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ABSTRACT

Medical imaging, a key component in clinical diagnosis of and research on numerous medical conditions, is very
costly and can generate massive datasets. For instance, a single scanned subject produces hundreds of thousands
of images and millions of key-value metadata pairs that must be verified to ensure instrument and research
protocol compliance. Many projects lack funds to reacquire images if data quality issues are detected later. Data
quality assurance (QA) requires continuous involvement by all stakeholders and use of specific quality control
(QC) methods to identify data issues likely to require post-processing correction or real-time re-acquisition.
While many useful QC methods exist, they are often designed for specific use-cases with limited scope and
documentation, making integration with other setups difficult. We present the Scalable Quality Assurance
for Neuroimaging (SQAN), an open-source software suite developed by Indiana University for protocol quality
control and instrumental validation on medical imaging data. SQAN includes a comprehensive QC Engine
that ensures adherence to a research study’s protocol. A modern, intuitive web portal serves a wide range of
users including researchers, scanner technologists and data scientists, each of whom approach QC with unique
priorities, expertise, insights and expectations. Since Fall 2017, a fully operational SQAN instance has supported
50+ research projects, and has QC’d ∼3.5 million images and over 700 million metadata tags. SQAN is designed
to scale to any imaging center’s QC needs, and to extend beyond protocol QC toward image-level QC and
integration with pipeline and non-imaging database systems.
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1. INTRODUCTION

Medical imaging is integral to the clinical diagnosis and research of neurodegenerative diseases like Alzheimer’s
and Parkinson’s, as well as brain cancers [1,2,3]. Medical imaging techniques – including Magnetic Resonance
Imaging (MRI), Computed Tomography (CT), and Positron Emission Tomography (PET) – generate massive
datasets in the order of tens to even hundreds of thousands of images for a single subject, and studies include
hundreds or even thousands of subjects [4,5]. Further, imaging datasets from radiological scanners involve a
complex hierarchical structure. Each subject in a research study or clinical trial undergoes one or more scan-
sessions, each of which comprise several series of scans. Each of those series can contain thousands of images
with dozens of metadata tags in each image.

Medical imaging is expensive, and many projects lack funds to reacquire images if quality issues are detected
after the acquisition period. Quality assurance (QA) is a fundamental first step in guaranteeing reliable and
reproducible medical imaging research [6,7,8]. Importantly, QA requires continuous involvement by all stakehold-
ers, and the use of appropriate quality control (QC) methods that rapidly identify data in need of post-processing
correction or re-acquisition. Statistical inaccuracies from incorrect imaging parameters, low image quality, scan-
ner software updates [9], and motion artifacts [10] can all contribute to noise in data, leading to unreliable and
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non-reproducible results [6,7]. Further, because imaging data are often made available to the general scientific
community, results may also impact downstream research [5].

While many useful quality control (QC) methods exist, they are often limited in scope or require time-
consuming manual techniques [8,11,12]. Existing automated or semi-automated QC procedures tend to be
complex and lacking in documentation; they are generally designed for specific use-cases (i.e. scanner-specific,
image-specific), making integration with other setups difficult. Simple QC processes performed at some institu-
tions include the following: 1) verifying that a small number of metadata tags have a certain value or range of
values, via administrative configuration on imaging archival systems like XNAT or PACS [13, 14]; 2) verifying
the criteria in item 1 via custom shell scripts or the like; 3) relying on spot checks of random metadata tags for
a small sample of images belonging to a sample of subjects who were imaged for a particular research study.
Automated and flexible QC on imaging protocols that supplement existing imaging QA/QC methods represent
a big step forward in ensuring improved image quality; this is particularly critical for multi-center projects with
heterogeneous data. [11,12,15] Here we present the open-source Scalable Quality Assurance for Neuroimaging
(SQAN - pronounced “scan”) software suite for automated, highly customizable, web-based protocol quality
control and instrumental validation on medical imaging data.

1.1 Origins of SQAN: Project team background

In late 2015, the Indiana University Scalable Compute Archive (IU SCA) team and the Indianapolis-based Dept.
of Radiology and Imaging Sciences (RADY) imaging center began discussing the latter’s quality control needs
for research and clinical trial datasets collected over time. Most of the data were archived on a PACS based
setup while a subset of data were also archived on an XNAT instance. That coupled with the sheer number
of metadata tags that must be evaluated to determine protocol compliance led us to conclude that manual QC
checks of RADY datasets was implausible at scale. Existing QC methods we explored also required significant
overhead or unsustainable manual steps. We identified the need for a system that ingests metadata automatically
and applies quality control algorithms. We also determined the importance of a modern web portal user interface
in making such a system viable, irrespective of the computer skills (or lack thereof) of the user base. This was
important in the context of our RADY colleagues’ research clients and staff technologists, as well as in the
case of other medical centers who may adopt SQAN for their QC needs in the future. We recognized the need
for a wide array of skills and experience in designing and developing an automated-yet-flexible, managed QC
system for imaging protocols, including imaging operational expertise, computer science (software development
& deployment skills), and neuroscience domain expertise.

