
Apache Airavata Sharing Service
A Tool for Enabling User Collaboration in Science Gateways

Supun Nakandala
Science Gateways Research Center

Indiana University
Bloomington, IN, USA

snakanda@iu.edu

Suresh Marru
Science Gateways Research Center

Indiana University
Bloomington, IN, USA

smarru@iu.edu

Marlon Piece
Science Gateways Research Center

Indiana University
Bloomington, IN, USA

marpierc@iu.edu

Sudhakar Pamidighantam
Science Gateways Research Center

Indiana University
Bloomington, IN, USA

pamidigs@iu.edu

Kenneth Yoshimoto
San Diego Supercomputer Center
University of California, San Diego

La Jolla, CA, USA
kenneth@sdsc.edu

Terri Schwartz
San Diego Supercomputer Center
University of California, San Diego

La Jolla, CA, USA
terri@sdsc.edu

Subhashini Sivagnanam
San Diego Supercomputer Center
University of California, San Diego

La Jolla, CA, USA
sivagnan@sdsc.edu

Amit Majumdar
San Diego Supercomputer Center
University of California, San Diego

La Jolla, CA, USA
majumdar@sdsc.edu

Mark A. Miller
San Diego Supercomputer Center
University of California, San Diego

La Jolla, CA, USA
mmiller@sdsc.edu

ABSTRACT
Science Gateways provide user environments and a set of
supporting services that help researchers make effective and
enhanced use of a diverse set of computing, storage, and
related resources. Gateways provide the services and tools
users require to enable their scientific exploration, which in-
cludes tasks such as running computer simulations or per-
forming data analysis. Historically gateways have been con-
structed to support the workflow of individual users, but
collaboration between users has become an increasingly im-
portant part of the discovery process. This trend has created
a driving need for gateways to support data sharing between
users. For example, a chemistry research group may want to
run simulations collaboratively, analyze experimental data
or tune parameter studies based on simulation output gen-
erated by peers, whether as a default capability, or through
explicit creation of sharing privileges. As another example,
students in a classroom setting may be required to share
their simulation output or data analysis results with the in-
structor. However most existing gateways (including the pop-
ularly used XSEDE gateways SEAGrid, Ultrascan, CIPRES,
and NSG), do not support direct data sharing, so users have

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
PEARC17, New Orleans, LA, USA
© 2017 ACM. 978-1-4503-5272-7/17/07. . . $15.00
DOI: http://dx.doi.org/10.1145/3093338.3093359

to handle these collaborations outside the gateway environ-
ment. Given the importance of collaboration in current scien-
tific practice, user collaboration should be a prime consider-
ation in building science gateways. In this work, we present
design considerations and implementation of a generic model
that can be used to describe and handle a diverse set of user
collaboration use cases that arise in gateways, based on gen-
eral requirements gathered from the SEAGrid, CIPRES, and
NSG gateways. We then describe the integration of this shar-
ing service into these gateways. Though the model and the
system were tested and used in the context of Science Gate-
ways, the concepts are universally applicable to any domain,
and the service can support data sharing in a wide variety
of use cases.

CCS CONCEPTS
• General and reference → Design; • Human-centered com-
puting → Collaborative content creation; • Information sys-
tems → Computing platforms; • Software and its engineering
→ Open source model;

KEYWORDS
Apache Airavata, SciGaP, CIPRES, NSG, SEAGrid, Collab-
oration, Science Gateways, Groups, Sharing

1 INTRODUCTION
Science gateways are science-centric user environments and
supporting cyberinfrastructure that enable broader and more
effective use of scientific computing resources, applications,
and data [6]. Because gateways allow users to perform oper-
ations on high end resources, authentication and authoriza-
tion have long been cornerstones of gateway infrastructure
[9],[17]. Authenticated access also supports another hallmark

PEARC17, July 09-13, 2017, New Orleans, LA, USA
Supun Nakandala, Suresh Marru, Marlon Piece, Sudhakar Pamidighantam, Kenneth Yoshimoto, Terri Schwartz, Subhashini

Sivagnanam, Amit Majumdar, and Mark A. Miller

Use Case 1 Sharing and Revoking capabilities.
Use Case 2 Check Permission of a given Entity.
Use Case 3 Browse and Search within all accessible en-

tities for a given user.
Table 1: Gateway Use cases for Collaboration

of gateways: the collection of user interactions into compu-
tational experiments that the researcher can use to monitor
long running executions, retrieve results, and recall how spe-
cific results were achieved [7], [12], [13], [15].

