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Abstract—We recently outlined the vision of ”Learning Every-
where” which captures the possibility and impact of how learning
methods and traditional HPC methods can be coupled together.
A primary driver of such coupling is the promise that Machine
Learning (ML) will give major performance improvements for
traditional HPC simulations. Motivated by this potential, the ML
around HPC class of integration is of particular significance. In
a related follow-up paper, we provided an initial taxonomy for
integrating learning around HPC methods. In this paper, which
is part of the Learning Everywhere series, we discuss “how”
learning methods and HPC simulations are being integrated
to enhance effective performance of computations. This paper
identifies several modes — substitution, assimilation, and control,
in which learning methods integrate with HPC simulations and
provide representative applications in each mode. This paper
discusses some open research questions and we hope will motivate
and clear the ground for MLaroundHPC benchmarks.

I. INTRODUCTION AND MOTIVATION

The convergence of HPC and learning methodologies pro-

vides a promising approach to major performance improve-

ments. Traditional HPC simulations are reaching the limits of

original progress. The end of Dennard scaling of transistor

power usage, and the end of Moores Law as originally

formulated has yielded fundamentally different processor ar-

chitectures. The architectures continue to evolve, resulting in

highly costly, if not damaging churn in scientific codes that

need to be finely tuned to extract the last iota of parallelism

and performance. This approach to high-performance scientific

computing is simply unsustainable.

In domain sciences such as biomolecular sciences, advances

in statistical algorithms and runtime systems have enabled

extreme scale ensemble based applications [1] to overcome

limitations of traditional monolithic simulations. However, in

spite of several orders of magnitude improvement in efficiency

from these adaptive ensemble algorithms, the complexity

of phase space and dynamics for modest physical systems,

require additional orders of magnitude improvements and per-

formance gains. Integrating traditional HPC approaches with

machine learning methods holds significant promise towards

overcoming these barriers.

It has always been necessary to improve the effectiveness of

simulations; however, its necessity and significance increases

drastically at large-scales. First, there is a need to enhance, if

not preserve computational efficiency at scale. Applying high-

performance computing capabilities at (exa-)scale, leads to the

possibility of greater scientific inefficiency in computational

campaigns. For example, greater computational capacity might

generate relatively greater correlations and lower sampling,

and thus less independent data and exploration. Algorithms,

methods and campaign strategies that worked at lower scales

are not necessarily suitable at greater scales. Second, tradi-

tional computational campaigns have not exploited the in-

termediate data from high-performance computing to their

fullest: computational campaigns have been conducted in a

static, if not ad hoc fashion based upon initial assumptions and

states. The implications of static computational campaigns will

be exacerbated at scale, and thus novel algorithms, methods

and campaign strategies are needed that employ sophisticated

learning to utilize and adapt to intermediate data products.

In many application domains, the integration of ML into

computations is a promising way to obtain large performance

gains, and presents an opportunity to jump a generation of

simulation enhancements. For example, one can view the use

of learned surrogates as a performance boost that can lead to

huge speedups, as calculation of a prediction from a trained

network can be many orders of magnitude faster than full

execution of the simulation [2], [3]. In addition to the use

of learning for advanced sampling as illustrated above, simple

examples are the use of a surrogate to represent a chemistry

potential, or a larger grain size to solve the diffusion equation

underlying cellular and tissue level simulations.

This paper explores opportunities at the interface between

high-performance simulations and machine learning. Specifi-

cally, it investigates how ML driven HPC simulations — which

based upon the taxonomy introduced in Ref. [2] is referred

to as the “ML around HPC” — can pervasively enhance

high-performance computational science. It attempts to answer

questions such as: How and where can ML effectively enhance

HPC simulations? When should ML methods substitute tradi-

tional simulations? Which ML methods are promising? What

are the general motifs or patterns of interaction between ML

and HPC?