The RADY imaging center is one of the leading medical imaging facilities in the Midwestern US; it has
supported a large number of research studies and several clinical trials over the past 15 years. The center is
equipped with multiple Siemens scanners for MRI, PET, and CT imaging modalities, and employs 6 professional
technologists and dedicated information technology (IT) staff. The Scalable Compute Archive (SCA) - both
the name of a software suite and the team that manages it - builds, delivers, and operates customized web
user interfaces, secure data management systems, and integrated scientific software application pipelines. SCA
systems - supporting astronomy∗ [16, 17, 18, 19, 20], IU’s High Performance Computing (HPC) community at
large†, neuroscience‡, dynamic image visualization [21], electron microscopy (IU EMCenter portal operational
2013-18, retired in 2019 [22]) - are securely accessible from any web-enabled device at any time. Several SCA
projects have openly-available published papers§, and some of these projects are already open source. SCA team
members have backgrounds spanning a broad spectrum (including computer science, neuroscience, astronomy,
informatics, and Linux system administration), with 90+ person years of experience enabling scientific research
at IU. Together, we deduced that the two teams possessed the skills necessary to collaborate successfully on
designing and developing an automated, flexible, managed QC system for imaging protocols. SQAN is the end

∗(a) ODI-PPA: portal.odi.iu.edu (b) GCS-SCA: gcs.sca.iu.edu (c) SpArc: sparc.sca.iu.edu (d) BDBS-SCA:
bdbs.sca.iu.edu/
†(a) HPC everywhere: hpceverywhere.iu.edu (b) ImageX dynamic image visualization: imagex.sca.iu.edu
‡(a) SQAN demo: sqan.sca.iu.edu (b) Brainlife.io: brainlife.io (c) Connectivity pipeline: github.com/IUSCA/

IUSM-connectivity-pipeline
§List of SCA publications: sca.iu.edu/publications
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product of these two teams investing ∼3500 person-hours on software development and ∼1500 person-hours on
collaborative design and testing.

Since Fall of 2017, a fully operational production SQAN service instance has supported the RADY imaging
center, providing QC for their research projects; it has QC’ed 3.5 million images and validated 700 million
metadata tags spanning MRI, CT, and PET modalities. In fall 2019, we transitioned the project from an
IU-internal project to an open-source project hosted on GitHub¶ with the longer-term goal of making it a self-
sustaining project supported by a vibrant community of developers and maintainers. SQAN is built on the
foundation of open-source software and platforms including GitHub [23], node.js [24], AngularJS [25], MongoDB
[26], Vue.js [27 and docker [28]), and can benefit any imaging center. Currently, Harvard Medical School/Brigham
and Women’s Hospital (BWH) and Dartmouth-Hitchcock Medical Center are evaluating SQAN for their protocol
compliance needs. A demo SQAN portal is available at https://sqan.sca.iu.edu.

We describe the technical design and architecture of SQAN in Section 2, including detailed design consider-
ations associated with various facets of the software suite. In Section 3, we describe the features offered by the
web portal, including usability considerations. We conclude this paper with a short summary of future goals we
envision pursuing.

2. SQAN DESIGN & ARCHITECTURE

In this section, we describe the design and architecture of the SQAN software suite. Before we begin, it is
worth expanding on the precise need for automated protocol QC, especially due to the the complex hierarchical
structure of the imaging data acquired by radiological scanners. Research projects (and clinical trials) are usually
assigned a unique identifier, referred to herein simply as research. Each subject in the research study undergoes
one or multiple scan-sessions, here referred to as exams. An exam comprises several series of scans (with changes
to scanner settings per series). Each of those series contains hundreds or thousands of images, and each of those
images, in turn, contains dozens of points of metadata. Figure 1 offers a graphical representation of the complex
structure of data produced by a single exam; a typical imaging center can run several thousand of such exams
each year, illustrating the scope of QC for protocol compliance.

Figure 1. An illustration of the complexity & volumes of imaging data produced from a single exam.

SQAN includes a versatile QC engine that ensures adherence to a research study’s protocol by comparing
pre-configured facets (metadata tag values) of each scan for individual subjects to a template (or expected
values). It ensures that all series of scans required across each modality (e.g., MRI, PET, CT) by a study’s
pre-defined protocol are present with the expected image counts, and that values match exactly, or within
a percentage threshold of the template or expected value. SQAN safely ignores keywords expected to differ

¶SQAN source code available at: https://github.com/IUSCA/SQAN
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between the template and subject exam (e.g., timestamps, subject demographics). Determining which keywords
should be checked, and the type and thresholds of the checks, requires significant engagement and feedback from
researchers, scanner technologists, and data scientists. We developed extensive measures to address the edge-
cases and quirks of the DICOM R©‖ imaging standard as implemented by multiple manufacturers and utilized
by researchers with a variety of goals. SQAN also features a modern web portal that is intuitive to a wide
range of users including researchers, scanner technologists, and data scientists, each of whom approach QC with
unique priorities, expertise, insights, and web portal expectations. It is worth noting that at this stage, the QC
performed by SQAN is evaluated over each image’s metadata, comprised by a key-value pair. The actual image
files are not involved in any process described herein. Henceforth, we will refer to an image’s metadata as an
image.

The SQAN software suite includes the following components:

1. A MongoDB database that reflects the hierarchical nature of the images being stored for QC.

2. An incoming application that pulls metadata tags (key-value pairs) off files on disk on demand, in batch,
or by querying an Orthanc receiver, and stores that metadata in a database.

3. A QC Engine that compares pre-specified metadata tags in every image in a subject’s scan to a specified
template (or expected values) based on predetermined QC criteria, and stores the results in a database.

4. A modern web portal that serves as a single point of access to data, templates, and QC results for a wide
user base spanning faculty members who lead research studies, imaging center staff, and research associates.

5. An Application Programming Interface (API) that liaises between the web portal and the other back-end
components including the database.

We describe these components in further detail below.

2.1 Data/metadata management

Research groups and medical imaging centers vary widely in the tools and techniques they use to acquire data.
There are several manufacturers of imaging hardware (e.g. Siemens, Phillips, GE), and the data archival systems
they feed may be a known entity such as XNAT or PACS, or perhaps custom solutions that simply create a
hierarchy of physical directory trees on a filesystem. SQAN is designed to plug into any of these setups with
no effort, or with, at worst, minimal effort. We describe the data access/transfer methods for ingestion that we
currently support in SQAN below.

