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Summary

Data-driven applications are essential to handle the ever-increasing volume, velocity, and

veracity of data generated by sources such as the Web and Internet of Things (IoT) devices.

Simultaneously, an event-driven computational paradigm is emerging as the core of modern

systems designed for database queries, data analytics, and on-demand applications. Modern big

data processing runtimes and asynchronous many task (AMT) systems from high performance

computing (HPC) community have adopted dataflow event-driven model. The services are

increasingly moving to an event-driven model in the form of Function as a Service (FaaS) to com-

pose services. An event-driven runtime designed for data processing consists of well-understood

components such as communication, scheduling, and fault tolerance. Different design choices

adopted by these components determine the type of applications a system can support effi-

ciently. We find that modern systems are limited to specific sets of applications because they

have been designed with fixed choices that cannot be changed easily. In this paper, we present a

loosely coupled component-based design of a big data toolkit where each component can have

different implementations to support various applications. Such a polymorphic design would

allow services and data analytics to be integrated seamlessly and expand from edge to cloud to

HPC environments.
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1 INTRODUCTION

Big data has been characterized by the ever-increasing velocity, volume, and veracity of the data generated from various sources, ranging from

web users to Internet of Things (IoT) devices to large scientific equipment. The data have to be processed as individual streams and analyzed

collectively, either in streaming or batch settings for knowledge discovery with both database queries and sophisticated machine learning. These

applications need to run as services in cloud environments as well as traditional high performance clusters. With the proliferation of cloud-based

systems and Internet of Things, fog computing1 is adding another dimension to these applications where part of the processing has to occur near the

devices.

Parallel and distributed computing are essential to process big data owing to the data being naturally distributed and processing often requiring

high performance in compute, communicate and I/O arenas. Over the years, the High Performance Computing community has developed highly

efficient implementations of Message Passing Interface (MPI) to execute computationally intensive parallel applications. HPC applications target

high performance hardware, including low latency networks due to the scale of the applications and the required tight synchronous parallel

operations. Big data applications have been developed for commodity hardware with Ethernet connections seen in the cloud. Because of this, they

are more suitable for executing asynchronous parallel applications with high computation to communication ratios. Recently, we have observed

that more capable hardware comparable to HPC clusters is being added to modern clouds due to increasing demand for cloud applications in

deep learning, machine learning, and scientific applications.2-4 These trends suggest that boundaries of HPC and clouds are getting blurred5,6 and

converging. Therefore, we need frameworks that combine the capabilities of both big data and HPC.

Abbreviations: Big data, Serverless Computing, Event-driven.
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There are many properties of data applications that influence the design of those frameworks developed to process them. Numerous

application classes exist, including database queries, management, and data analytics, from complex machine learning to pleasingly parallel event

processing. A common issue is that the data can be too big to fit into the memory of even a large cluster. In another aspect, it is impractical to

always expect a balanced data set from the processing standpoint across the nodes. This follows from the fact that initial data in the raw form

is usually not load balanced and often requires too much time and disk space to balance the data. In addition, the batch data processing is often

insufficient, as much data is streamed and needs to be processed online with reasonable time constraints before being stored to disk. Finally, the

data may be varied and have processing time that varies between data points and across iterations of algorithms.

Even though MPI is designed as a generic messaging specification, a developer has to focus on file access, with disks in case of insufficient

memory and relying mostly on send/receive operations to develop higher level communication operations in order to express communication in

a data driven application. Adding to this mix is the increasing complexity of hardware, with the explosion of many-core and multi-core processors

having different memory hierarchies. It is becoming burdensome to develop efficient applications on these new architectures using the low-level

capabilities provided by MPI specification. Meanwhile, the success of Harp7 has highlighted the importance of the Map-Collective computing

paradigm.

The dataflow8 computation model has been presented as a way to hide some of the system-level details from the user in developing parallel

applications. With dataflow, an application is represented as a graph with nodes doing computations and edges indicating communications

between the nodes. A computation at a node is activated when it receives events through its inputs. A well-designed dataflow framework hides

the low-level details such as communications, concurrency, and disk I/O, allowing the developer to focus on the application itself. Every major big

data processing system has been developed according to the dataflow model, and the HPC community has also developed asynchronous many

tasks systems (AMT) according to the same model. AMT systems mostly focus on computationally intensive applications, and there is ongoing

research to make them more efficient and productive. We find that big data systems developed according to a dataflow model are inefficient in

computationally intensive applications with tightly synchronized parallel operations,9 while AMT systems are not optimized for data processing.

At the core of the dataflow model is an event-driven architecture where tasks act upon incoming events (messages) and produce output

events. In general, a task can be viewed as a function activated by an event. The cloud-based services architecture is moving to an increasingly

event-driven model for composing services in the form of Function as a Service (FaaS). FaaS is especially appealing to IoT applications where

the data is event-based in its natural form. Coupled with microservices and server-less computing, FaaS is driving next-generation services in the

cloud and can be extended to the edge.

Because of the underlying event-driven nature of both data analytics and message-driven services architecture, we can find many common

aspects among the frameworks designed to process data and services. Such architectures can be decomposed into components such as resource

provisioning, communication, task scheduling, task execution, data management, fault tolerance mechanisms, and user APIs. High-level design

choices are available at each of these layers that will determine the type of applications a framework composed of these layers can support

efficiently. We observe that modern systems are designed with fixed sets of design choices at each layer, rendering them only suitable for a

narrow set of applications. Because of the common underlying model, it is possible to build each component separately with clear abstractions

supporting different design choices. We propose to design and build a polymorphic system by using these components to produce a system

according to the requirements of the applications, which we term the toolkit approach. We believe such an approach will allow the system to

be configured to support different types of applications efficiently. The authors are actively pursuing a project called Twister2, encompassing

the concept of the toolkit. An evaluation of the communication layer is available in the work of Kamburugamuve et al10 and the framework is

open-source at https://github.com/DSC-SPIDAL/twister2.* Server-less FaaS is a good approach to building cloud native applications,11,12 and

in this way, Twister2 will be a cloud native framework.

This paper provides the following contributions: (1) A study of different application areas and how a common computation model fits them

and (2) design of a component-based approach for data analysis with various choices available at each component and how they affect the

applications. The rest of this paper is organized as follows. Section 2 discusses the related work in the area. Next, Section 3 categorizes data

applications into broad areas and introduces the processing requirements. Section 4 discusses the components of our approach. Section 5 details

implications of the design and Section 6 concludes this paper.

