.

2) K-means: We implemented the K-means algorithm using

Twister:Net dataflow style and compared its performance with

Fig. 5. Latency of MPI and Twister:Net with different message sizes on a
two-node setup

a K-means implementation of Spark and a BSP-style MPI

implementation. We used the K-means algorithm implemented

in Mllib of Spark 2.1.3. The dataflow style uses a task which is

invoked by the threads of the process. This task computes and

outputs the centers which are sent using the AllReduce opera-

tion. Once the results of the AllReduce operation available the

thread updates the new centers of the task and executes the

task again until the given number of iterations are reached.

Fig 10 shows the total time for running K-means on a 16-

node cluster with Spark, Twister:Net dataflow and BSP-style

operations with IB and 10Gbps networks. We use 320 parallel

tasks for execution. The tests were conducted with a data set of

2 million points with 2 features and varying number of centers.

The algorithm ran for 100 iterations for each test. The dataflow

style program is written using Twister:Net performed equal to

the BSP-style K-means program. Spark did not perform well

for this algorithm because of the rapid creation of tasks for

each iteration and the heightened communications.

V. RELATED WORK

Message Passing Interface (MPI) [20] is primarily responsi-

ble for addressing messaging in parallel computing. It mainly

supports two types of communications, point-to-point, and

collective communication. The traditional reduce/aggregate

communication pattern in Spark [21] sends all the partitions

reduced data values into the driver program. To reduce such

bottlenecks, Apache Spark 1.1 [22] has introduced new com-

munication patterns named TreeReduce and TreeAggregate

which are based on the multi-level aggregation tree technique.

In this technique, the data partitions are combined into a small

set of executors in a partial manner before they are sent to the

driver program, which reduces the load of the driver program

and improves the performance.

Apache Flink [3] follows the data-streaming paradigm,

thereby providing a unified architecture for both batch and

streaming processing in the programming model and execution

engine. In Flink, the streams distribute the data based on the

various communication patterns, namely point-to-point, broad-

cast, re-partition, fan-out and merge. In Storm and Heron [23],
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Fig. 6. Bandwidth utilization of Flink,
Twister2 and OpenMPI over 1Gbps, 10Gbps
and IB

Fig. 7. Latency of Heron and Twister:Net for Reduce, Broadcast and Partition operations in 16 nodes with
256-way parallelism

Fig. 8. Total time for Flink and Twister:Net for Reduce and Partition
operations in 32 nodes with 640-way parallelism. The time is for 1 million
messages in each parallel unit, with the given message size

Fig. 9. Latency for OpenMPI and Twister:Net for Reduce and Gather
operations in 32 nodes with 256-way parallelism. The time is for 1 million
messages in each parallel unit, with the given message size

Fig. 10. Left: K-means job execution time on 16 nodes with varying centers,
2 million points with 320-way parallelism. Right: K-Means wth 4,8 and 16
nodes where each node having 20 tasks. 2 million points with 16000 centers
used.

Fig. 11. Left: Terasort time on a 16 node cluster with 384 parallelism. BSP
and DFW shows the communication time. Right: Terasort on 32 nodes with
.5 TB and 1TB datasets. Parallelism of 320.

a spout is a source of input data streams for the topology and

a bolt is a component which processes those topologies. The

stream grouping is an important concept which defines the

method to partition the data stream into bolt tasks. It consists

of eight built-in custom stream grouping concepts, namely

shuffle grouping, field grouping, partial key grouping, all

grouping, global grouping, none grouping (similar to shuffle

grouping), direct grouping, and local or shuffle grouping.

Harp [11] is a framework which is mainly designed to run

big data analytic algorithms on High Performance Computing

architectures. It is comprised of two main layers, computation

and communication. The communication library is imple-

mented similar to MPI collective communication operations

which are highly optimized for big data analytics and machine

learning algorithms. COMPS [24] is a task-based environment

for Spark-like applications in HPC. Authors looked at the

performance of MPI, Spark, and Flink for machine learning

algorithms previously [19] and found MPI outperforms Spark

and Flink for complex algorithms by wide margins and ab-

stractions offered by big data systems are not flexible enough

to be efficient.

MRNet [25] is a software-based reduction network specifi-

cally designed for scalable tools to achieve scalable perfor-

mance and multicast support. It uses a communicator for

representing groups of network points. Similar to MPI, MRNet

provides the support for point-to-point and multicast or broad-
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cast communications. DataMPI [26] communication library is

an extended MPI specification to achieve Hadoop-like com-

munications. Currently, it only supports single program and

multiple data (Common), but they intended to support MapRe-

duce, Streaming, and Iterations in the future. Twister:Net is

going beyond Hadoop-like communications to a more general

dataflow-style job communication which supports both batch

and streaming process. There are many ongoing efforts to

incorporate HPC features into existing big data frameworks,

including RDMA support for frameworks such as Spark [27],

Hadoop [28], and Apache Heron [29]. The authors previously

worked on improving Apache Storm’s performance using

collective algorithms [30]. MPIgnite is an effort to bring BSP-

style communication into Spark [31]. These efforts are targeted

towards individual frameworks, and Twister:Net is a generic

framework that models big data communications in a generic

fashion.

VI. CONCLUSIONS

Twister:Net is an optimized big data communication library

for both cloud and HPC technologies. With Twister:Net we

acknowledge the need to have different types of communi-

cations for different applications, particularly streaming, data

pipelines and complex algorithms including machine learn-

ing. Furthermore, it recognizes the fundamental differences

between BSP style communications and event driven dataflow

style communications. Twister:Net defines the communication

requirements of big data in a separate library without integrat-

ing to any particular big data framework. The results indicate

that by using Twister:Net as a pure communication library, one

can build highly efficient applications. In Twister:Net, we do

not consider fault tolerance and leave that to the frameworks

using the library.

VII. FUTURE WORK

Authors are actively working on the rest of the compo-

nents of the Twister2 big data stack including task schedul-

ing/management, dataflow graphs, fault tolerance, and data

abstraction layers. Combining these with the communication

libraries presented here could offer the functionality of current

big data systems for batch and streaming but with HPC per-

formance as shown in this paper. The communication library

can be integrated to other big data systems such as Heron

and Spark. With task system and communication library, we

intend to offer abstractions similar to Storm or Hadoop. With

data abstractions, it will offer APIs similar to Spark and Flink.

A user can pick and choose the correct abstraction for them

depending on the requirements.

Operations such as reduction require information inside a

complex message. This can be costly for high level object-

based messages where we need to de-serialize the complete

message. Having an option to look at only the parts of the

messages without de-serialization can decrease the latency and

increase the throughput. It is possible to build such a frame-

work with binary protocols like Google Protocol Buffers. The

current big data communications and operations do not have

standard semantics available, meaning different frameworks

have slightly different APIs. It would be better to have standard

APIs so that users can work with uniform APIs.

We are working on incorporating more collective algorithms

into the library that can perform well in different circum-

stances, like throughput critical applications. At the moment

Twister:Net supports only MPI-based and TCP-based commu-

nications, but we intend to include further networks. There are

other dataflow operations such as Unions and Joins that we

are working to integrate with the library. Twister:Net relies on

flow control at the network layer for handling back-pressure

at the application level. When multiple communications share

the same underlying network channel between nodes, one op-

eration can slow down the others. The communication library

needs a back-pressure mechanism as an add-on feature that can

be used as required. We would like to integrate the dataflow-

style communications directly into an MPI implementation

like OpenMPI. Also having the communication implemented

directly on top of an RDMA library such as Photon [32] would

be useful.
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