Sharing results with colleagues and making certain results
publicly available is the outcome of research. This is an exam-
ple of user-driven authorization of something the user owns
(data and metadata) rather than service provider-driven au-
thorization of something the service provider owns (comput-
ing resources, licensed applications, etc). Despite the fun-
damental nature of sharing in research, this is not a first
class capability within many popular gateways. This paper
examines the requirements and provides an implementation
for user-directed sharing, which we apply to several popular
science gateways.

Our conceptual approach is based on group membership.
Computational experiments are grouped (or tagged) into one
or more organizational structures. In Apache Airavata, for
example, “projects” contain experiments. These entities are
by default privately owned by the creator. The extensions
are obvious: give other users and groups of users privileges
to read the contents of specific experiments and groups of
experiments. A subset group of these users may have ad-
ditional privileges to copy, modify and execute experiments
and groups of experiments. For even these simple cases, how-
ever, we know from common examples such as UNIX groups
that we must reason carefully about how to implement in-
herited permissions, the nature of ownership and its transfer,
and similar issues.

2 ENABLING COLLABORATIONS WITHIN
SCIENCE GATEWAYS USING GROUPS

Groups are a natural choice to implement the gateway col-
laboration requirements outlined above. Groups themselves
are just collections of entities. Entities can be users, data col-
lections (files, folders), resources (application software, hard-
ware resources, quality of service), experiments. Figure 1 pro-
vides a high level architectural overview to plug in group
management and sharing services to SEAGrid [12], CIPRES
[7] and NSG science gateways [15]. Section 6 summarizes the
collaboration requirements provided by Neuroscience Gate-
way User Community. We summarize the sharing usecases
from these gateways into 3 broad categories (Table 1).

Generic implementations of groups, and “groups as a ser-
vice” software exist as standalone tools and services and
are integrated with common identity management software.
LDAP Groups [16] and Grouper [2] are well known examples.
Grouper is a comprehensive group management software and

can be deployed at university scale to manage complicated
collections of users and other entities. Grouper can very well
be adapted to meet the gateway Use Cases 1 and 2. But de-
spite their power and flexibility in handling groups, the lack
of flexible querying makes it not a good match for gateway
Use Case 3.

The core of the gateway use cases is to enable “Brows-
ing and searching” within accessible data. As users perform
large number of computations, the sharable entities for a
given user grows large. An implied requirement for retrieving
shared results is to paginate the resultant entities. We could
potentially use Grouper like software for sharing needs, but
implementing the browse and search of artifacts will deviate
the systems for their intended usage. More over the Grouper
like solutions are designed to run at University scale and
assume dedicated personal resources to setup and operate.
Gateways require a much lighter weight solutions.

One other non-technical but pragmatic reason include gov-
ernance of the project itself. There are certainly other open
source alternative group management software. The distinc-
tion being a “open source” and being community managed
via a governance model are summarized in [11]. Our hypothe-
sis is that science gateway community require a light weight,
gateway use case focused and open governed open source
project to build key collaboration capabilities.

To address the limitations of existing generic group man-
agement software and to have the flexibility to implement
the above gateway collaboration use cases, we propose a re-
lational data model in which the relationship between groups,
permissions and resources is explicitly named and directed.
At the simplest conceptual level, this approach provides an
unambiguous representation of permissions on access to users’
projects and computational experiments. This is an impor-
tant design consideration given the security implications of
sharing results. It furthermore leads to a more efficient, if
specialized, implementation of queries.

3 PROPOSED SOLUTION
We identify the concept of Sharing as the cornerstone in de-
veloping a user collaboration system. Sharing is a ternary
relationship between three abstract concepts: “Actor”, “Arti-
fact” and “Permission” (see Figure 3). Our model is similar
to other resource level security models available in literature
[14]. An actor can be a single user, a group of users or even
a group of other groups. The concept of Artifact represents
any data entity in the gateway (such as a project, an experi-
ment or an output file) and the Permission captures the level
of access that each actor has on the artifact associated in the
sharing relationship. Sample sharing rule defined using this
model can be expressed as User1 has READ permission to
Experiment1. In our model, we assume all sharing rules are
explicitly defined; i.e no default behavior. To keep the model
simple, we also do not support sharing rules defined as nega-
tions, such as DISALLOW (User1 has READ permission to
Experiment1). When an Artifact is created, by default the
owner of the Artifact will be assigned with the OWNER

Apache Airavata Sharing Service PEARC17, July 09-13, 2017, New Orleans, LA, USA

Figure 1: High level architectural overview. SEAGrid Gateway is built over Apache Airavata for all data and execution
capabilities; CIPRES and NSG Gateways are built over Workbench Framework and are exploring use of Apache Airavata for
Data Sharing capabilities. The paper focuses on Sharing Service (green color box) and existing literature on Airavata discuss
other capabilities (blue colored boxes).