2.1.1 Ingestion via automated filesystem scans

With some setups, the datasets coming off the scanner may simply be stored onto a server’s hard disk or a
network mounted filesystem, with a directory tree organizing files in a defined hierarchy. A simplified example:
a top level research directory which contains sub-directories for each subject ID, each subject directory contains
sub-directories for each exam, each exam directory contains sub-directories for individual series of scans, and each
of these series directories contain DICOM R© files. This filesystem must be made available to the SQAN instance,
either by copying data from the scanner server to the server running SQAN, or by exporting this filesystem via
a network share and mounting it on the server hosting SQAN.

2.1.2 On-demand, manual ingestion

In some cases, a user may need to manually ingest data into the system (e.g. previously-archived data or datasets
that don’t follow a strict hierarchy on disk). Assuming the filesystem is accessible, this can be accomplished via
the Linux command line on the host running the SQAN instance (or via a form within the portal - see Section
3.7.2). If data are ingested manually, the user or administrator performing the ingestion must also provide
contextual identifiers such as the research study, subject ID, etc. The data can be provided as a directory of
DICOM R© files or as a tarball (.tar) archive.

‖DICOM R© is the registered trademark of the National Electrical Manufacturers Association for its standards publi-
cations relating to digital communications of medical information.



2.1.3 Orthanc data receiver and metadata extraction used on the RADY SQAN instance

On the production RADY SQAN instance, the transfer of data from the imaging center is accomplished via a
local instance of the open-source Orthanc[29] DICOM R© image server (with an anonymizer service in between -
see Section 2.5.1 for details). This instance is run within a Docker container 28, as the SCA infrastructure runs
on CentOS Linux and not Orthanc’s native Debian Linux environment. This approach allows more granular
control over access to the Orthanc server’s network access and therefore greater security, while also enabling
more flexibility in deployment. In this Orthanc based setup, there is added bonus of the scanner technologist
(or whoever sends data) being able to mark a dataset as a gold-standard template for a specific research study
or an entire modality; the metadata tag values extracted from these template datasets can be used to perform
QC checks in subsequent stages.

We initially utilized an Orthanc Application Programming Interface (API) call to translate the DICOM R©
image headers into a Javascript Object Notation (JSON)-encoded set of key-value pairs; however, we found that
this method had several shortcomings, particularly when it came to private tags. Private tags are metadata keys
defined for a particular instrument and not present in the standard DICOM R© dictionary. To ensure that no
private tag information is lost, we extract and store a full dump of the image headers utilizing our own routines.

Figure 2. Process flow for extracting metadata from images and ingestion into SQAN.



2.1.4 Incoming metadata ingestion service

Irrespective of the data access/transfer method utilized by an imaging center, we have an Incoming service
written in Javascript (specifically, in node.js [24]) that helps with the Extraction, Transformation and Loading
(ETL) process 30. The Incoming service ingests metadata tags (key-value pairs) from DICOM R© files into a
MongoDB database [26]. As the images are ingested, a number of decisions are made and processes run (see
Figure 2). Additional keywords are added to the header to aid with QC processes, and some header keywords
are transformed or split (e.g., timestamps, subject IDs). Checks for duplicate images are made, and upstream
records (series/exam/research) are created, as needed, for new datasets. If the image has been designated as a
template by the sender, it is marked and separated to be used for later processing. Access controls are created
and applied based on the research identifier. When the insertion of the image record is complete, the incoming
application proceeds to the next one;

Figure 3. Current SQAN MongoDB schema

In setups involving an Orthanc receiver, this service has the additional capability to poll periodically for newly-
arrived data. When Orthanc returns a non-null response, the incoming service saves the returned metadata in
batches (in the case of our production RADY SQAN instance, of 1000) images to a location determined by the
research ID, subject ID, and the imaging modality. When a image record is successfully inserted, the Incoming
service instructs Orthanc to delete the local copy of the image from its records. When the current batch operation
is completed, the incoming service immediately requests another batch of images from Orthanc and continues



in that manner until an empty set is returned, at which point it resumes polling at a defined interval, typically
every few seconds.

2.2 MongoDB database structure

As noted above, the SQAN metadata tag/value pairs are stored in a MongoDB database. Unlike the strict
schemas of traditional database systems, MongoDB allows for much greater freedom when dealing with hetero-
geneous datasets and enables SQAN’s design goal of compatibility with a wide variety of instrumental sources.
The data structure itself reflects the hierarchical nature of the images being stored for QC. The research col-
lection has an entry for each unique modality–the group conducting the research, the instrument being used,
the location of the instrument, and any radiotracers used (typically for PET instruments). Each entry in the
exam collection corresponds to a single instance of a subject being scanned. Some exams are designated as
templates by the imaging center and used in later QC steps. Each exam consists of multiple series which use
different modes of scanner operation and data collection, and are stored in their own collection in the database.
Each series is made up of multiple images and the image collection contains details about each image, its QC
status and a complete audit trail (i.e., SQAN processing timestamps, user comments, QC audit information –
see Section 3.3 and Figure 6 for more detail). The metadata headers extracted from each image are stored in a
sub-document in each image entry. Figure 3 illustrates the database schema in full.

Figure 4. QC Engine process flow based on template datasets, used for RADY SQAN instance.