2 RELATED WORK

Hadoop13 was the first major open-source platform developed to process large amounts of data in parallel. The map-reduce14 functional model

introduced by Hadoop is well understood and adapted for writing distributed pleasingly parallel and one-pass applications. Coupled with Java, it

provides a great tool for average programmers to process data in parallel. Soon enough, though, the shortcomings of Hadoopsimple API and its

disk-based communications15 became apparent, and systems such as Apache Spark16 and Apache Flink17 were developed to overcome them.

These systems are designed according to the dataflow model and their execution models and APIs closely follow dataflow semantics. Some other

examples of batch processing systems include Microsoft Naiad,18 Apache Apex,19 and Google Dataflow.20 It is interesting to note that even

with all its well-known inefficiencies, Hadoop is still being used by many people for data processing. Apart from the batch processing systems

* https://github.com/DSC- SPIDAL/twister2
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mentioned above, there are also streaming systems that can process data in real time, which also adhere to the dataflow model. Further open

source streaming system examples include Apache Storm,21 Twitter Heron,22 Google Millwheel,23 Apache Samza24 and Apache Flink.17 Note

that some of the systems process both streaming and batch data in a unified way such as Apache Apex, Google Dataflow, Naiad, and Apache

Flink. Apache Beam20 is a project developed to provide a unified API for both batch and streaming pipelines. It acts as a compiler and can

translate a program written in its API to a supported batch or streaming runtime. Prior to modern distributed streaming systems, research was

done on shared memory streaming systems, including StreamIt,25 Borealis,26 Spade,27 and S4.28

There are synergies between HPC and big data systems, and the works of Fox et al29,30 among others31 have expressed the need to enhance

these systems by taking ideas from each other. In our previous work,32,33 we have identified the general implications of threads and processes,

cache, memory management in NUMA,34 as well as multi-core settings for machine learning algorithms with MPI. DataMPI35 uses MPI to build

Hadoop-like systems, while the work of Anderson et al36 used MPI communications in Spark for better performance. Our toolkit approach as

proposed in Twister2 makes interoperability easier at the usage level, as one can change lower level components to fit different environments

without changing the programmatic or user interface.

There is an ongoing effort in the HPC community to develop AMT systems for realizing the full potential of multicore and many-core machines,

as well as handling irregular parallel applications in a more robust fashion. It is widely accepted that writing efficient programs with the existing

capabilities of MPI is difficult due to the bare minimum capabilities it provides. AMT systems model computations as dataflow graphs and use

shared memory and threading to achieve the best performance out of many-core machines. Such systems include OCR,37 DADuE,38 Charm++,39

COMPS,40 Legion,41 and HPX,42 all of which focus on dynamic scheduling of the computation graph. A portability API is developed in DARMA43

to AMT systems to develop applications agnostic to the details of specific systems. They extract the best available performance of multicore and

many-core systems while reducing the burden of the user having to write such programs using MPI. Prior to this, there was much focus in the

HPC community on developing programs that could bring automatic parallelism to users such as Parallel Fortran.44 Research has been done with

MPI to understand the effect of computer noise on collective communication operations.45-47 For large computations, computer noise coming

from an operating system can play a major role in reducing performance. Asynchronous collective operations can be used to reduce the noise in

such situations, but it is not guaranteed to completely eliminate the burden.

Exascale computing anticipates a large number of computing nodes generally ranges from 50 to 100k nodes and 1 M processes, which are

multi-threaded in nature. PMIx48 is an extended version of PMI, which has been specifically designed to support the exascale clusters and

eliminates the current restrictions for achieving scalability. It is a scalable workflow orchestration system with a well-defined set of interfaces,

which provide the facility to enable applications and tools interact with the resident system management stack (SMS) and also the various SMS

components interact with each other. In case of big data resource schedulers, we will use their functions to manage the Twister2 processes, and

for HPC deployments, we can explore PMIx to manage the processes while the HPC schedulers only doing the resource allocations. Balaji et al49

proposed a process management framework named Hydra within MPICH2. Their proposed model consists of three major components, namely,

(1) parallel programming library (MPI library), (2) PMI library, and (3) process manager. The process manager is a logically centralized unit, which

is primarily responsible for launching the process and exchanging the information between those processes. The PMI library communicates with

the process manager through the communication subsystem.

Nguyen et al50 presented a custom source-to-source translator named Bamboo, which transforms MPI C source into semantically equivalent

precedence task graph formulation that automatically overlaps communication with the available computation. The generated source code will

be able to produce a data-driven program, which is represented as a task graph and it runs like a data-flow execution model. The Open Run-Time

Environment (ORTE)51 has been developed to run high-performance computing applications in a distributed environment. It provides support for

interprocess communication, resource discovery, and allocation, and launching the process across different platforms. The user can be allowed

to dynamically sense its environment by the system and select the best components for that situation. Similar to OpenMPI architecture, Twister2

is based on a layered architecture with components defining each layer. These components could be added/removed to get the required

functionality.

In practice, multiple algorithms and data processing applications are combined together in workflows to create complete applications. Systems

such as Apache NiFi,52 Kepler,53 and Pegasus54 were developed for this purpose. The lambda architecture55 is a dataflow solution for designing

such applications in a more tightly coupled way. Amazon Step functions56 are bringing the workflow to the FaaS and microservices.

In task execution management and scheduling to acquire a fault tolerant system, Akka framework has provided a pluggable implementation

to manage task execution in other systems. The actor-based model in Akka offers a versatile implementation in obtaining a fault-tolerant and

scalable solution. With the actor model, various topologies can be designed to meet the requirements in a system.

3 BIG DATA APPLICATIONS

Here, we highlight four types of applications with different processing requirements, ie, (1) Streaming, (2) Data pipelines, (3) Machine learning,

and (4) Services. With the explosion of IoT devices and the cloud as a computation platform, fog computing is adding a new dimension to these

applications, where part of the processing has to be done near the devices.

Streaming applications work on partial data, while batch applications process data stored in disks as a complete set. By definition, streaming

data is unlimited in size and hard (to say nothing of unnecessary) to process as a complete set due to time requirements. Only temporal data set
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FIGURE 1 Hierarchical data partitioning of a big data application

observed in data windows can be processed at a given time. In order to handle a continuous stream of data, it is necessary to create summaries

of the temporal data windows and use them in subsequent processing of the stream. There can be many ways to define data windows, including

time-based windows and data count-based windows. In the most extreme case, a single data tuple can be considered as the processing granularity.

Data pipelines are primarily used to extract, transform, and load (ETL) operations even though they can include steps such as running a complex

algorithm. They mostly deal with unstructured data stored in raw form or semi-structured data stored in NoSQL57 databases. Data pipelines work

on arguably the largest data sets possible out of the three types of applications. In most cases, it is not possible to load complete data sets into

memory at once and we are required to process data partition by partition. Because the data is unstructured or semi-structured, the processing

has to assume unbalanced data for parallel processing. The processing requirements are coarse-grained and pleasingly parallel. Generally, we

can consider a data pipeline as an extreme case of a streaming application, where there is no order of data and the streaming windows contain

partitions of data.