Figure 2: Relationship between the Actor, Permission, Arti-
fact and Sharing concepts.

permission. This grants the global level permission on that
particular Artifact. Next we look into each of these concepts
in more detail.

Actor: An Actor can either be a single user or a group of
users. A group will be owned by the creator of the group
and can have other users or groups as child members. Child
groups can in turn have other groups, which are owned by the
same owner, as child members. The implementation avoids
the creation of cyclic group memberships. A particular user
can be a member of a group via direct membership or via in-
direct membership; i.e., by being a member of another nested

group or both. Based on the use cases, the direct and indi-
rect membership can be enforced in different ways or need
not be distinguished. When representing an actor we select a
common metadata model that can represent individual user
information as well as group information such that it can
cater the usage requirements of the gateways.

Artifact: An artifact can be an arbitrary entity. A typical
gateways describe artifacts to be a user project, job or a in-
put/output file. In a more generic sense, an artifact can be
any item that needs to be shared or have its access controlled.
Artifacts can have hierarchical structures (i.e parent-child re-
lationships). This hierarchy enables sharing at different gran-
ularities. For example, a user may want to share a project
and all the nested child experiments and input/output files
implicitly, or share only the project content (i.e project level
metadata) without child entities. We do not allow Artifacts
to have cyclic dependencies in their parent-child hierarchies.
Similar to Actors, when representing Artifacts, we select a
common metadata model, which includes fields such as name,
description, created time, updated time, full text field and a
placeholder for a binary object which can contain all other
data.

Permission: Permission defines access types that an Actor
can have on an Artifact in a sharing relationship. For ex-
ample, User1 may have READ permission on Experiment1,
which will only grant access to view things in Experiment1.
Group1 may have WRITE permission on Experiment1 which
would allow a Group1 member to write/update the content
in Experiment1. Sometimes it is possible that one permission
may subsume the access rights defined by another permis-
sion. For instance the OWNER permission (granted to the
owner of an artifact) subsumes the access rights enforced
by READ and WRITE permissions, thus defined as a super
permission of both READ and WRITE permissions. A par-
ticular user may have READ permission either because the

PEARC17, July 09-13, 2017, New Orleans, LA, USA
Supun Nakandala, Suresh Marru, Marlon Piece, Sudhakar Pamidighantam, Kenneth Yoshimoto, Terri Schwartz, Subhashini

Sivagnanam, Amit Majumdar, and Mark A. Miller

Figure 3: Hypothetical user collaboration scenario. (a) Ar-
tifact hierarchy owned by User1 and (b) Group hierarchy
created by User1.

item is explicitly shared with READ permission or the user
has another permission (e.g. OWNER) which subsumes the
access rights of the READ permission. These kinds of rela-
tionships are captured in the form of a permission hierarchy.
Similar to Actors and Artifacts these hierarchies also cannot
have cyclic parent-child dependencies.

4 IMPLEMENTATION
To realize the science gateway use cases summarized in Ta-
ble 1, we implemented the architecture discussed above. The
relationships between entities guided us to select a relational
database engine. The choice of the Object-Relational Map-
ping enables the underlying databases such as Derby and
MySQL to be plugged in seamlessly to Apache Airavata. To
simplify the implementation, individual Users are treated a
special type of Group with a restriction to have one member.

Sample Scenario: We describe the sharing implementation
using a hypothetical sample scenario. Let’s say three users
would like to define three permission types (OWNER, READ
and WRITE), and collaborate on artifact types (PROJECT,
EXPERIMENT, and FILE). User1 owns one project (Proj
ect1) in which contain two experiments (Experiment 1 and
2) each with a file (File 1 and 2). User1 creates a group
(Group 1) two child members (User 2 and 3). We will now
walk through all 4 gateway use cases for this scenario.

Sharing and Revoking: Initially only User1 has access to
Project1 and all other nested artifacts (through the default
assignment of the OWNER permission). If User1 wants to
give READ permission to Project1 for User2, the lucid de-
sign facilities gateways to accomplish it in multiple ways.
The most basic approach would be to explicitly share Project1
with User2 with READ permission. This operation corre-
sponds to creating an entry in Sharing table which can be
represented as:

INSERT INTO SHARING(ACTOR, ARTIFACT, PERMISSION) VALUES(
User2, Project1, READ)

However this will allow User2 to READ Project1 and not
any of its nested artifacts. If User2 also needs to have READ

permission to all nested artifacts of Project1 we need to
define sharing rules for all the nested artifacts rooted at
Project1, either explicitly or implicitly. The implicit way to
handle this is to add an additional field in the Sharing rule to
capture this information. The explicit way to handle this is
to traverse through the Artifact subtree and create sharing
records for each nested Artifact. The two approaches can be
represented as follows:

INSERT INTO SHARING(ACTOR, ARTIFACT, PERMISSION, CASCADE)
VALUES(User2,Project1, READ, True)

Q := Queue()
Q.dequeue(Project1)
While NOT Q.empty()
X := Q.dequeue()
INSERT INTO SHARING(ACTOR, ARTIFACT, PERMISSION, CASCADE)

VALUES(User2, X, READ, True)
Q.enqueueAll(X.getChildren())

There are tradeoffs in choosing between these two ap-
proaches. The implicit approach has constant time complex-
ity at sharing time but requires complex and computation-
ally expensive retrieval operations at inference time (i.e Check
permission and Search operations). On the other hand, the
explicit approach has O(n) time complexity (n is the number
of artifacts in the subtree) and requires constant time com-
plexity at inference time (assuming constant time retrieval
using a database index). In a practical setting, most oper-
ations the sharing model should support will be inference
type operations. Hence in our model we have decided to use
the explicit approach.

To explain the need for CASCADE field, consider the fol-
lowing case. Assume that User1 has shared Project1 and all
its child Artifacts granting User2 READ permission. Later
User1 creates a new Experiment (Experiment 3) which is
nested under Project1. User2 should have READ access to
the new Experiment 3, even though it is created after Project1
was shared. To achieve this, Experiment 3 should inherit all
the Sharing rules from its parent that are cascadable at cre-
ation time. To determine whether a sharing rule is cascadable
we maintain a CASCADE field in the Sharing rule.

Parent := Experiment3.getParent()
SharingRules := SELECT * FROM SHARING WHERE SHARING.ARTIFACT

= Parent AND SHARING.CASCADE = True
For Rule in SharingRules
INSERT INTO SHARING(ACTOR, ARTIFACT, PERMISSION, CASCADE)

VALUES(Rule.ACTOR, Experiment3, Rule.PERMISSION, True
)

The model also provides the capability to revoke already
defined sharing rules. This operation corresponds to the dele-
tion of the specific Sharing rule. But some complications
may arise in the case of cascading sharing rules when mul-
tiple inheritance yields the same Permission. For example,
assume Experiment 1 and its child artifacts are shared with
User2 with READ permission. This allows User2 to READ
the File1. The corresponding entry in the Sharing can be
written as:

Apache Airavata Sharing Service PEARC17, July 09-13, 2017, New Orleans, LA, USA

INSERT INTO SHARING(ACTOR, ARTIFACT, PERMISSION, CASCADE)
VALUES(User2, File1, READ, True)

If User1 later decides to Share the Project1 and all its child
artifacts with User2 with READ permission, this Sharing
rule will also enable User2 to READ File1. But note that
the corresponding Sharing rule entry for Experiment1 and
File1 will be the same as in the previous case. This will either
duplicate the Sharing rule or would not make any changes,
based on the implementation. Later if User1 wants to revoke
the Sharing defined on Experiment1, all the Sharing rules
that were created as a result of that Sharing have to be
deleted as per the following operation.

Q := Queue()
Q.dequeue(Project1)
While NOT Q.empty()
X := Q.dequeue()
DELETE FROM SHARING WHERE SHARING.ACTOR = User2 AND

SHARING.PERMISSION = READ
Q.enqueueAll(X.getChildren())

This will end up having only one Sharing rule allowing
User2 to READ and Project1 and nothing else. Hence it
is important to capture the inheriting parent Artifact when
recording cascading Sharing rules and at the revocation time
deleting only the ones that correspond to the specific re-
voking parent Artifact. The modified Sharing operation on
Project1 will now look as follows.

Q := Queue()
Q.enqueue(Project1)
While NOT Q.empty()
X := Q.dequeue()
INSERT INTO SHARING(ACTOR, ARTIFACT, PERMISSION, CASCADE,

INHERITING_SUPER_PARENT) VALUES(User2, X, READ, True,
Project1)

Q.enqueueAll(X.getChildren())

Going back to our first scenario, granting User2 with READ
permission on Project1, we could have achieved this in two
other ways. One approach would be to use the Permission
type hierarchy and Share Project1 with a Super permission
of READ (e.g). An actor who has OWNER Permission on
an Artifact will also have READ Permission. The other ap-
proach would be to Share the Artifact with an Actor that
contains the User2. For example if Project1 is Shared with
Group1 with READ Permission, then User2 will also have
READ Permission on Project1 as a result of being a member
of Group1. Similar to handling nested hierarchies in Arti-
facts, the nested hierarchies in Permission types and Groups
can be handled either implicitly or explicitly. The implicit ap-
proach will record only the original Sharing rule and will de-
fer the computational heavy lifting to the inference time. On
the other hand, in the explicit approach, additional records
will be created to each nested element. For example when
Sharing with OWNER permission additional records will
be created to READ and WRITE permission. However we
found that most of the Permission Type and Group hier-
archies in our use cases are short and flat and always will

be of cascade type (e.g. when sharing with a group it is al-
ways implied that it is sharing with all the nested members).
Therefore the overhead of using the implicit approach is not
significant. Hence we decided to use the implicit approach
to handle Permission type and Group hierarchies.