2.2.1 Metadata compression

During initial development and early production operations, we stored the entire metadata set for every image in
the database. It quickly became apparent that this approach was unsustainable as the database grew unwieldy
and unresponsive. In response, we went through a comprehensive code and data structure refactoring process.
We developed updated routines that allowed us to compress the stored metadata by an order of magnitude. We
accomplished this by recognizing that while each image contains dozens or even hundreds of keywords, only a few
of these differ from image to image in a single scan (series). Before ingesting an image, our incoming application
queries the database to check if there is a matching ”primary” image (from the same series) for the one being
processed. If there is no existing primary (i.e., this is the first image ingested from this series), then the image
being processed is designated as the primary and stored in full. If a primary is found, then a differential analysis
is performed on every metadata keyword and only those that differ from the primary are retained for insertion
into the database.

2.3 SQAN QC Engine

After a dataset has been fully ingested, the SQAN QC Engine applies QC processes identified as being appropriate
for that dataset based on a matching template or criteria specific to the research study, modality and exam
timeframe, depending on the deployed instance. In setups involving an Orthanc receiver, we had to handle an
additional limitation of Orthanc’s data transfer routines: there is no simple method to determine when a dataset
has fully arrived. We do not know, a priori, how many images comprise a given series. Moreover, images from
a radiological scan arrive in no particular order: while images pertaining to a given series are consecutively
numbered, they are ingested in random order; the “primary” defined above could be any image from the series.
We addressed this by introducing a delay so QC is only initiated on images if (a) they have no QC status,
and (b) no images belonging to that series have been ingested within the last N seconds (we set N=30 on our
production RADY SQAN instance). Networking issues and/or excessive queuing at the Orthanc sending server
or the anonymizer service can still result in dispersed datasets, so the arrival of additional images after QC has
been performed results in the QC status being reset.

Table 1. QC Operations by level.

Level QC Checks ∼# of times performed (per exam)

Metadata tag Consistent data type >1,000,000

Within thresholds (number)

Exact match (string)

Image Missing keywords >10,000

Extra keywords

Aggregates metadata QC

Series Missing Images >10-20

Extra images

Aggregates image QC

Exam Missing series 1

Extra series

Aggregates series QC

The QC Engine polls the database for any datasets (series) with no QC status set. Upon the return of
data, it performs QC operations hierarchically. The starting point of the QC is performed at the level of image
metadata. The compression process described above is reversed and the full header is decompressed and recreated
for every image; the decrease in database size and performance gains far out-shadow the minimal overhead in



this step. A matching template-series is identified for comparison, and the corresponding image in the template-
series matching the image to be QC’ed is retrieved. If the SQAN instance is template-less, then a template is
constructed based on QC criteria defined by the user. A check of each keyword is done according to the data
type of the keyword value. String values (e.g., software versions, scanner flags) typically require exact matches,
whereas numerical values (e.g., slice thickness, echo times) have a threshold value that can result in either a
warning or an error depending upon the severity of the deviation.

The QC Engine also knows which keywords are expected to vary between the template and a subject’s exam,
and can be safely ignored (e.g., patient demographics, timestamps, etc.) Additionally, different modalities (i.e.,
MRI, PT, or CT) have different sets of valid/invalid keywords, specialized handlers, and thresholds. Determining
which keywords should be QC’ed or ignored, which threshold values to use, and which data types were valid
for different keywords required extensive feedback from researchers, technologists, and data scientists, each of
whom had differing priorities and expectations. This feedback process is vital to the development of a robust
and reliable QC system, as false positives/negatives can poison results, making the system either overly sensitive
or blind to systemic issues.

After QC has been performed at the imaging-level, the QC Engine then runs a series-level QC validation.
This checks for missing images when compared to the template-series, and collates the QC state of each image
in the series. When each series in a single subject exam has been QCed, the exam undergoes a final QC check,
looking for missing (or extra) series when compared to the template-exam, and the QC states of each series in
the exam are aggregated. Statistics are calculated and a final QC state is assigned to the exam. At this point
every keyword in every image in every series of the exam has been validated and the QC process is complete.
This is repeated for every exam requiring QC. See Table 1 for a breakdown of the quantity of QC procedures at
each level and Figure 4 for an illustration of the QC process flow.

2.4 Web portal design including user experience/usability (UX) considerations

The SQAN web portal is written using the AngularJS client-side user interface framework [25], and is coupled
with an Application Programming Interface (API) also written in Javascript as a node.js [24] Express app. We
use the bootstrap and font-awesome javascript libraries [31, 32]to maintain look and feel across the portal. We
are currently transitioning the user interface to Vue.js [27]; see Section 4.1.1 for more details.

Many existing QC solutions (e.g., XNAT’s protocol check pipeline [33]) include useful QC algorithms but
pose several challenges. Typically, such solutions require a time-consuming setup process, and may not be fully
documented. Additionally, they are generally designed with a specific use-case in mind (i.e., specific scanner or
image protocols), which can make integration with a different environment difficult. Even if these obstacles are
overcome, common maintenance tasks (like altering QC check fields, adding templates, or updating parameter
thresholds) may require a system administrator to step in.

SQAN portal’s intuitive web interface offers significant usability improvements over many existing solutions,
and empowers users to customize QC criteria themselves. The portal design and development also benefited from
the significant engagement with researchers, scanner technologists, and data scientists that we had described
earlier. One of the guiding principles behind the portal design is that it must be flexible enough to enable both
researchers and technologists to perform adequate QA assessments.