Machine learning applications execute complex algebraic operations and can be made to run in parallel using synchronized parallel operations.

In most cases, the data can be load balanced across the workers as curated data is being used. The algorithms can be regular or irregular and may

need dynamic load balancing of computations and data.

Services are moving toward an event-driven model for scalability, efficiency, and cost-effectiveness in the cloud. The old monolithic services

are being replaced by leaner microservices. These microservices are envisioned to be composed of small functions arranged in a workflow56 or

dataflow to achieve the required functionality.

3.1 Data processing requirements

Data processing requirements are different compared to traditional parallel computing applications due to the characteristics of data. For example,

some data are unstructured and hard to load balance for data processing. Data can be in heterogeneous sources including NoSQL databases

and distributed file systems. Moreover, it can arrive at varying velocities in streaming use cases. Compared to general data processing, machine

learning applications can expect curated data in a more homogeneous environment.

Data Partitioning: A big data application requires the data to be partitioned in a hierarchical manner due to memory limitations. Figure 1 shows

an example of such partitioning of a large file containing records of data points. The data is first partitioned according to the number of parallel

tasks, and then each partition is again split into smaller partitions. At every stage of the execution, such smaller examples are loaded into the

memory of each worker. This hierarchical partitioning is implicit in streaming applications, as only a small portion of the data is available at a

given time.

Hiding Latency: It is widely recognized that computer noise can play a huge role in large-scale parallel jobs that require collective operations.

Many researchers have experimented with MPI to reduce performance degradation caused by noise in HPC environments. Such noise is much

less compared to what typical cloud environments observe with multiple VMs sharing the same hardware, I/O subsystems, and networks. Added

to this is the Java JVM noise, which most notably comes from garbage collection. The computations in the dataflow model are somewhat

insulated from the effects of such noise due to the asynchronous nature of the parallel execution. For streaming settings, the data arrives at the

parallel nodes with different speeds and processing time requirements. Because of these characteristics, asynchronous operations are the most

suitable for such environments. Load balancing58 is a much harder problem in streaming settings where data skew is more common because of

the nature of applications.

Overlapping I/O and Computations: Because of the large data transfers required by data applications, it is important to overlap I/O time with

computing as much as possible to hide the I/O latencies.

3.2 MPI for big data

MPI is the de facto standard in HPC for developing parallel applications. An example HPC application is shown in Figure 2 where a workflow

system such as Kepler53 is used to invoke individual MPI based applications. A parallel worker of an MPI program does computations and

communications within the same process scope, allowing the program to keep state throughout the execution. An MPI programmer has to

consider low-level details such as I/O, memory hierarchy, and efficient execution of threads to write a parallel application that scales to large

numbers of nodes. With the increasing availability of multi-core and many-core systems, the burden on the programmer to get the best available

performance has increased dramatically.32,33 Asynchronous many task systems are such as HPX,42 Legion,41 and DAGuE38 are developed to

hide some of these complexities. Because of the inherent load imbalance and velocity of the data applications, an MPI programmer has to go into
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FIGURE 2 MPI applications arranged in a workflow

FIGURE 3 Dataflow application execution. Left, Streaming execution; Middle, Data pipelines executing in stages; Right, Iterative execution

great detail to program efficient data applications. Another important point is that MPI is a message-level abstraction. Data applications such as

pipelines, streaming, and FaaS require higher level abstractions than low level message abstractions. When data is in a curated form as in machine

learning, the authors have shown that MPI outperforms other technologies by a wide margin.9

3.3 Dataflow for big data

Data-driven computing is becoming dominant for big data applications. A dataflow program can hide details such as communication, task

execution, and data management from the user while giving higher level abstractions including task APIs or data transformation APIs. One can

make different design choices at these core components to tune a dataflow framework for supporting different types of applications. Figure 3

shows the execution of dataflow application such as streaming execution, data pipelines execution, and iterative execution.

3.3.1 Streaming applications

Asynchronous streaming applications deal with load imbalanced data coming at varying rates to parallel workers at any given moment. Because

of the dynamic data sizes and timing, an MPI-based application needs to fragment the data or use synchronous operations before invoking actual

operations to figure out the data sizes. This process can be extremely difficult if done per each application. In addition, to handle streams of data

with higher frequencies, the tasks of the streaming computation must be executed in different CPUs arranged in pipelines. The dataflow model

is a natural fit for such asynchronous processing of chained tasks.

3.3.2 Data pipelines

Data pipelines can be viewed as a special case of streaming application. They work on hierarchically partitioned data, as shown in Figure 1. This

is similar to streaming where a stream is partitioned among multiple parallel workers and a parallel worker only processes a small portion of the

assigned partition at a given time. Data pipelines deal with the same load imbalance as streaming applications, but the scheduling of tasks is not

equal between them. Usually, every task in a data pipeline is executed in each CPU sequentially, so only a subset of tasks are active at a given

time in contrast to all the tasks being active in streaming applications. Streaming communication operations only need to work on data that

can be stored in memory, while data pipelines do communications that require a disk because of insufficient memory. It is necessary to support

iterative computations in data pipelines in case they execute complex data analytics applications.

3.3.3 Machine learning

Complex machine learning applications work mostly with curated data that are load balanced. This means tight synchronizations required by the

MPI-style parallel operations are possible because the data is available around the time the communication is invoked. It is not practical to run
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FIGURE 4 Microservices using FaaS. Left, Functions using a workflow; Right, Functions in a dataflow

complex machine learning algorithms (> O(n2)) on very large data sets as they have polymorphic time requirements. In those cases, it is required

to find heuristic approaches with lower time complexities. There are machine learning algorithms, which can be run in a pleasingly parallel

manner as well. Because of the expressivity required by the machine learning applications, the dataflow APIs should be close enough to MPI-type

programming, but it should hide details such as threads and I/O from users. Task-based APIs as used by AMT systems are suitable for such

applications. We note that large numbers of machine learning algorithms fall into the map-collective model of computation as described in the

works of Chu et al59 and Ghoting et al.60

3.3.4 Services

The services are composed of event-driven functions, which can be provisioned and scaled without the user having to know the underlying

details of the infrastructure. The functions can be directly exposed to the user for event-driven applications or by proxy through microservices

for request/response applications. Figure 4 shows microservices using functions arranged in a workflow and in a dataflow.