Check Permissions: In our model, inference operations be-
come straightforward and less costly because we put most
of the computational heavy lifting on the sharing and re-
voking operations. The Check Permissions operation deter-
mines whether a specific Actor has a specific Permission to
a specific Artifact. For example, consider the case where we
want to determine whether User2 has READ Permission to
Project1. In our model, which implicitly captures nested as-
pects in Permissions and Groups, we need to first find all
the Permissions which subsume the READ permission and
all groups that have User2 as a member. After finding those,
Check Permissions can be easily executed as follows.

Groups := User2.getAllMemberGroups()
Groups := Groups U User2
Permissions := READ.getSuperPermissions()
Permissions := Permissions U READ
SELECT HasPermission as Count(*) > 0 FROM SHARING WHERE

SHARING.ACTOR IN Groups AND SHARING.PERMISSION IN
Permissions AND SHARING.ARTIFACT = Project1

Return HasPermission

Get all Accessible Actors: Sometimes it is useful to view a
list of Actors who have Permission to READ or WRITE an
Artifact. For example, the Owner of an Artifact may want to
review the current list of Actors before granting or revoking
sharing permissions. To get the list of Actors we create a
relational join between Actors and Sharing entities and then
use a filter operation to retrieve the list of Actors who have a
particular Permission to an Artifact. For example, the opera-
tion to find out the list of Actors who has READ permission
to Experiment 1 can be executed as follows:

Permissions := READ.getSuperPermissions()
Permissions := Permissions U READ
SELECT ACTOR AS A FROM SHARING JOIN ACTOR WHERE SHARING.

PERMISSION IN Permissions AND SHARING.ARTIFACT =
Experiment1

Return A

Search/Browse: In the search operation, the objective is
to retrieve a list of Artifacts that are accessible to a specific
Actor based on some permission criteria and that conforms
to a particular search criteria on Artifact properties. Browse
is special case of search with empty Artifact filter criteria. As
a practical requirement, when dealing with large return lists,
it is also important to handle pagination. As the objective
of this operation is to retrieve the list of Artifacts we do
a relational join between Artifact and Sharing entities and
then apply the filter criteria. In the current implementation,
the Artifact filter criteria can be applied on Artifact name,
description, owner, parent artifact (if exists), created and
updated times and the full text field. Some of the example
search/browse queries will be as follows:

PEARC17, July 09-13, 2017, New Orleans, LA, USA
Supun Nakandala, Suresh Marru, Marlon Piece, Sudhakar Pamidighantam, Kenneth Yoshimoto, Terri Schwartz, Subhashini

Sivagnanam, Amit Majumdar, and Mark A. Miller

• Browse without Artifact type constraint: e.g. Select
Artifacts where User2 has READ access.

• Browse with Artifact type constraint: e.g. Select Ar-
tifacts of type EXPERIMENT where User2 has RE
AD access.

• Search with Artifact filter criteria: e.g. Select first 10
Artifacts of type EXPERIMENT where User2 has R
EAD access and the Artifact name contains “Ethyl-
benzene” and Artifact created during last week.

The last search operation listed above can achieved as
follows:

Groups := User2.getAllMemberGroups()
Groups := Groups U User2
Permissions := READ.getSuperPermissions()
Permissions := Permissions U READ
SELECT ARTIFACT AS A FROM SHARING JOIN ARTIFACT WHERE

SHARING.ACTOR IN Groups AND SHARING.PERMISSION IN
Permissions AND ARTIFACT.TYPE = EXPERIMENT AND ARTIFACT
.NAME CONTAINS EthylBenzene AND ARTIFACT.CREATED_DATE
IN LAST_WEEK LIMIT 10 OFFSET 0

Return A

5 INTEGRATION WITH SEAGRID
SEAGrid provides a traditionally secure data model where
all the data has been considered to be proprietary and data
sharing occurs only outside the SEAGrid application. How-
ever, recently users have requested the data be made share-
able among collaborators to improve organization, post-pro
cessing and collaborative discovery. The discovery and shar-
ing of the data go hand in hand as the simulation data ac-
cumulates over time and data location and identity need to
be maintained to reuse the same in subsequent simulations.
Supporting data discovery by individual users and collabo-
rative processing of data requires both metadata generation
and data indexing. The original SEAGrid infrastructure pro-
vided a way to define key value pairs so users can manually
add to a metadata catalog for each experiment they set up,
along with a search engine to discover the tagged data and
products. However, users did not adopt this system, as it
required a disciplined addition of metadata tags.