As general protocol adherence is essential to both groups, it is thus the foremost goal of the system. SQAN
allows technologists to track down issues with the scanner that might otherwise go unnoticed. This empowers
technologists to be proactive in rescheduling scans for upcoming studies and avoid having to repeat data acquisi-
tions; this can save the imaging center thousands of dollars. SQAN can also save researchers and staff hundreds
of hours of data processing by identifying data that needs to be corrected or reacquired before it is included in any
analysis; importantly, it ensures that the data being analyzed (and possibly published) is accurate and reliable.
Researchers can also potentially use the data captured by the system to correct data during post-processing.
The system’s research summary feature, important to both researchers and technologists, allows users to identify
problematic series or subjects that are not conducive to imaging research. Identifying these situations can allow
researchers to allocate resources more effectively in the future. In Section 3, we describe the web portal’s features,
functionality and specific usability considerations.



2.5 Additional design considerations

In this section, we describe several other design considerations that we identified and addressed in order to
improve SQAN’s robustness and viability beyond our initial RADY production use-case. Some of these are
operational considerations aligned with modern service deployment best practices while others are more specific
to medical imaging.

2.5.1 Handling ePHI

Medical imaging data typically includes electronically protected health information (ePHI - e.g., patient name or
date of birth). In our early requirements-gathering phase, we determined that QC at the instrument and protocol
compliance level does not benefit from these elements of the data. Therefore, we introduced an anonymizer
software layer in between the RADY scanners producing/sending the data and our SQAN service stack, thus
ensuring that patient privacy is not compromised. After newly acquired scans are archived locally, they are
transmitted to a ClinicalTrialProcessor (CTP) [34] anonymization service. CTP strips identifiable ePHI out of
DICOM R© metadata. A sister technical support group at Indiana University operates a CTP service instance
for our RADY collaborators, thus allowing anonymized DICOM R© data to be sent to SQAN via Orthanc for QC
purposes. When SQAN retrieves an image from its local Orthanc server, it accesses only the image’s metadata.
While we have future plans to integrate QC procedures on the imaging data itself, at this time that data is
discarded and only the metadata is retained for QC processing.

2.5.2 Backup and Disaster Recovery

After the metadata are written into the database, a JSON-formatted dump of each image’s extracted headers is
stored to local disk in a directory structure that describes the research, patient, exam, and series that the image
came from. At regular intervals, these header dumps are collated, compressed, and sent to Indiana University’s
Scholarly Data Archive (SDA), a tape-based, distributed archival storage system. In the event of database
corruption or loss, the entire metadata archive can be restored by retrieval and reprocessing without requiring
mass data resends from the instrumental archives. The SQAN incoming application can be run in a recovery
mode where it extracts a tarball or scans a directory tree on disk and processes every JSON file found instead
of pulling them from the Orthanc instance.

In addition, the MongoDB content is backed up and archived on a rotating schedule. This includes not only
the image headers and the QC results, but also the portal’s user and access control tables, and information on
each research group.

2.5.3 Performance considerations

From the beginning, SQAN was developed with QC performance as a significant design factor. Here, we discuss
the reasoning behind and advantages of our choices for database (MongoDB) and runtime environment (node.js),
and demonstrate the speed, efficacy, and scalability of our QC procedures. As an example, within our currently
deployed production instance of SQAN there are >3.5 million images, and >700 million metadata key-value
pairs. Testing has shown that if the QC status is completely reset for the entire database, our QC procedures
can automatically process all existing records within just a few minutes. One of our design goals is for SQAN
to be capable of scaling to real-time multi-center operations and be able to keep pace with the QC needs of any
existing medical imaging operation.

Non-relational database: Our decision to utilize MongoDB as the repository of the imaging metadata
was driven by the flexibility offered by its design and structure. MongoDB is an open-source, high-performance,
industry-standard, document-driven database. In a traditional relational database (e.g., MySQL), a single record
is represented by a row in a table, and the columns of the table define what data can be stored in each row.
Relational databases are well-suited for homogeneous datasets with a small number of potential values. However,
our dataset is heterogeneous, as different manufacturers and research centers can customize the DICOM R© files
to create private ”tags” (key-value pairs) within the metadata. In addition, there are hundreds of potential tags
in each header, not all of which are utilized on each image. MongoDB’s design lets each document in a collection
include only those keys that are defined. Likewise, some QC records themselves vary greatly depending on
cascading QC results and statistics appropriate to a certain exam. QC records may also contain a technologist



or researcher comment, typically about the acceptability of a failed QC state (or, on rare occasions, the unac-
ceptability of a successful QC state). Finally, our decision was driven in part by our existing familiarity with
MongoDB from previous projects, and our ability to leverage existing codebases and frameworks.

node.js API: The decision to utilize MongoDB also helped to drive our choice of node.js as the back-end
runtime environment, commonly referred to as Application Programming Interface (API). MongoDB stores its
data in modified JSON structures; using a Javascript framework to access the database makes it straightforward
to store and retrieve database records without format changes. Utilizing a runtime-interpreted language sped up
the development process by allowing us to iterate quickly through our coding/deployment/testing cycles. As with
MongoDB, node.js is well-supported, open-source, freely available, and used across multiple industries. To access
the MongoDB instance from within our node.js applications, we made use of the mongoose.js [35] framework,
which provides schema support and helper functions for processing data and retrieving related records.

Batch processing all images in a series: Those unfamiliar with Javascript development should be aware
that it is, by nature, non-blocking and asynchronous. That is, unless steps are taken to prevent it, the interpreter
will call a function and proceed to the next line without waiting for the called function to return. There are
many advantages to this approach, including responsiveness and a reduced risk of computational bottlenecks,
but there are drawbacks. In particular, we noted that our QC procedures were running inefficiently due to this
asynchronous behavior. A set of images would be retrieved for QC, and the series-level QC would be performed
as each image completed. This ensured that the series-level QC was always accurate, but it essentially doubled
the time required to perform QC procedures on that set of images To avoid this we made use of the node.js
async [36] library, which allowed us to batch process all the images in a series and run the series-level QC a
single time. A similar approach was used in other parts of the incoming and QC systems that performed batch
processing, and the result was that the performance of the QC process was effectively tripled.