4 TOOLKIT COMPONENTS

Considering the requirements of different applications, we have designed a layered approach for big data with independent components at

each level to compose an application. The layers include (1) Resource allocations, (2) Data Access, (3) Communication, (4) Task System, and (5)

Distributed Data. Among these communications, task system and data management are the core components of the system with the others

providing auxiliary services. On top of these layers, one can develop higher-level APIs such as SQL interfaces, which are not a focus of this

paper. Figure 5 shows the runtime architecture of Twister2 with various components. Even though Figure 5 shows all the components in a single

diagram, one can mix and match various components according to their needs. Fault tolerance and security are two aspects that affect all these

components. Table 1 gives a summary of various components, APIs, and implementation choices.

FIGURE 5 Runtime architecture of Twister2
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TABLE 1 Components of the Twister2 toolkit

Component Area Implementation Comments; User API

Architecture

Coordination Points State and Configuration Change execution mode;

Specification

Management; Program, save and reset state

Data and Message Level

Execution Semantics Mapping of Resources to Different systems make

Bolts/Maps in Containers, different choices - why?

Processes, Threads

Job Submission
(Dynamic/Static) Plugins for Slurm, Yarn, Mesos, Client API (eg, Python)

Resource Allocation Marathon, Aurora for Job Management

Communication

Dataflow Communication MPI Based, TCP, RDMA Define new Dataflow

communication API and library

BSP Communication Conventional MPI, Harp MPI P2P and Collective API

Task System

Task migration Monitoring of tasks and

Task-based programming with

migrating tasks for better

Dynamic or Static Graph API;

resource utilization

FaaS API; Support accelerators

(CUDA,KNL)

Elasticity OpenWhisk

Streaming and FaaS Events Heron, OpenWhisk, Kafka/RabbitMQ

Task Execution Process, Threads, Queues

Task Scheduling Dynamic Scheduling, Static Scheduling,

Pluggable Scheduling Algorithms

Task Graph Static Graph, Dynamic Graph Generation

Data Access
Static (Batch) Data File Systems, NoSQL, SQL

Data APIStreaming Data Message Brokers, Spouts

Distributed Data Management
Distributed Data Set Relaxed Distributed Shared Memory Data Transformation API;

(immutable data), Mutable Distributed Data Spark RDD,61 Heron Streamlet

Fault tolerance

Check pointing Lightweight barriers, Coordination Points,
Streaming and batch cases distinct;Upstream backup; Spark/Flink,
Crosses all componentsMPI and Heron models

Security Messaging, FaaS, Storage Research Crosses all components

4.1 Architecture specification

System specification captures the essentials of a parallel application that will determine the configuration of the components. We identify

execution semantics and coordination points as the two essential features that define the semantics of a parallel application.

Coordination Points: To understand and reason about a parallel application, we introduce a concept called a coordination point. At a

coordination point, a program knows that a parallel computation has finished. With MPI, a coordination point is implicitly defined when it invokes

and completes a communication primitive. For example, when AllReduce operation finishes a parallel task, it knows that the code before the

AllReduce has been completed. For data driven applications, the coordination happens at the data level. Depending on the abstractions provided,

the coordination can be seen at communication level, task level, or the distributed data set level. For example, a task is invoked when its inputs

are satisfied. Therefore, the coordination of tasks happens at the beginning of such executions. No coordination between parallel tasks is allowed

inside the tasks. At the data level, the coordination occurs when the data sets are created and its subsequent operations are invoked. HPC also

has coordination points at the end of jobs. These are managed in workflow graphs with systems like Kepler, Taverna, and Pegasus. The data driven

coordination points are finer-grained than workflow and similar to those in HPC systems where computing phases move to communication phases.

Execution semantics: Execution semantics of an application define how the allocated resources are mapped to execution units. Cluster

resources are allocated in logical containers and these containers can host processes that execute the parallel code of the application. Execution

semantics define the mapping of computation tasks into the containers using processes or a hybrid approach with threads and processes.

4.2 Job submission and cluster resource allocation

Cluster resource allocation is often handled by specialized software that manages a cluster such as Slurm, Mesos,62 Yarn, or Kurbenetes.63 Such

frameworks have been part of the HPC community for a long time and the existing systems are capable of allocating a large number of jobs in large

clusters. Yarn and Mesos are big data versions of the same functionality provided by Slurm or Torque with an emphasis on fault tolerance and

cloud deployments. In particular, both are capable of handling node failures and offer applications the opportunity to work even when the nodes

fail by dynamically allocating resources. Twister2 uses a pluggable architecture for allocating resources utilizing different schedulers available.

An allocated resource including CPUs, RAM, and disks are considered as a container. A container can run a single computation or multiple

computations using processes/threads depending on the system specification. For computationally expensive jobs, it is important to isolate the

CPUs to preserve cache coherence while I/O-bound jobs can benefit from the idle CPUs available. For cloud deployments with FaaS, resource
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TABLE 2 MPI and dataflow communication operations

Collectives

BSP (MPI) Reduce, AllReduce Gather, AllGather Broadcast, Scatter Barrier – – –

Dataflow Reduce, Keyed Reduce Gather, Keyed Gather Broadcast – Union Join Partition

management frameworks such as Kubernetes are exploited to scale the applications. In addition to standard HPC schedulers, frameworks such

as Pilot-Jobs64 and pmix65 can be exploited to manage the Twister2 processes in HPC environments.

4.3 Communication

Communication is a fundamental requirement of parallel computing and the performance of the applications largely revolves around effi-

cient implementations. High-level communication patterns as identified by the parallel computing community are available through MPI

implementations.66 Some of the heavily used primitives are Broadcast, Gather, Reduce, AllGather, and AllReduce.67 The naive implementation of

these primitives using point-to-point communication in a straightforward way produces worst-case performance in practical large-scale parallel

applications. These patterns can be implemented using data distribution algorithms that minimize the bandwidth utilization and latency of the

operation. In general, they are termed collective algorithms. Twister2 will support message-level BSP-style communications as in MPI implemen-

tations and solely data-level communications as in data flow programs. The dataflow-style communications will be used for data pipeline and

streaming applications. One can choose to use BSP style or dataflow style for machine learning algorithms. Table 2 summarizes some of the

operations available in BSP and dataflow communications. It is important to note that key-based operations are first-class in dataflow.