Recently we eliminated the manual tagging operations by
implementing an automated parsing and indexing system.
This system generates metadata tags for output of some of
the applications used in the SEAGrid gateway [10]. The pars-
ing infrastructure created for the SEAGrid gateway provides
access and discovery of any data shared with the user, as it
becomes part of the searchable domain. Currently Additional
sharing infrastructure requires to define what is shared and
with whom and a way to collaboratively process data. This
is now available in terms of sharing at project level (multiple
experiments under a project) and also at individual experi-
ment level with read only or read and write capabilities. The
indexed data is maintained currently under separate data
portal which is being integrated into the regular SEAGrid
portal for a seamless access. In addition to the preprocessed

data, users will be able to define additional interfaces to ex-
tract and compare data using an interactive sessions. Toward
this end SEAGrid have prototyped integrating Jupyter note-
books in a GSOC project that can be integrated into Apache
Airavata gateway infrastructures to interact with data prod-
ucts with ready analysis functions available in Python [3].

The users have benefited from the job history organization
already available in the portal but were unable to exploit
the vast amount of past data from the community as there
was no infrastructure to share the data securely. SEAGrid
now working on providing a generic way to publish data to
community organizations such as Figshare or SeedMe.org,
but more controlled sharing for collaborative and coopera-
tive post-processing will require additional infrastructure to
define collaborating individuals or groups, modes of sharing,
and timeliness. Sharing of post-processing functions/applica-
tions along with the data and/or provenance details would
also be beneficial for reproducing data products as well ad-
ditional enhancement to the analysis if needed.

In addition to the data sharing requirements, SEAGrid
may have to restrict resources such as applications due to
accessibility to license, something that is being tested by a
PI or one based on a restricted hardware resource such as
campus/institutional resource. The group and sharing infras-
tructure will be used to support these modalities as well.

6 INTEGRATION WITH THE CIPRES
WORKBENCH FRAMEWORK

The CIPRES Workbench Framework [8] was created with
the assumption that each authenticated user was working
independently of all others, which is consistent with the
work paradigm of biological science when the software was
designed. The software at present does not support collabo-
ration or data sharing between individual accounts. However,
recent surveys show that users of the Neuroscience Gateway
(NSG) and the CIPRES Science Gateway, two highly ac-
cessed gateways built using the CIPRES Workbench frame-
work, have a strong interest in sharing data within their
workgroups, and with the public as well. Both user groups in-
dicate that data access and data sharing present a significant
challenge, and that users would appreciate a solution that
can be managed from within the Gateway interface. Two spe-
cific use cases highlighting the data sharing needs of typical
Workbench Framework users are listed below:

A geographically distributed, highly interdisciplinary neu-
roscience research group is interested in collaboration that
combines empirical results from magnetoencephalography (
MEG) experiments with detailed computational models of
neocortical circuitry to infer the mechanisms responsible for
generating cortical rhythmic activity. Experimental data is
collected from geographically distributed collaborators’ insti-
tutions, yet jointly all of them are developing a large-scale
model of thalamocortical circuitry with detailed neurons and
synaptic architectures and plan to run on supercomputers.
Model predictions will be validated and informed with si-
multaneous thalamic and cortical microelectrode recording

Apache Airavata Sharing Service PEARC17, July 09-13, 2017, New Orleans, LA, USA

Figure 4: Mock user interface listing sharing summary

data (that needs to be shared) obtained in the collaborators’
lab in other institutions in US and France [5].

EEGLAB [5] is a widely used software for processing ex-
perimental eletrophysiological (EEG) data by thousands of
cognitive neuroscientists worldwide. Researchers are now in-
terested in meta-analysis of source-resolved EEG measures
across studies. This will allow research results of individual
researchers/labs to be analyzed/compared (meta-analysis)
to gain deeper understanding of brain functions at a higher
level. To be able to do this researchers will need a mechanism,
within NSG, where they can make their data shareable such
as by tagging results that they want to share with other re-
searchers or make it public. This will require different level
of sharing capabilities. This will then allow other researchers
to perform meta-analysis of research results at a higher level
using computing power provided by NSG.