3. WEB PORTAL VIEWS & FEATURES

In this section, we describe SQAN’s intuitive web portal interface in detail, including how it is designed to
empower a wide spectrum of users and usability considerations. Our goal from the outset was to enable as many
functions from within the portal as possible so users never have to contact an administrator for basic operations.
Accurately and intuitively conveying the condition and status of large datasets is an ongoing challenge in the
field of user interface (UI) and user experience (UX) design and development. In designing our web portal, we
considered the hierarchical data structure across all medical imaging modalities. Typically, a research (study)
is defined by a group of subjects and an imaging protocol. The imaging protocol mandates what acquisition
series (i.e., a specific set of scanner parameter settings) are performed during an exam, in what order, and how
many images are acquired in each of those series. A subject can undergo one or more exams within a given
research study; therefore, a subject’s exam is expected to contain the acquisition series that are determined in
the research imaging protocol. Below, we describe each major web portal view, including specific usability (UX)
considerations that were factored into our design.

3.1 Exams view

Given the hierarchical nature of our datasets, we took a similar approach in developing the web portal through
which users (i.e., researchers, technologists, and administrators) would interact with the metadata, view the QC
statuses, and view any warnings or errors. Determining at a fundamental level how our system would be used
helped drive the design process. Researchers informed us that they were most concerned with the overall QC
status of each subject’s scan, so we designed the landing UI element to display the subject-level QC statuses,
where subjects are grouped by research and the subject QC statuses are summarized by color-bars indicating the
proportion of images identified with the different types of image-level QC states, such as pass, fail, no template,
etc. (see Figure 5). The user can request running the QC engine on a particular exam, for example if an updated
set of templates is available (or if an older template is more appropriate), or if a QC engine bug affecting a specific
dataset is fixed. These procedures are all available to authorized users via the web interface. Additionally, users
can request the creation of a template based on a subject’s exam if it is identified as an exceptional quality
dataset worthy of serving as a template. Both of these actions are stored and displayed, allowing us to keep track
of the history of changes for a particular dataset or its template.



Figure 5. SQAN screenshot: Exams view with additional pop-up information about error conditions.

We addressed the following additional UX considerations in the Exams view. A researcher can mouse-over an
element to receive a more detailed statistical QC summary for that exam. Note here that, as with all statistics,
there are many different ways of presenting the same data. Consider a scan where each image contains 100
key-value pairs and a single value is found to differ from the corresponding template in every image. One can
interpret this as a 100% error rate as all images contain an error; an alternative interpretation is that the overall
error rate is 1%, as the error appears in one out of 100 key-value pairs. This simple example illustrates non-trivial
decisions that must be made to display and summarize the dataset’s QC status; importantly, these decisions have
real consequences for user-response to QC issues. We took a measured approach to displaying QC statistics with
particularly careful consideration of word choice, coloration, and warning size and location. The exam-level QC
listing also includes a responsive search bar and filtering options (date range, modalities to display, and sorting
order for the research studies and the subject listing within each research study), which allows rapid drill-down
to the desired dataset.

3.2 QC pending view

The QC Pending view is a variant of the Exams view described above but only lists the research studies, and
subjects/exams within them, that are believed to have QC issues and therefore require attention. While the
Exams view is useful to review the QC status of an entire study or a series of subjects within one modality (e.g.,
MRI) within a study, the QC Pending view allows a technologist to review problematic datasets quickly and to
contact responsible parties (e.g., the research study’s PI) to solicit advice on how to proceed.

3.3 Series detail view

In both the Exams and QC Pending views, users can click on an exam or research to see the list of series acquired
in that exam, the series-level QC status, and the template that was used to perform QC. The details of each
series can then be opened to see the image-level QC status for every image in that series (Figure 6); finally, for
each image the user can click to view the entire set of metadata key-value pairs and their QC states. At each
QC-level, a summary of the QC status of the immediate lower level is clearly indicated.



Figure 6. SQAN screenshot: Series detail view with clear warning/error highlights & audit trail.

The automated QC state of an exam can be updated manually: a user may determine that a particular QC
condition will not affect their research goals, and so a series may be marked as “passing” QC. Alternatively, if an
updated set of templates has been received by SQAN, or if an older template is more appropriate, an exam may
have its QC status recorded and then reset to undergo QC processing with another template. These procedures
are all available to authorized users via the web interface. In addition, users are required to enter comments
when manually updating a QC status; users may also alert/ask questions of responsible parties. All events and
changes performed on the series detail page are stored and displayed, allowing us to keep track of the history of
the QC statuses for any given series.

We addressed the following additional UX considerations. Based on feedback from our users, we updated how
the audit trail of events is displayed, especially if manual QC overrides are applied. We also updated the portal
so QC issues are listed with color-coding and added QC-status-appropriate icons along with human-readable
error messages, as shown in Figure 6. We use color-coding on the image listing and include a grey-colored box
for missing images. The header listing (key-value pairs) only lists header tags with error or warning conditions
by default, but can be expanded to show the entire header; a filter text box allows the user to navigate quickly
to a particular header.

3.4 Research Summary view

The Exams and QC Pending views described above enable users to review the detailed QC status for their
datasets. We determined that researchers, in particular Principle Investigators (PIs) and their associates, also
often want a high-level summary of an entire research study in a small amount of user interface real estate.
They want to be aware of one or more problematic subjects whose data they should exclude from their eventual
analyses, or perhaps even of a particular acquisition series in which several subjects had trouble. In the Research
Summary view, such users can select a specific research study and view a tabular listing of all subjects and
acquisition series associated with that study, including a color coded status indicator for each subject and
series. Clicking on a status indicator takes the user to the series detail view for that subject within that research
study.