In order to provide a quantitative metric by which to

measure and answer some of these questions, it is necessary

to distinguish between traditional performance measured by

operations per second or benchmark scores, from the effec-

tive performance that one gets by combining learning with

simulation which gives increased scientific performance — as
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determined by a suitable metric and measure, without changing

the traditional system characteristics.

In general, there are three types of performance that re-

quire distinction: the first, traditional system or application

performance, which is measured by typical scaling, utilization

or operations by second and benchmark scores. The second

is the improvement in the computational investigation of the

scientific process, as measured by time-to-solution (for a

given resource amount) or another scientific metric. The third

measure of performance, is the increase in either the learning

phase due to being trained with (physically meaningfully)

simulations, or the improvement in the simulation due to being

interaction with learning phase.

In cases where there is a (tight) coupling between the

learning and simulation components, the second measure of

performance is of paramount importance. It motivates the

notion of crossover point defined as the point in configuration

space at which the learning method is either more performant

— efficient (e.g., same quality of results produced with less

computing), or better (e.g., produces better results than possi-

ble via first principles / simulations), or faster than simulations

(e.g., speeding up or classic effective performance a la reduced

order modeling). Crossover points are dependent upon several

factors including the complexity of underlying model and

problem, availability of surrogate, the sensitivity to the ratio

of cost / value of data (e.g, is it better to have lots of cheap

and low quality data, or small amount of high quality data).

This paper is a follow on from Learning Everywhere [2]

and an accompaniment to the article on “Taxonomy of

MLaroundHPC” as part of the IEEE eScience 2019. In Section

II, we summarize the high-level organization of MLforHPC,

followed by an taxonomy of different MLaroundHPC ap-

plications. In Section III, we focus on MLaroundHPC —

investigating the different modes, mechanisms and functional

motivations of integration of ML around HPC. We also discuss

some canonical examples of the different modes of integration.

We will use insights gained from an investigation of these

issues to discuss open issues and research challenges in

cyberinfrastructure — algorithms & methods, software and

hardware, that must be addressed in the near and intermediate

term.

We thank the organizers of the IEEE eScience 2019 for

the opportunity to contribute to the Vision Track. We believe

eScience conference series has an important and distinguished

track record of bringing the data sciences – methods and

infrastructure, closer to traditional simulation based science.

We hope this article will help the eScience Steering Committee

to keep the conference series aligned with the thinking, needs

and future directions of the community to push the boundaries

of computational and data driven discovery.

II. LEARNING EVERYWHERE

We have identified [2] several important distinctly different

links between machine learning (ML) and HPC. We term

the full area MLandHPC and define two broad categories

[4]: HPCforML and MLforHPC. HPCforML uses HPC

to execute and enhance ML performance, or using HPC

simulations to train ML algorithms (theory guided machine

learning), which are then used to understand experimental

data or simulations. On the other hand MLforHPC uses ML

to enhance HPC applications and systems, where big data

comes from the computation and/or experimental sources that

are coupled to ML and/or HPC elements. MLforHPC can be

further subdivided as MLaroundHPC, MLControl, MLAutotun-

ingHPC, and MLafterHPC described in detail below.

The MLforHPC category covers all aspects of machine

learning interacting with computation typically implemented

as HPC. The sub-categories are useful but incomplete, and

definitely not always precise. There is a need to improve

the conceptual understanding of the different facets and di-

mensions of MLforHPC. We delineate the initial types of

MLforHPC we have identified:

A. MLaroundHPC

Using ML to learn from simulations and produce learned

surrogates for the simulations. This increases effective perfor-

mance for strong scaling where we keep the problem fixed

but run it faster or run the simulation for a longer time

interval such as that relevant for biological systems. It includes

SimulationTrainedML where the simulations are performed to

directly train an AI system rather than the AI system being

added to learn a simulation. Some common ways in which

MLaroundHPC is used, include:

1) MLaroundHPC: Learning Outputs from Inputs Sim-

ulations performed to directly train an AI system, rather than

AI system being added to learn a simulation [5], [6].