4.3.1 BSP communications

In MPI specification, collective operations and other point-to-point communication operations are driven by computations. Once the program is

ready to communicate, it can initiate the appropriate operations which will invoke the network functions. The asynchronous communications are

slightly different than synchronous operations in the sense that, after their invocation, the program can continue to compute while the operation

is pending. It is important to note that even with asynchronous operations the user needs to employ other operations such as wait/probe to

complete the pending operation. The underlying implementation for a collective can use different algorithms based on factors including message

size. Significant research has been done on MPI collectives67,68 and the current implementations are optimized to an extremely high extent. A

comprehensive summary of collective operations and possible algorithms is found in the work of Wickramasinghe and Lumsdaine.69 Harp7 is a

machine learning-focused collective library that supports the standard MPI collectives as well as other operations like rotate, push, and pull.

4.3.2 Dataflow communications

A dataflow communication pattern defines how the links are arranged in the task graph. For instance, a single task can broadcast a message to

multiple tasks in the graph when they are arranged in a broadcast communication pattern. The most common dataflow operations include reduce,

gather, join,70 union, partition, and broadcast. MPI implementations and big data have adopted the same type of collective communications, but

sometimes they have diverged in semantics. This is especially evident among big data frameworks where same operation is implemented with

slightly different semantics.

The additional requirements of dataflow communications over BSP style as in MPI specification are highlighted in Table 3. Since a dataflow

collective needs to work with an arbitrary task graph, the collectives can go between different task sets deployed on distinct nodes. Moreover,

dataflow communications work at data level rather than the message level as in MPI specification. For example, a dataflow communication

can reduce a whole data set as a single operation that runs in many steps using hierarchical partitioning. In case of insufficient memory, the

communications can use disks to save intermediate data of the operation. In addition, the semantics of the dataflow primitives are different

compared to the MPI collectives, with keyed operations, joins, unions, and partitioning. Because a dataflow operation can be invoked an arbitrary

number of times depending on the data requirements, termination detection of an operation running in multiple steps is required. The operations

are stateful to support special messages running through the communications, buffering of messages, and supporting things like disk-based sorting.

The system specification dictates how a task can send and receive data via its input and output ports (coordination points) and how they can

communicate with each other while performing computations. If they communicate inside the tasks, that will introduce another coordinating

point inside the task. The authors of this paper propose dataflow collective operations implemented as a graph enrichment, which introduces

sub-tasks to the original dataflow graph. The naive implementation and our proposed approach for dataflow collective operations are shown in

Figures 6 and 7, respectively. In this approach, the collective operations computation is moved to a sub-task under which the collective operation

depends. These sub-tasks can be connected to each other according to different data structures like trees and pipes to optimize the collective

communication. This model preserves the dataflow nature of the application.

The dataflow collectives are implemented using semantics similar to MPI ISend/IRecv. Any channel implementation that supports the

IRecv/ISend semantics can be used underneath. Because of this, implementation can use MPI ISend/IRecv operations, TCP socket API, and RDMA
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TABLE 3 Dataflow communication

Feature Dataflow BSP

Graph structure Arbitrary task graph laid out on processes. In place, process model.

Collective operations can have distinctive

sources and destinations running on

different nodes and processes.

Data sizes Support dynamic data sizes to facilitate Before invoking an operation, data sizes

rich data including text data. across the tasks needs to calculated.

This requires additional operations.

Data larger than memory Use disks in order to sort and handle large data. BSP specification works on in memory data

Termination detection We need to detect termination of dataflow Not required

communications with asynchronous unbalanced

data transfers including arbitrary

steps across tasks.

Stateful operations Data bufferring, streaming operations, Operations are stateless by definition.

sending special messages through

streams with order guarantes.

Keys Key based operations to group data. Keys are not used.

Granuality Data level, ability to work on Message level

multiple records of a data set

FIGURE 6 Default implementation of a dataflow reduce

FIGURE 7 Optimized dataflow reduce operation with sub-tasks arranged in a tree

(Remote Direct Memory Access)–based implementations. These options will give the library the ability to work in cloud environments as well as

HPC environments. Twister2 dataflow communication library can be used by other big data frameworks to be efficient in HPC environments.

We believe MPI specification can be enriched with dataflow communication requirements to support a wide range of applications including large

scale data processing.

4.3.3 High performance interconnects

Use of high performance communication fabrics such as Infiniband is one of the key areas where MPI excels. MPI implementations support

a variety of high-performance communication fabrics and perform well compared to Ethernet counterparts. Recently, there have been many

efforts to bring RDMA (Remote direct memory access) communications to big data systems, including HDFS,31 Hadoop,71 and Spark.72 The big

data applications are primarily written in Java and RDMA applications are written in C/C++, requiring the integration to go through JNI. Even by

passing through additional layers such as JNI, the application still performs reasonably well with RDMA. One of the key forces that drags down the

adoption of RDMA fabrics is their low-level APIs. Nowadays, with unified API libraries such as Libfabric73 and Photon,74 this is no longer the case.
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4.4 Task system

In order to develop an application in the communication layer, one needs a deep understanding of threaded execution, efficient use of

communications, and data management. The task layer provides a higher-level abstraction on top of the communication layer to hide the details

of execution and communication from the user, while still delegating data management to the user. At this layer, computations are modeled as

task graphs, which can be created either statically as a complete graph or dynamically as the application progresses.

4.4.1 Task graph

A node in the task graph represents a task while an edge represents a communication link between nodes. Each node in the graph holds

information about the inputs and its outputs (edges). Moreover, a node contains an executable user code. The user code in a task is executed

when events arrive at the inputs of the task. The user will output events to the output edges of the task graph and they will be sent through the

network by the communication layer. A task can be long-running or short-running depending on the type of application. For example, a stream

graph will have long running tasks while a dataflow graph without loops will have short running tasks. When loops are present, long-running

tasks can be appropriate to reduce task creation overheads.

4.4.2 Execution graph

Execution graph is a transformation of the user-defined task graph, created by the framework for deploying on the cluster. This execution graph

will be scheduled onto the available resource by the task scheduler. For example, some user functions may run on a larger number of nodes

depending on the parallelism specified. In addition, when creating the execution graph, the framework can perform optimizations on the user

graph to increase efficiency by reducing data movement and overlapping I/O and computations. Figure 8 shows the execution graph and the

user graph where they run multiple W operations and S operations in parallel.