Figure 7. SQAN screenshot: Research summary view with a high level overview of a research study.

We addressed the following additional UX considerations for the Research Summary view. Users are able
to filter by subject or the name of the acquisition series. We also provide the ability to download a CSV or
JSON file of the data presented in the view, for e.g. to enable automated exclusion of a dataset from subsequent
pipeline processing. We determined that some researchers want the subject listing to flow from top to bottom,
while others want it to flow left to right, so we included a transpose button to change the row/column ordering
of the view. This flexibility is useful in situations where a large number of subjects or series descriptions extends
the table beyond the browser display area (horizontally on a laptop or large screen monitor and vertically on a
mobile device).

Our close operational relationship with the RADY imaging center allowed us to include an optional feature,
where we collate QC information displayed on the Research Summary view with information from a RADY-
hosted research study database that allows contextualization of a particular study. We pick up this additional
information by making a query out to a REST API on their end. Then we list the title of the research study, the
PI’s name, start and end dates for data acquisition for that study, study type (e.g., basic science human research
vs. animal cognition), and modalities.

3.5 Template Summary view

SQAN currently allows QC criteria to be set entirely via template datasets sent specifically by the imaging center.
There are occasions when a technician has sent a template over to SQAN and wants to verify it was received
properly; there are other cases when an error condition is identified in a previously registered template within
SQAN. Our portal includes a Template Summary view for this reason (Figure 8). Every template ever received
is displayed with the corresponding research study name, modality, station (scanner) name, radio tracer, and
the number of templates (referred to as “# Study Instances”) available in the system for that research study.
Templates are designated either from a subject’s anonymized data or a phantom scan. A research can have
multiple template-exams, identified by the imaging acquisition time-stamp (as templates have no subject ID). As
shown in Figure 8, multiple templates for a given research study are displayed under different tabs. The user can
view the details of a particular template, including how many times that template has been used to QC imaging



datasets, and the image count within that template. A technologist with sufficient authorization can delete a
template or a specific acquisition series within a template, e.g., if they intend to resend that template (to correct
errors) or provide an alternative template for that research study. We also list research studies for which we have
no templates in our database in order to assist a technologist in sending templates for those studies.

We addressed the following additional UX considerations. Users can filter by research study ID (also referred
to as IIBIS ID by our RADY colleagues). They can also sort by any of the fields on the template summary table
header (e.g., modality, radio tracer). Entries are demarcated by background color differences to make them easy
to parse for the user.

Figure 8. SQAN screenshot: Template summary view with multiple templates in one study.

3.6 Administrative views

3.6.1 User and access control management

SQAN allows authorized administrative users to control other user accounts, including the data access groups
each user is part of and the Access Control List (ACL) that maps research studies to one or more user groups,
authorizing them to view/comment and/or perform QC operations on that study. A screenshot of this view is
shown on Figure 9.

3.6.2 Data transfer monitoring (in automated setups)

As described previously, on our production RADY SQAN instance, image data are shipped directly from the
scanner server (by an Orthanc sender via an anonymizer service) to an Orthanc receiver on our end. We
identified the need for a monitoring the data transfer & ingestion for both that setup and any other instance
where image data are ingested automatically and/or periodically. To address this, we have a data transfer
monitoring administrative view within the portal. A screenshot of this view is shown on Figure 10.

3.7 Early adopter features

We briefly describe recent feature additions and updates in the SQAN codebase. In particular, we invited
potential collaborators from Harvard Medical School/Brigham and Women’s Hospital (BWH) and Dartmouth-
Hitchcock Medical Center for separate 2-day hackathons. In these sessions, we deployed prototype instances
of SQAN and ingested sample data on local hardware at the respective institutions. This enabled us to have
productive discussions and collate specific requirements. Two such requirements were aligned with features we
had intended to add to SQAN even prior to the hackathons, and were implemented very recently. We expect
to further refine these features and to make them more robust before we consider them ready for production
deployment; for now, we deem them early adopter features.



Figure 9. SQAN screenshot: Administrative view for access control.

Figure 10. SQAN screenshot: Administrative view to monitor data transfer & ingestion into SQAN.

3.7.1 Custom template-less QC criteria

SQAN’s QC engine used on our production RADY SQAN instance relies on QC criteria derived from a combi-
nation of metadata-tag value expectations per modality and a template dataset uniquely matched to an image
dataset being QCed. However, under the hood the QC engine was already agnostic to the where the list of
precise tags to be QCed (or not) came from. The tag value expectations were hard-coded within the QC engine
code. In winter 2019, we modified the QC engine so that both the tag value expectations as well as which tags
should be QCed can be set within the portal. The portal user interface allow a user to setup two complementary



custom QC configurations:

• Blacklist model in which the initial assumption is that all keywords in a given modality should be QC
unless the user specifically asks to exclude certain metadata tags from being QCed. This is similar to the
template based QC executed on our production RADY SQAN instance. There is a heavier burden on the
user to exclude tags and precisely define acceptable QC criteria for all the other keywords. Anyone looking
for comprehensive protocol QC would find this model valuable despite the need for an initial investment
of time to set the criteria.

• Whitelist model in which the user starts from scratch, picks tags to be QCed, and then assigns acceptable
QC criteria to those keywords. This model is similar to some of the existing automated QC options we
discovered in our research prior to our work on SQAN. Anyone looking to keep the initial investment of
time minimal while still reaping the benefits of protocol compliance would find this model useful.