Based on user feedback and the use cases above, tools
for sharing data between accounts are a priority feature for
CIPRES Workbench users. Accordingly, we are integrating
the data sharing service with the CIPRES Workbench frame-
work. Our approach will take a somewhat different strat-
egy from the SEAGrid integration described above. For the
Workbench Framework, a separate group management server
will allow users to perform group and user management. This
will allow full access to all group/user management functions
in the Science Gateway Platform as a Service (SciGaP) shar-
ing service without requiring any User Interface development.
The CIPRES Workbench will retain an internal represen-
tation of Experiment configuration, so the shared Entities
will be project folders. Within the Workbench code, project
folder identifiers will be used to determine user access to
contained Data and Experiments (Tasks in workbench ter-
minology). Integration with the Experiment Catalog will not
be required.

In the implementation for CIPRES and NSG, users will
be able to access shared folders and control access to their
experiments and data through the browser interface of the
respective applications. Authenticated users can configure
sharing/display preferences for their account profile. Folders
(Artifacts) the user creates can be configured individually

Figure 5: Mock implementation to choose a selected user or
group to share a folder

Figure 6: Read only permissions of a shared folder alerts the
user to clone but not write into it

for sharing with Users or Groups. Figures 4, 5 and 6 illus-
trated the mocked interfaces of these features being built
over Apache Airavata’s Sharing Service. The new interface
will also provide users with the ability to check, set, and re-
voke sharing permissions on Artifacts they create. For data
shared with the user, a “shared data” folder will appear in
the user interface. Users can view shared Files, Experiments,
and Projects. In our initial implementation, read-only Arti-
facts can be cloned from the shared folder, and then can be
modified and resubmitted; the cloned jobs will be owned by
the submitting user.

PEARC17, July 09-13, 2017, New Orleans, LA, USA
Supun Nakandala, Suresh Marru, Marlon Piece, Sudhakar Pamidighantam, Kenneth Yoshimoto, Terri Schwartz, Subhashini

Sivagnanam, Amit Majumdar, and Mark A. Miller

7 RELATED WORK
Internet2’s Grouper [2] is an access management system that
is widely used in universities that can support most of the
required features in our proposed solution. Grouper provides
comprehensive and efficient group management functionali-
ties including rule and time based group membership defini-
tions and ability to define groups based on complex group
math operations (unions, intersections and differences) that
are generally beyond the simple group management require-
ments in gateways. Features in Grouper such roles, attributes,
and permissions can be used to implement our sharing model.
If implemented using Grouper, the system can easily sup-
port the sharing and revoking of Artifacts, check permission,
and get all accessible users operations. However the lack of
flexibility in the Grouper’s search/browse APIs hinders the
system in efficiently fulfilling the search/browse operations
required by the Gateways users. Search/Browse operations
are an important aspect for Gateways, as we have described.

SeedMe [4] is a cyberinfrastructure platform that enables
seamless sharing and visualization of computer simulation
outputs which runs on HPC infrastructures through a web
based tool. It enables users to conveniently view and access
simulation outputs. Users can create collections of data items
and share publicly or with a specified group of users. In
the current implementation it has a single permission level,
which grants permission to shared users to view and com-
ment on the collection. Also it lacks the ability to define
reusable user groups and requires explicitly defining the list
of users every time when sharing a collection.

Globus Groups [1] can be used for access control by other
Globus services, and are especially useful for file sharing. In
the case of file sharing, file should first make it accessible as
a Globus shared endpoint by configuring a Globus connect
server. Then the owner of the file can share it with individual
Globus users or Globus groups either with READ or WRITE
permission. However it does not provide the functionality to
create arbitrary Artifacts and share it with others.

8 CONCLUSIONS
In this paper we have presented a generic software design for
the implementation of collaboration capabilities in Science
Gateways. As the adoption of gateways accelerates, collab-
oration amongst users becomes second nature and an ex-
pected feature. Such new capabilities not only multiply the
impact of these infrastructures but provide maximum use of
computational resources.

The key contribution of the paper is to foster user collab-
orations based on group memberships. The paper discusses
the underpinning architectural concepts, a relational data
model in which the relationship between groups, permissions
and resources are flexibly defined and managed. We further
discussed the implementation of these concepts to meet the
4 key gateway requirements of Sharing and Revoking; Check-
ing permissions; Browsing and Searching across all accessible
entities. We further discussed the integration with SEAGrid

gateway and evaluations by CIPRES and NSG Science Gate-
ways.

REFERENCES
[1] 2017. File Sharing With Globus. https://www.globus.org/data-

sharing. (2017). Accessed: 2017-03-13.
[2] 2017. Internet2 Grouper. http://www.internet2.edu/products-

services/trust-identity/grouper/. (2017). Accessed: 2017-03-13.
[3] 2017. XSEDE Gateways & Workflows Symposium Series.

https://www.xsede.org/gateways-symposium. (2017). Accessed:
2017-03-13.