4.5 Task scheduling

Task scheduling is the process of scheduling multiple task instances into the cluster resources. The task scheduling in Twister2 generates the

task schedule plan based on the per job policies, which places the task instances into the processes spawned by the resource scheduler. It

aims to allocate a number of dependent and independent tasks in a near optimal manner. The optimal allocation of tasks decreases the overall

computation time of a job and improves the utilization of cluster resources. Moreover, task scheduling requires different scheduling methods for

the allocation of tasks and resources based on the architectural characteristics. The selection of the best method is a major challenge in the big

data processing environment. The task scheduling algorithms are broadly classified into two types, namely, static task scheduling algorithms and

dynamic task scheduling algorithms. Twister2 supports both types of task scheduling algorithms. It considers both the soft (CPU, disk) and hard

(RAM) constraints and serializes the task schedule plan in the format of Google Protocol Buffers.75 Additionally, the Google Protobuf contains

information about the number of containers and the task instances to be allocated for each container. Additionally, it houses the required

resource information such as CPU, disk memory, and RAM for the containers and the task instances to be allocated in those containers. We have

defined the task scheduling model which comprises of Job Model (consider different type of jobs, namely, batch, streaming), Resource Model

(consider datacenters, heterogeneous resources), Performance Metrics (considers completion time, data locality, makespan), Scheduling Policy

(scheduling algorithms implemented with specific goals), and Programming model (dataflow programming model).

4.5.1 Task scheduling for batch and streaming jobs

The task scheduling for batch jobs can be performed prior to the processing based on the knowledge of input data and the task information

for processing in a distributed environment. Moreover, the resources can be statically allocated prior to the execution of jobs. Nevertheless,

the task scheduling for streaming jobs is considerably more difficult than batch jobs due to the continuous and dynamic nature of input data

streams that requires unlimited processing time. The task scheduling considers the availability of resource and resource demand as important

parameters while scheduling the streaming tasks. Moreover, it should give more importance to the network parameters such as bandwidth and

latency. Streaming task components76 that communicate each other should be scheduled in close network proximity to avoid the network delay

FIGURE 8 Left, User graph; Right, Execution graph of a data flow
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in the streaming jobs processing. Dynamic task scheduling is more suitable than static task scheduling for handling the dynamic streams of data

or streaming jobs. The Task Scheduler invokes an appropriate task scheduling algorithm based on the application, input data, and the source of

input data. It receives the task graph and fetches the corresponding task graph attributes and the task scheduling algorithm to be considered to

process the job either from the task graph attributes or from the task scheduling configuration file. First, it computes the number of task instances

to be created for the execution of the task graph, which is based on the parallelism of the number of tasks in the task graph. Subsequently, it

generates the task schedule plan, which consists of the number of containers to be created and the task instances to be hosted in the containers.

Finally, it sends the task schedule plan to the Task Executor for the execution of tasks on the worker nodes.

4.5.2 Static task scheduling algorithm

In static task scheduling, the jobs are allocated to the nodes before the execution of a job and the processing nodes are known at the compile

time. Once the tasks are assigned to an appropriate resource, the execution continues to run until finishing the execution of the task. The main

objective of the static task scheduling strategy is to reduce the scheduling overhead which occurs during the runtime of the task execution.

Some of the popular static task scheduling strategies are Capacity Scheduling, Data Locality-Aware Scheduling, Round Robin Scheduling, Delay

Scheduling, FIFO Scheduling, First Fit Scheduling, Fair Scheduling, and Matchmaking Scheduling.

Twister2 is implemented with the following static task scheduling algorithms: (1) Round Robin (RR), (2) First Fit (FF), and (3) Data Locality-Aware

(DLA). The implemented task scheduling algorithms are able to handle both the batch and streaming jobs. The round-robin scheduling algorithm

generates the task scheduling plan in which the task instances are allocated to the containers in a round robin manner without considering any

priority to the task instances. It has the support to launch homogeneous containers of equal size of disk, memory, CPU, and heterogeneous

nature of task instances. Round-robin-based task (heterogeneous) instance allocation in the (homogeneous) containers is represented in Figure 9.

The FF task scheduling algorithm generates the task scheduling plan in which the task instances are allocated to a finite number of containers

with the objective of minimizing the number of containers and reducing the waste of underlying resources. In contrast to the round-robin task

scheduling, it provides the support for launching heterogeneous containers and the heterogeneous nature of task instances. Figure 10 shows

the FF-based task (heterogeneous) instances allocation in the (heterogeneous) containers. The data locality-aware task scheduling algorithm

is implemented with an awareness of data locality (ie, the distance between the data node that holds the data and the task execution node).

Scheduling of tasks to the execution node, which has the input data or closest to the input data, maximizes the overall response time of a job.

However, in some scenarios, the execution of a node requires the data, which has been distributed in nature; hence, the data locality-aware

task scheduling algorithm should consider that case while scheduling the tasks. Figures 11 and 12 show the data locality-aware task scheduling

scenarios handled in the Twister2 framework.

4.5.3 Dynamic task scheduling algorithm

In the dynamic scheduling strategy, jobs are allocated to the nodes during the execution time of tasks. It is assumed that the user has complete

knowledge about their application requirements, such as the maximum size of the container (CPU, disk, and RAM) or the required number of

containers while submitting the jobs to the Twister2 framework. Thus, the task scheduling algorithm should be able to generate an appropriate

task scheduling plan using that information. However, the static task scheduling algorithm does not consider the availability of resources and the

resource demand, which can lead to over-utilization or under-utilization of the resources and thus pave the way for inefficiencies. Contrary to

the static task scheduling, the dynamic task scheduling evaluates the scheduling decisions during the execution of the job. It provides the support

or triggers the task migration based on the status of the cluster resources and the workload of the application. Resource-Aware Scheduling,

Deadline-Aware Scheduling, and Energy-Aware Scheduling are examples of dynamic scheduling strategy. As such, Twister2 will be empowered

with a dynamic task scheduling algorithm which considers the deadline of the job, inter-node traffic, inter-process traffic, resource availability,

FIGURE 9 RR task scheduling (homogeneous containers and heterogeneous task instances)

FIGURE 10 FF task scheduling (heterogeneous containers and heterogeneous task instances)
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FIGURE 11 DLA task scheduling (execution on the data nodes)

FIGURE 12 DLA task scheduling (execution closer to the data nodes)

and resource demand with the objective of minimizing the makespan (ie, total execution time of all the tasks) of a job and effectively utilizing the

underlying resources.