2) MLaroundHPC: Learning Simulation Behavior ML

learns behavior replacing detailed computations by ML surro-

gates [7], [8]

3) MLaroundHPC: Faster and Accurate PDE Solutions

Efficient numerical solution of PDEs is one of the most

costly computations in many simulations, and solving high

dimensional PDEs such as the diffusion equation has been

notoriously difficult. Recent ML accelerated algorithms [8]

for solving high-dimensional nonlinear PDEs are effective for

a wide variety of problems, in terms of both accuracy and

speed. These algorithms [9] approximate the solution high-

dimensional PDEs such as the diffusion equation using a

“Deep Galerkin Method (DGM)”, and train their network on

batches of randomly sampled time and space points. These

new AI accelerated approaches [10], [11] open up a host of

possibilities in materials, physics and cosmology, and scientific

computing more generally.

4) MLaroundHPC: New Approach to Multi-Scale Mod-

eling Effective potential is an analytic, quasi-emperical or

quasi-phenomological potential that combines multiple, per-

haps opposing, effects into a single potential. For example,

we have a model specified at a microscopic scale and we

define a coarse graining to a different scale with macroscopic

entities defined to interact with effective dynamics specified in

some fashion such as an effective potential or effective inter-

action graph. Machine learning is ideally suited for defining



effective potentials and order parameter dynamics, and shows

significant promise to deliver orders of magnitude performance

increases over traditional coarse-graining and order parameter

approaches. See well established methods [12]–[17]

B. MLControl

Two representative scenarios are:

1) Experiment Control Using simulations (possibly with

HPC) in control of experiments and in objective driven com-

putational campaigns [18]. Here the simulation surrogates are

very valuable to allow real-time predictions. Examples about:

Material Science [19]–[21], Fusion [22], Nano [23]

2) Experiment Design A big challenge is the uncertainty

in the precise model structures and parameters. Model-based

design of experiments (MBDOE) assists in the planning of

highly effective and efficient experiments – it capitalizes on

the uncertainty in the models to investigate how to perturb

the real system to maximize the information obtained from

experiments. MBDOE with new ML assistance [24] identifies

the optimal conditions for stimuli and measurements that

yield the most information about the system given practical

limitations on realistic experiments.

C. MLAutoTuning

Captures the scenario where ML is used to efficiently con-

figure the HPC computations. MLAutoTuning can be applied

at multiple distinct points, and can be used for a range of

tuning and optimization objectives. For example: (i) mix of

performance and quality of results using parameters provided

by learning network [4], [25]–[28]; (ii) choose the best set

of “computation defining parameters” to achieve some goal

such as providing the most efficient training set with defining

parameters spread well over the relevant phase space [29],

[30]; (iii) tuning model parameters to optimize model outputs

to available empirical data [31]–[34].

D. MLafterHPC

ML analyzing results of HPC as in trajectory analysis and

structure identification in biomolecular simulations [35].

III. MLAROUNDHPC CLASSIFICATION AND EXEMPLARS

The interaction between models and simulation data occurs

in two directions: (i) The problem of how to use multi-

modal data to inform complex models in the presence of

uncertainty, and (ii) How, where, when, and from which source

to acquire simulation data to optimally inform models with

respect to a particular goal or goals is fundamentally an

optimal experimental design problem. Creating the conceptual

and technological framework in which models optimally learn

from data and data acquisition is optimally guided by models

presents significant challenges systems of interest are complex,

multiscale, strongly interacting/correlated, and uncertain.

It is important to separate the modes and mechanics of

how learning is integrated with HPC simulations, from the

functional motivations of doing so. Based upon an extensive

analysis of the current state of the field, the three primary

modes and mechanisms for integrating learning with HPC

simulations are— substitution, assimilation and control. Each

represents a broad range of subcategories and possibilities,

which no doubt will change rapidly as the state of theory and

practice evolves.

Independent of the modes and mechanisms of integration,

we find that there are three functional drivers of the integration:

1) Improving Simulations: The essence of this driver is

to use learning to configure and select simulations effectively.