[4] Amit Chourasia, Mona Wong-Barnum, and Michael L Norman.
2013. SeedMe preview: your results from disk to device. In Pro-
ceedings of the Conference on Extreme Science and Engineering
Discovery Environment: Gateway to Discovery. ACM, 35.

[5] Arnaud Delorme and Scott Makeig. 2004. EEGLAB: an open
source toolbox for analysis of single-trial EEG dynamics includ-
ing independent component analysis. Journal of neuroscience
methods 134, 1 (2004), 9–21.

[6] Katherine A Lawrence, Michael Zentner, Nancy Wilkins-Diehr,
Julie A Wernert, Marlon Pierce, Suresh Marru, and Scott
Michael. 2015. Science gateways today and tomorrow: positive
perspectives of nearly 5000 members of the research community.
Concurrency and Computation: Practice and Experience 27, 16
(2015), 4252–4268.

[7] Mark A Miller, Wayne Pfeiffer, and Terri Schwartz. 2010. Cre-
ating the CIPRES Science Gateway for inference of large phy-
logenetic trees. In Gateway Computing Environments Workshop
(GCE), 2010. Ieee, 1–8.

[8] Mark A Miller, Terri Schwartz, Paul Hoover, Kenneth Yoshi-
moto, Subhashini Sivagnanam, and Amit Majumdar. 2015. The
CIPRES workbench: a flexible framework for creating science
gateways. In Proceedings of the 2015 XSEDE Conference: Scien-
tific Advancements Enabled by Enhanced Cyberinfrastructure.
ACM, 39.

[9] S. Nakandala, H. Gunasinghe, S. Marru, and M. Pierce. 2016.
Apache Airavata security manager: Authentication and autho-
rization implementations for a multi-tenant escience framework.
In 2016 IEEE 12th International Conference on e-Science (e-
Science). 287–292. DOI:https://doi.org/10.1109/eScience.2016.
7870911

[10] Supun Nakandala, Sudhakar Pamidighantam, Shameera Yo-
dage, Nipurn Doshi, Eroma Abeysinghe, Chathuri Peli Kankana-
malage, Suresh Marru, and Marlon Pierce. 2016. Anatomy of
the SEAGrid Science Gateway. In Proceedings of the XSEDE16
Conference on Diversity, Big Data, and Science at Scale. ACM,
40.

[11] Siobhán O?Mahony. 2007. The governance of open source initia-
tives: what does it mean to be community managed? Journal of
Management & Governance 11, 2 (2007), 139–150.

[12] Sudhakar Pamidighantam, Supun Nakandala, Eroma
Abeysinghe, Chathuri Wimalasena, Shameera Rathnayaka
Yodage, Suresh Marru, and Marlon Pierce. 2016. Community
science exemplars in seagrid science gateway: Apache airavata
based implementation of advanced infrastructure. Procedia
Computer Science 80 (2016), 1927–1939.

[13] Marlon Pierce, Suresh Marru, Borries Demeler, Raminderjeet
Singh, and Gary Gorbet. 2014. The apache airavata applica-
tion programming interface: overview and evaluation with the
UltraScan science gateway. In Proceedings of the 9th Gateway
Computing Environments Workshop. IEEE Press, 25–29.

[14] Klaas Sikkel. 1997. A group-based authorization model for coop-
erative systems. In Proceedings of the Fifth European Conference
on Computer Supported Cooperative Work. Springer, 345–360.

[15] Subhashini Sivagnanam, Amit Majumdar, Kenneth Yoshimoto,
Vadim Astakhov, Anita Bandrowski, Maryann E Martone, and
Nicholas T Carnevale. 2013. Introducing the Neuroscience Gate-
way.. In IWSG.

[16] E Stokes, D Byrne, B Blakley, and P Behera. 2000. Access Con-
trol Requirements for LDAP. Technical Report.

[17] Von Welch, Jim Barlow, James Basney, Doru Marcusiu, and
Nancy Wilkins-Diehr. 2007. A AAAA model to support science
gateways with community accounts. Concurrency and Computa-
tion: Practice and Experience 19, 6 (2007), 893–904.

https://doi.org/10.1109/eScience.2016.7870911
https://doi.org/10.1109/eScience.2016.7870911

	Abstract
	1 Introduction
	2 Enabling collaborations within Science Gateways using Groups
	3 Proposed Solution
	4 Implementation
	5 Integration with SEAGrid
	6 Integration with the CIPRES Workbench Framework
	7 Related Work
	8 Conclusions
	References