4.6 Task execution

Depending on the system specification, a process model or a hybrid model with threads can be used for execution. It is important to handle both

I/O and task execution within a single execution module so that the framework can achieve the best possible performance by overlapping I/O and

computations. The execution is responsible for managing the scheduled tasks and activating them with data coming from the message layer. To

facilitate dynamic task scheduling, scaling of tasks for FaaS environments and high-frequency messaging, it is vital to maintain high-performance

concurrent message queues. Much research has been done on improving single queue multiple-threaded consumer bottlenecks for task execution,

as shown in the work of Alistarh et al.77

Unlike in MPI-based applications where threads are created equal to the number of CPU cores, big data systems typically employ more threads

than the cores available to facilitate I/O operations. With I/O offloading and advanced hardware, the decision to choose the correct model for a

particular environment becomes a research question. When performing large data transfers or heavy computations, the threads will not be able

to attend to computing or I/O depending on the operation being performed. This can lead to unnecessary message buildups in upstream tasks or

in the task itself. The ability to model such behaviors and pick the correct execution model78 is important for achieving optimum performance. It

has been observed that using a single task executor for both these applications would bring inferior performance.79

For an application running on multi-core (multiple CPUs) machines with multiple sockets, the effects of context switching can be significant

due to cache misses and memory access latency,80 especially when crossing NUMA (non-uniform memory access) domains. With NUMA, the

data locality is considered and the tasks are allocated (by Twister2 task scheduler and resource scheduler) in a way that shared memory access

is efficient as described in the work of Stenström et al.80 With many core machines now having large numbers of hardware threads, a single

process can expect to deal with larger memory and more parallelism within a process. Languages such as Java require garbage collection (GC) to

reclaim memory and having processes with very large memory allocated can cause long pauses in GC. Because of this, a balance for the number

of processes per node must be maintained.

4.7 Data access

Data access abstracts out various data sources including files and streaming sources to simplify the job of an application developer. In most

distributed frameworks, the data is presented as a higher level abstraction to the user, such as the RDD61 in Apache Spark and DataSet for Apache
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FIGURE 13 Example execution graph for logFile.map(… ).filter(… ).reduceByKey(… ).forEach(… )

Flink. Since the goal of Twister2 is to provide a toolkit which allows developers to choose the desired components, Twister2 includes a lower level

API for data access in addition to a higher level abstraction. For example, the abstraction of a File System allows Twister2 to support NFS, HDFS,

and Luster, which enables the developer to store and read data from any file by specifying only the URL. In addition to the data sources that are

supported by the framework, the pluggable architecture allows users to add support for any data source by implementing the relevant interfaces.

Another important role of the data access layer is to handle data partitioning and data locality in an efficient manner. An unbalanced set of

data partitions will create stragglers, which will increase the execution time of the application. The data access layer is responsible for providing

the developer with appropriate information regarding data locality. Data locality directly affects the execution time since unnecessary data

movements will degrade the efficiency of the application. In addition to the built-in functions of Twister2, the developer is given the option to

plug in custom logic to handle data partitioning and locality.

4.8 Distributed data

The core of most dataflow frameworks is a well-defined high-level data abstraction. RDDs72 in Apache Spark and DataSets in Apache Flink are

well-known examples for higher level data abstractions. Twister2 provides an abstraction layer so that developers can develop applications using

data transformation APIs that are provided. The distributed data abstraction used in Twister2 is termed as DataSets. DataSets are the main unit

of parallelism when programs are developed using the data flow model in the framework. The number of splits or partitions that a DataSet is

broken into determines the number of parallel tasks that will be launched to perform a given data flow operation. Twister2 DataSets support two

primary types, ie, immutable and mutable. The immutable version is most suitable for traditional dataflow applications. Mutable DataSet allows

the data sets to be modified, but a given task may only alter the entries from the partition that is assigned to that task. The DataSet API provides

the developer with a wide variety of transformations and actions that allow the developer to build the required application logic effortlessly.

DataSets are loaded lazily, which means that the actual data is not read until the execution of a data flow operation is performed. This allows

many optimizations such as pipelining transformations and performing local data reads to be implemented. Fault tolerance is built into the

distributed data abstraction; if a task or a node fails, the required calculation will be redone automatically by the system and the program can

complete without any problems. Distributed DataSets leverage functionalists provided by the data access APIs; therefore, the data partitioning

and data locality are managed by the data access layer, removing the burden from the DataSets implementation. Leveraging the lower level APIs

adheres to the toolkit approach taken by Twister2 and allows each system component to be modified and updated with little effect to the other

components.

The framework generates an execution graph based on the transformations and actions that are performed on the distributed

data set. This execution graph takes into account the number of partitions in the data set and the localities of the data partitions.

Figure 13 shows an example of such an execution graph. It demonstrates the execution graph of an application, which applies the

logFile.map(… ).filter(… ).reduceByKey(… ).forEach(… ) sequence of transformations to a data set that has four partitions.

4.9 Fault tolerance

A crucial feature in distributed frameworks is fault tolerance since it allows applications to recover from various types of failures that may occur

during the application runtime. Fault tolerance has become more and more important with the usage of larger commodity computer clusters to

run applications. However, the overheads caused by fault tolerance mechanisms may reduce the application's performance, so it is important to

keep them as lightweight as possible. Most distributed frameworks such as Spark and Flink have inherent support for fault tolerance. There are

several projects such as the works of Fagg and Dongarra81 and Hursey et al,82 which provide fault tolerance for MPI applications. It is important

to allow the application developer to determine the level of fault tolerance required. This enables applications which run on reliable hardware

with very large mean times of failure to run without the burden of fault tolerance. Checkpointing is a well-known mechanism used to handle

failures in distributed frameworks. Dataflow application can have automatic checkpointing mechanisms at the coordination points to recover

from failures. The checkpointing mechanism works differently for streaming data and batch data. Opting out of checkpointing does not mean

that the application will fail as soon as one failure occurs. Instead, the system can automatically restart the application or recover from the failure

using cached intermediate data if available.
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4.9.1 Fault tolerance for streaming data

Twister2 provides fault tolerance to streaming applications through lightweight distributed checkpoints. The model used is based on the stream

barrier-based distributed snapshots described in the work of Carbone et al.17 This checkpointing method injects barriers into the data stream

and uses them to create snapshots so that every item in the stream before the barrier is processed completely. This helps guarantee exactly once

semantics for stream processing applications. It also allows developers to choose the checkpointing frequency just by specifying the intervals at

which the barriers are injected into the stream. Developers can completely forgo checkpointing, removing the overhead of fault tolerance if they

choose. There are three main types of message processing guarantees that are required by various stream processing applications, ie, exactly

once, at least once, and at most once. The fault tolerance mechanism provides support for all three given that some required conditions are met.

For instance, to provide exactly once guarantee, the streaming source is required to have the capability to replay the source from a certain point.

It is also important to note that stricter guarantees result in higher overheads for the fault tolerance mechanism.

4.9.2 Fault tolerance for batch data

Applications based on batch data can vary from pleasingly parallel applications to complex machine learning applications. Providing fault tolerance

for pleasingly parallel applications is relatively simple because of the narrow dependencies involved. The system can relaunch a task when it

fails without affecting any other running task. On the other hand, complex algorithms typically consist of wide dependencies, recovering from a

failure is much more complex for such scenarios. Twister2 provides fault tolerance for batch data at two levels, namely, checkpoint-based and

cache-based mechanism. Checkpoint-based fault tolerance is the main mechanism, while the cache-based model can be used to reduce overhead

of checkpointing based on the application.