There are several approaches to learning the configuration

of physical system being studied, ranging from improving

the learning models using simulation data dynamically, to

using models to determine simulation configurations and/or

parameters, as well as possibly learn configurations of system

and software for improved performance on particular hardware

and input parameters [1].

2) Learn Structure, Theory and Model for Simulation:

Here the simulations are used to gradually improve the model

or theory, which are in turn used to improve simulations in

some fashion (e.g., as per previous point). As simulations

proceed the model learns the structure or even underlying

principles, and is gradually refined either by coarse-graining

or using better approximations to the effective potentials [36].

3) Learn to make Surrogates: An increasingly common

and important driver is the use of ML (which are often deep

networks) to learn the function representing the output of the

simulation. Such learned representations also often referred to

as surrogates, can be used to determine either the parameters

or the effective “fields” [7], [8].

It is no surprise that the first driver is the most widely

investigated and applied; the rate of progress in the second

and third drivers is rapid and impressive. We now discuss

the primary modes and mechanisms in which the above three

scenarios are often implemented.

A. Substitution

In this mode, a surrogate model is used to substitute an

essential element of the original simulation (method). The

surrogate model is used to create multi-scale or coarse grained

surrogate modeling, which could either learn the structure or

theory of original simulation.

Example: Roitberg et al. [15] trained a network on using

fine grained Quantum Mechanical DFT calculations. The

resulting ANI-1 model was shown to be chemically accurate,

transferrable, with a performance similar to a classical force

field, thus enabling ab-initio molecular dynamics at a fraction

of the cost of “true” DFT ab-initio simulations. Extensions of

their work with an active learning (AL) approach demonstrated

that proteins in an explicit water environment can be simulated

with a NN potential at DFT accuracy [17].

In general the focus has been on achieving DFT-level

accuracy because NN potentials are not cheaper to evaluate

than most classical empirical potentials. However, replacing

solvent-solvent and solvent-solute interactions, which typically

make up 80%-90% of the computational effort in a classical

all-atom, explicit solvent simulation, with a NN potential



promises large performance gains at a fraction of the cost

of traditional implicit solvent models and with an accuracy

comparable to the explicit simulations [37].

B. Assimilation

In this mode, data from simulations, offline external con-

straints, or real-time experiments are integrated into physics-

based models, which are then assimilated into traditional

simulations. The canonical examples are improving the Hamil-

tonian or Force Fields, or in classical data assimilation studies

such as in climate and weather prediction, where in data

assimilation involves continuous integration of time dependent

simulations with observations to correct the model, which are

combined and updated with traditional simulation model.

Example: Current climate models are too coarse to re-

solve many of the atmospheres most important processes.

Traditionally, these subgrid processes are heuristically approx-

imated in so-called parameterizations. However, imperfections

in these parameterizations, especially for clouds, have impeded

progress toward more accurate climate predictions for decades.

Cloud resolving models alleviate many of the gravest issues of

their coarse counterparts but will remain too computationally

demanding for climate change predictions for the foreseeable

future. In Ref. [38], a deep neural network is trained to

represent all atmospheric subgrid processes in a climate model

by learning from a multiscale model in which convection is

treated explicitly. The trained neural network then replaces

the traditional subgrid parameterizations in a global general

circulation model in which it freely interacts with the resolved

dynamics and the surface-flux scheme. The prognostic multi-

year simulations are stable and closely reproduce not only the

mean climate of the cloud-resolving simulation but also key

aspects of variability, including precipitation extremes and the

equatorial wave spectrum. Furthermore, the neural network

approximately conserves energy despite not being explicitly

instructed to. Ref. [38] uses deep learning to leverage the

power of short-term cloud-resolving simulations for climate

modeling; the approach is fast and accurate, thereby showing

the potential of machine-learningbased approaches to climate

model development.