Our overall goal is to enable as broad a spectrum of QC options as possible so any imaging center that adopts
SQAN can choose the method that fits their usecase best.

3.7.2 Manual image upload

We also developed a Data Upload view within the portal that allows authorized users to point the portal at a
specific disk location where a dataset can be accessed for ingestion. Upon selecting or entering a research study
and a subject name, SQAN will ingest the dataset and perform automated QC. This feature is useful for imaging
centers that do not setup an automated ingestion system from the scanner (for e.g., via Orthanc) or via periodic
ingestion workflow (e.g., scheduled cron jobs); it is also useful for a technologist who is trying to debug ingestion
of a particular dataset repeatedly.

4. CONCLUSION & FUTURE PLANS

Quality assurance (QA) is a fundamental first step in guaranteeing reliable and reproducible scientific research,
and requires continuous involvement by all stakeholders and the use of appropriate quality control (QC) methods
to identify data quality issues. Medical imaging, fundamental to clinical research and diagnosis, is costly and
generates large datasets, thereby making the need for quality assurance (QA) through adequate quality control
(QC) methods even more critical. Existing medical imaging QC methods are designed for specific use-cases with
limited scope. In this paper, we have presented Scalable Quality Assurance for Neuroimaging, an open source,
automated, flexible QC software suite that has supported 50+ research projects QCing >3.5 million images and
>700 million metadata tags.

4.1 Future plans

Our immediate plans for SQAN include continuing our collaboration with Harvard Medical School/Brigham
and Women’s Hospital (BWH) and Dartmouth-Hitchcock Medical Center while continuing to pursue the larger
goal of building a vibrant community of developers/maintainers and setting up an independent governing body.
We expect to polish the early adopter features described in the previous section and to also finish the user
interface refresh (described further below) in the near future. In the longer-term future, we intend to expand
the capabilities of the SQAN project to extend beyond metadata/protocol QC including but not limited to the
areas described below.

4.1.1 User interface refresh (Vue.js)

The current SQAN UI is built atop the once-actively-maintained AngularJS framework [25], which will not be
maintained post-mid-2021. The SCA team has switched to the better-supported Vue.js framework [27] for new
projects, and has transitioned other existing projects to Vue.js. The SQAN user interface is currently being
rewritten in Vue.js, providing a more stable, secure, and performant experience; this transition is expected to be
completed by April 2020, and is expected to better accommodate third-party community contributions adapting
to diverse end-user requirements.



4.1.2 Imaging level QC

While the protocol compliance QC that SQAN performs is an essential first step in data quality assurance, noise
and image artifacts often prevalent in medical imaging are not necessarily flagged by this stage of QC. The noise
and artifacts may originate from a subject’s motion or from the instruments themselves. Many techniques have
been developed over the years to detect and attempt to correct such artifacts [37, 38]. It is our goal to expand
SQAN to be able to detect and catalogue these QC issues and to incorporate existing QC tools and methods
developed by the research and clinical imaging community. The first step is to connect SQAN to an imaging
database to gain access to imaging. Rather than create our own system, we will draw on the very mature and
robust XNAT [13] system—already in production at IU—to accomplish this task. Once that is accomplished,
we will draw on the already-in-use ImageX system [21] or the XNAT viewer to allow users to look for artifacts
within the image data. We will also draw on existing QC tools for imaging types (for e.g. fMRI, DWI, etc.) to
incorporate those into our system. Our long term goal is to make SQAN a one-stop shop for all imaging QA
needs.

4.1.3 Integration with other non-imaging databases

A critical aspect of imaging research is to be able to relate imaging metrics to other biomarkers. These can
include demographics, genetic information, neuropsychiatric score, and medical records, just to name a few. As
such, it is important that all of this data be available to researchers. To that end, we plan to connect SQAN
with these various databases, for e.g. REDCap [39], so that once imaging QC has been completed the user can
easily connect the vetted imaging data with important metrics from other sources and more rapidly engage in
the desired analyses.

4.1.4 Software algorithms/pipelining

The Quality Assurance capabilities provided by SQAN needs to lead to better data outcomes and better pro-
cessing. To that end, we plan to link SQAN with pipelining processes in order to automate data processing as
it is obtained, and to identify the correct parameters to use in those processes when possible. Pipeline systems
exist currently, for e.g. XNAT [40] or brainife.io, an IU project mentioned earlier. Our goal is to interface with
those rather than build pipelines into SQAN itself. The ideal flow would be as follows:

1. Raw data are ingested into SQAN and metadata is checked to make sure correct protocols have been
followed.

2. Once protocol and metadata have been verified, the raw imaging data will be made available for manual
viewing or automated QC checks, if available.

3. With both QC steps passed, a call will be made to the appropriate processing pipeline to begin working
on the data.

4. Processed data will be subject to further QC checks.

5. Final vetted data will be made available to researchers.

To accomplish this ideal workflow, SQAN will need to be interconnected with imaging databases, pipelining
systems, and computational infrastructure. Our plan is to develop these interconnections at IU (and at our
current collaborator institutions) where each of these pieces is available in some capacity. Once complete, we will
have a fully automated imaging data system that will ingest raw data and disseminate final processed data that
has been fully vetted by a robust QC system. Such a system would be able to make imaging centers—especially
ones responsible for serving data in multi-center imaging projects—more efficient, and the data more robust for
critical analyses.

4.1.5 Expanding SQAN to other imaging disciplines

Medical imaging goes beyond the scope of neuroimaging QC that SQAN currently supports. To that end, we
expect work with imaging centers within IU and beyond to identify instruments and imaging types (for e.g.
electron or light microscopy, both of which are heavily used at IU) that could benefit from QC functionality
provided by SQAN.
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