Checkpoint-based fault tolerance develops snapshots of the runtime application. These snapshots are created at coordination points in the

applications, a natural candidate for a checkpoint since the runtime has the least amount of moving parts, such as messages at this point.

This allows the checkpoints to be lightweight and simple. The developer has the flexibility to specify the checkpoints based on the application

requirements. If a failure occurs, the framework recovers by loading the data and state from the checkpoint and relaunching the necessary tasks.

The amount of tasks that need to be relaunched depends on the task dependencies. If the applications have narrow dependencies, it may suffice

to relaunch tasks for a subset of the data partitions.

Cached-based fault tolerance provides a more lightweight mechanism to reduce the need for checkpointing. It is important to note that this is

not a full-fledged alternative to the checkpoint-based model and cannot handle node-level failures. Once a task level failure occurs, the system

first checks if the necessary intermediate data partitions are available in the cache. If so, the framework will relaunch the tasks without rolling back

all the way to the most recent checkpoint. Developers are given the ability to specify which intermediate results need to be cached according to

the application requirements.

4.10 State management

State management is an important aspect of distributed systems as it touches on most of the core components of the system. State of the

system encompasses various parameters and details of the system at runtime. State management needs to be addressed at two levels, ie, job

level state and task level state. Job level state consists of information that is required to run the distributed application as a whole. Job level state

is particularly important for fault tolerance and load distribution. Keeping a job level state allows tasks to be migrated within the cluster since the

required state information is accessible to any worker node in the system. If one worker is overloaded, some of its tasks can be migrated to a

worker that is underutilized so that the load can be distributed. The same state information allows the framework to recover from a node failure by

relaunching the tasks on a new worker node. Job level state management is achieved via a distributed shared memory. Checkpointing mechanisms

need to take a state into consideration when creating checkpoints of the system. Job level state is managed by separate processes that make sure

the global state is consistent and correct. Task level state is runtime information that can be kept local to a task. Task level state is saved when

checkpoints are performed and is used during the recovery process. This is especially important for long-running stateful tasks such as streaming

tasks. In most scenarios, the loss of information that falls under task level state does not affect the application as a whole and can be recovered.

4.11 API

Over the years, there have been numerous languages and different types of APIs developed for programming data-driven applications. Twister2

supports three different levels of APIs with the objective of handling different programming and performance requirements for the applications.

These three levels are classified as (1) Communication API, (2) Task/FaaS API, and (3) Distributed Data API. The user can adopt the communication

API to program parallel applications with auxiliary components such as data access API at the lowest level. It will give the maximum possible

performance of the system because the user controls both the task execution and data placement, but at the same time, it will be the most

difficult way to program.

Next, the user can create or generate a task graph to create an application. The task graph can be made either statically or dynamically

depending on the application requirements. By using the Task/FaaS API, the user can control data placement among the tasks while the framework
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FIGURE 14 Twister2 big data toolkit API levels

TABLE 4 Requirements of applications

Type of applications Capabilities

Data Task System Communications

Streaming Distributed Data Set Static Graph Dataflow Communications

Data Pipelines Distributed Data Set Static Graph or Dynamic Graph Dataflow Communications

Machine Learning Distributed Shared Memory Dynamic Graph Dataflow Communications/BSP Communications

FaaS Stateless Dynamic Graph Dataflow, P2P Communication

will handle the communication and execution. At the highest level, the user can adopt the Distributed Data API, which will allow the framework

to control every aspect of the application. At this level, programming will be easier for certain types of applications and the performance will be

considerably less compared to the same application written in other layers. Figure 14 provides a summary of the points discussed above and lists

types of applications that are most suitable to be implemented at each level. When we go up the API levels, we must utilize complex objects

to represent data and use these abstractions for communication. For efficient message transfers, it is necessary to use low level abstractions to

communicate to reduce the burden of serialization.

5 DISCUSSION

With our previous work,9 we have observed that various decisions made at different components of a big data runtime determine the type of

applications that can be executed efficiently. The layered architecture proposed in this work will eliminate the monolithic designs and empower

components to be developed independently and efficiently. The Twister2 design has the following implications. (1) It will allow developers to

choose only the components that they need to develop the application. For example, a user may only want MPI-style communication with a static

scheduling and distributed shared memory for their application. (2) Each component will have multiple implementations, allowing the user to

support different types of applications, eg, the toolkit can be used to compose a system that can perform streaming computations as well as data

pipelines.

We identify communications, task system, and distributed shared memory as the three main components required by an application. The user

APIs will be available to these components to program an application. Table 4 shows the different capabilities expected from different types of

big data applications described herein. It is important to note that one can build a streaming, data pipeline, or machine learning algorithms with

only the communication layer. Later, they can add the task system on top of communication to further enhance the ease of programming, and

finally, they can add the data layer to give the framework the highest possible control while reducing the burden on the programmer.

In general, it is safe to assume that machine learning algorithms require complex communications and executions. It is worth noting that there

are is large group of machine learning algorithms that work with minimal parallel communications, and such algorithms are similar to data pipelines

and can be scaled easily. Machine learning algorithms that work with large data sets also use heuristic methods to lower the parallel computation

complexity to make them run in a more pleasingly parallel manner. Security and fault tolerance are two areas that cross all the components of

the toolkit. In order to be fault tolerant, each component has to be able to work under different failure scenarios. We recognize security as an

important aspect of this approach, but reserve a lengthy discussion to a subsequent work.

6 CONCLUSIONS AND FUTURE WORK

We foresee that the share of large-scale applications driven by data will increase rapidly in the future. The HPC community has tended to

focus mostly on heavy computational-bound applications, and with these new developments, there is an opportunity to explore data-driven

applications with HPC features such as high-speed interconnects and many-core machines. Data-driven computing frameworks are still in the
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early stages, and as we discussed, there are four driving application areas (streaming, data pipelines, machine learning, and service) with different

processing requirements. In this paper, we have discussed the convergence of these application areas with a common event-driven model.

We also examined the choices available in the design of frameworks supporting big data with different components. Every choice made by a

component has ramifications for the performance of the applications the system can support. We believe the toolkit approach gives the required

flexibility to the user to strike a balance between performance and usability, which allows the inclusion of proven existing technologies in a unified

environment. This will enable a programming environment that is interoperable across application types and system infrastructure including both

HPC and clouds, whereas in the latter case, it supports a cloud-native framework.11 The authors are actively working on the implementation of

various components of the toolkit and APIs in order to deliver the promised flexibility across various applications and systems.
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