C. Control and Adaptive Execution

In this mode, the simulation (or ensemble of simulations)

are controlled towards important and interesting parts of

simulation phase space. Sometimes this involves determining

the parameters of the next stage (iteration) of simulations

based upon intermediate data. Sometimes the entire campaign

can be adaptively steered towards an objective, which in turn

could involve getting better data via active learning based upon

an objective function, or use a policy-based reinforcement

learning approach to steer the computational campaign.

Example: A fundamental problem that currently pervades

diverse areas of science and engineering is the need to design

expensive computational campaigns (experiments) that are

robust in the presence of substantial uncertainty. A particular

interest lies in effectively achieving specific objectives for

systems that cannot be completely identified. For example,

there may be big data but the data size may still pale in

comparison with the complexity of the system, or the available

data may be scarce due to the prohibitive cost of experiments.

A framework for the objective driven experiment design

(ODED) will support the integration of scientific prior knowl-

edge on the system with data generated via simulations,

quantify the uncertainty relative to the objective, and design

optimal experiments that can reduce the uncertainty and

thereby directly contribute to the attainment of the objective.

IV. MLAROUNDHPC CYBERINFRASTRUCTURE

We distill the analysis and description of MLAroundHPC

modes and examples into three cyberinfrastructure categories:

(i) algorthms, benchmarks and methods; (ii) system software

and runtime, and (iii) hardware.

A. Algorithms, Benchmarks and Methods

The methodologies by which experiments inform theory,

and theory guides experiments, remain ad hoc, particularly

when the physical systems under study are multiscale, large-

scale, and complex. Off-the-shelf machine learning methods

are not the answer; these methods have been successful in

problems for which massive amounts of data are available and

for which a predictive capability does not rely upon the con-

straints of physical laws. The need to address this fundamental

problem has become urgent, as computational campaigns at

pre-exascale, and soon exascale, will entail models that span

wider ranges of scales and represent richer interacting physics.

Open issues and research questions include:

1) Does the crossover point — at which prediction based

approaches are better than traditional HPC simulations, sug-

gest or motivate a need to redesign some simulation algorithms

so that MLforHPC effective? Similarly, if HPC simulations

are going to serve as important sources of data generation, is

there an opportunity to devise novel learning algorithms and

methods so as to support more effective MLforHPC?

2) Simulations are simply 4D time-series data! Thus, there

ought to be important analogies between time series ML

research and MLforHPC.

3) Importance of canonical problems: Understanding of

which learning methods work, why and for which problems.

How do we develop benchmarks to highlight different appli-

cation and system features? By extension, how do we develop

proxy apps to represent the applications?

4) Understanding Performance: What are the performance

metrics that represent the integrated working of learning and

simulations? What is the comparison in scientific discovery

between the large increase in performance possible with true

exascale machines and the exascale (or zettascale) effective

performance possible with MLforHPC? How does the inter-

play of raw performance and effective performance influence

the mapping of applications to compute systems?



B. System Software and ML-HPC Runtime Systems:

MLforHPC needs to support large scale simulations and

learning, and their integrated and concurrent execution. The

combined workload — distinct ML and HPC computation

tasks, will need to be run flexibly. For example, sometime

the HPC simulation will be used to generate training data

and then run ML; sometimes the ML will be responsible

for inference as HPC simulations are generating data. On

occasions, HPC simulations will run after Learning (or vice

versa), but sometimes they will be intertwined in a single job.

Thus, it is imperative to understand the general control and

coupling between Learning elements (L), HPC Simulation (S).

In many cases a third general component — experiments or

observations (E) may also be needed.

There are several dimensions to characterize the coupling

between these components, including temporal and data vol-

umes. The former will determine the type of algorithms and

learning approaches taken; the latter software scaling and

performance requirements. Furthermore, the specific type of

coupling could yield steering or control. (Component X is

said to steer component Y, when X provides the relevant

information to determine the execution of Y. Whether Y

accepts or not, is determined by additional considerations such

as objective, policy, etc. Steering is a necessary condition for

control; not all steering represents control).

Different scenarios for coupling information and control

flow, between different elements E, L and S. Scenario III cov-

ers two possibilities: learning element controls experimental

data source, or Simulation controls experimental data source.

The logical coupling disregards the physical location of the

elements, e.g., E could be on an Edge device or a HPC cluster.

In order to support the real-time application requirements, it

is important to achieve near real-time training and prediction

to control or steer S or E. For example, build low dimensional

representation of states from trajectory analysis. The strong

scaling of just L is inadequate, and scaling properties of

integrated L + S elements are needed for MLaroundHPC

applications. A preliminary analysis suggests that this can be

achieved by adapting the ratio of the cardinality of L, S and E,

viz., NL (the number of learning) to NS (number of simulation

elements) being time-dependent . These translate into support

for coordinated execution of a large number of concurrent

and heterogeneous simulations as well as enabling adaptive

execution and resource partitioning between simulation and

learning elements.

Additional considerations that a runtime system to support

the concurrent execution of ML and HPC elements include: Is

a single run-time system possible that will be able to support

the different classes of MLforHPC, varied data rates (from

trivial to O(100)GB/s) and latency tolerance (from < O(1)s to

O(100)s)? Can a single runtime system support the full range

of fine-grained to coarse-grained coupling between learning

and simulation components? What are the considerations and

constraints that inform performance guarantees and workload

balancing (e.g., dynamically varying the number of learning

elements and simulation elements)?

C. Hardware and Platform Configuration

What fraction of time (resource) is spent in ML component

and how does this change with scale? What is the frequency

and extent of coupling between learning and simulations?

Insight into the above questions could influence optimal archi-

tecture, e.g., when the ratio of learning (training and inference)

is small, a classic supercomputing architecture linked to a

separate learning system might be acceptable if not optimal.

Conversely, when the ratio is large, a tightly integrated system

supercomputer might be more suitable? What are the quan-

titative determinants of an optimal platform? How should a

balanced system across a range of MLaroundHPC applications

be designed: fixed dollars for learning vs simulations, or a

dollar distribution that tracks the relative computing intensity?

Or one that optimizes inference phase versus training phase?

Should future HPC platforms be designed to support both

phases, or is platform specialization for training and inference

most effective?

Hardware and platform considerations that arise from un-

certainty in technology roadmap and pricing include:

1) Role and importance of heterogeneous accelerators, es-

pecially as a new generation of ML accelerators is developed

that may not be in simulations (currently GPU accelerators

often useful in both ML and simulation); (ii) As we expect

time series in data assimilation likely to use RNNs and

the importance and pervasiveness of RNN to increase, when

should Recurrent neural networks RNN (commonly used in

learning sequences) need different accelerators from convolu-

tional neural nets)?

2) Requirements also suggest the need for fast I/O and

internode communication to enable ML and Computation to

run together and exchange information with each other and

with sources of streaming data. It is not evident how large and

fast disks should be organized, but disks on each node seem

required to hold data to be exchanged between simulation and

ML components of a job and for accumulating training data

and NN weights.

3) Need ML optimization and Simulation optimization

spread through machine and fast ways for ML and simulation

to exchange data. Given the emergence of cloudlets (aka fog

computing), there is a need to support HPC/Cloud, Fog and

Edge platforms, as well as their integration.

V. DISCUSSION AND CONCLUSION

The state of HPC in 2020 presents challenges and oppor-

tunities. On the one hand, HPC methods and platforms are

becoming pervasive and necessary for scientific advances. On

the other, traditional HPC computations are reaching various

limits. The implications of hardware and architectural trends

are well known: the end of Dennard scaling and of Moore’s

Law as originally formulated, is yielding very different pro-

cessor architectures; achieving performance gains is becoming

harder, while requiring significant, if not unsustainable soft-

ware investment and algorithmic reformulation.



The HPC community has — somewhat naively, assumed

that as long as performance gains from hardware are possible,

traditional simulation based methods will continue to provide

increased scientific insight. However, without careful exam-

ination of the scientific efficiency or effective performance

of existing simulation and first principles methods, it is not

obvious that traditional simulations represent the optimal ap-

proach at exascale and beyond, and on subsequent generation

of supercomputers. In other words, we may be reaching limits

of both hardware and methodological performance gains.

There is a need for major functionality and performance

increases that are independent of changes in hardware. In

traditional HPC the prevailing orthodoxy “Faster is Better”

or what is worse, the conflation of “bigger” with “better”

has driven the quest for hierarchical parallelism to speeding

up single units of works. Relinquishing the orthodoxy of

hierarchical parallelism as the primary route to performance

is necessary. In fact, there is a need to carefully reconsider

discredited approaches, while adopting the new paradigms.

Enter “Learning Everywhere” — the essential idea of which,

is that by embedding learning methods and approaches in all

aspects of the system configuration and application execution,

the effective performance can be dramatically improved.

There is a regime where learning based predictive

approaches are going to outperform first-principles and

simulation-based approaches. The exact sweet spot or

crossover point is non-trivial to determine: it will be appli-

cation specific, depend upon complexity of learned models,

volume and cost of data, as well as effectiveness and cost

of simulations, inter alia. However, the underlying idea that

surrogate learned models will represent effective performance

improvements over traditional approaches, is a powerful one,

and is an important generalization of the multi-scale, coarse-

grained approaches used in many physical sciences.

Learning Everywhere is one specific example of the paradig-

matic shift in scientific computing that will be needed at

extremes scales. Statistical computing, which incorporates

elements of approximate computing, uncertainty minimization

and other objective driven dynamic computational campaigns

will substitute predefined “static” computational campaigns.

Nowhere is the impact of this likely to be greater than in

those domains which require the assimilation of streaming and

dynamic data, or computational campaigns that are statistical

in nature and driven towards optimality or objectives. These

methodological innovations will heighten the importance of

adaptive execution of ensembles of heterogeneous models, and

will require novel scalable middleware systems.

Looking Ahead: The pace of innovation in learning for

science is intense and rapid. No surprises it is difficult to

predict the exact trajectory or state for anything but the

immediate future. It is safe to expect major impact of ML

on science in essentially all areas and in multiple modes:

many traditional physics applications including simulations

and Monte Carlo methods are being reformulated using learn-

ing approaches [39].

Integrating learning with HPC provides an opportunity to

enhance methods and for some domains such as molecular

science to jump ahead. For other field, such as high-energy

physics, that did not invest and anticipate the disruptions

arising from end of Dennard and Moore’s law resulting in

the explosion of heterogeneous computing and accelerators,

it presents an important opportunity to simply by-pass and

leapfrog a generation of simulation enhancements!

Impressive, if not inspiring papers that apply learning to

societally important problems such as climate change [40] are

valuable harbingers. Molecular sciences has been an enthusi-

astic adopter of learning methods: Machine Learning used in

materials simulation to aid the design of new materials and to

understand properties [41]; predict reaction coordinates [42];

and enhanced sampling [43] and dynamics on long time-

scales [44]. Even as the use of ML in science changes, im-

portant advances in the way ML is formulated are happening.

For example, Ref. [45] shows how to scale CNNs as problems

scale — which will be crucial in using NN for complex physics

systems. In fact, Ref. [46] uses ODEs to build a continuous

neural network rather than one built from a set of layers.

Enhancements to ML will be necessary to deliver on new

and promising uses of learning in science, such as the ap-

plication of DL for time series — geospatial and simulation

trajecctory data (which are simply 4D time series). These prob-

lems can be formulated as graphs spatially (with convolutional

NNs) and as sequences (with recurrent NNs) in time. Many

HPC Cloud-Edge systems will provide such time series, and

also reinforce the need for real-time response which raises

difficult trade-offs between performance and functionality and

highlights the role of HPC [47]. In general, the pace of

methodological innovation and application requirements will

have important implications for the cyberinfrastructure devel-

oped and deployed for the science of tomorrow.
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