
Machine Learning for Performance
Enhancement of Molecular Dynamics

Simulations

JCS Kadupitiya, Geoffrey C. Fox, and Vikram Jadhao(B)

Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA
{kadu,gcf,vjadhao}@iu.edu

Abstract. We explore the idea of integrating machine learning with
simulations to enhance the performance of the simulation and improve its
usability for research and education. The idea is illustrated using hybrid
OpenMP/MPI parallelized molecular dynamics simulations designed to
extract the distribution of ions in nanoconfinement. We find that an
artificial neural network based regression model successfully learns the
desired features associated with the output ionic density profiles and
rapidly generates predictions that are in excellent agreement with the
results from explicit molecular dynamics simulations. The results demon-
strate that the performance gains of parallel computing can be further
enhanced by using machine learning.

Keywords: Machine learning · Molecular dynamics simulations ·
Parallel computing · Scientific computing · Clouds

1 Introduction

In the fields of physics, chemistry, bioengineering, and materials science, it is
hard to overstate the importance of parallel computing techniques in providing
the needed performance enhancement to carry out long-time simulations of sys-
tems of many particles with complex interaction energies. These enhanced sim-
ulations have enabled the understanding of microscopic mechanisms underlying
the macroscopic material and biological phenomena. For example, in a typical
molecular dynamics (MD) simulation of ions in nanoconfinement [2,13] (Fig. 1),
≈1 ns of dynamics of ≈500 ions on one processor takes ≈12 h of runtime, which
is prohibitively large to extract converged results for ion distributions within
reasonable time frame. Performing the same simulation on a single node with
multiple cores using OpenMP shared memory reduces the runtime by a factor
of 10 (≈1 h), enabling simulations of the same system for longer physical times.
Using MPI dramatically enhances the simulation performance: for systems with
thousands of ions, speedup of over 100 can be achieved, enabling the genera-
tion of the needed data for evaluating converged ionic distributions. Further, a

Supported by National Science Foundation through Awards 1720625 and 1443054.

c© Springer Nature Switzerland AG 2019
J. M. F. Rodrigues et al. (Eds.): ICCS 2019, LNCS 11537, pp. 116–130, 2019.
https://doi.org/10.1007/978-3-030-22741-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22741-8_9&domain=pdf
http://orcid.org/0000-0002-8034-2654
https://doi.org/10.1007/978-3-030-22741-8_9

ML for Performance Enhancement of MD Simulations 117

Fig. 1. Sketch of ions represented by blue and red spheres confined by material surfaces.
(Color figure online)

hybrid OpenMP/MPI approach can provide even higher speedup of over 400
for similar-size systems enabling state-of-the-art research with simulations that
can explore the dynamics of ions with less controlled approximations, accurate
potentials, and for tens or hundreds of nanoseconds over a wider range of physical
parameters.

Despite the employment of the optimal parallelization model suited for the
size and complexity of the system, scientific simulations remain time consum-
ing. This is particularly evident in the area of using simulations in education
where real-time simulation-driven responses to students in classroom settings
are desirable. While in research settings, instantaneous results are generally not
expected and simulations can take up to several days, it is often desirable to
rapidly access expected trends associated with relevant physical quantities that
could have been learned from past simulations or could be predicted with rea-
sonable accuracy based on the history of data generated from earlier simulation
runs. As an example, consider a simulation framework, Ions in Nanoconfinement,
that we deployed as a web application on nanoHUB to execute the aforemen-
tioned simulations of ionic systems [14]. In classroom usage, we have observed
that the fastest simulations can take about 10 min to provide the converged
ionic densities while the slowest ones (typically associated with larger system
sizes and more complex ion-ion interaction energies) can take over 3 h. Similarly,
for research applications, not having rapid access to expected overall trends in
the key simulation output quantities (e.g., the variation of contact density as
a function of ion concentration) can make the process of starting new investi-
gations unwieldy and time-consuming. Primary factors that contribute to this
scenario are the time delays resulting from the combination of waiting time in a
queue on a computing cluster and the actual runtime for the simulation.

In this paper, we explore the idea of integrating machine learning (ML) layer
with simulations to enhance the performance and improve the usability of simula-
tions for both research and education. This idea is inspired by the recent develop-
ment and use of ML in material simulations and scientific software applications

118 J. Kadupitiya et al.

[4,6,9,17,24]. We employ a particular example, hybrid OpenMP/MPI paral-
lelized MD simulations of ions in nanoconfinement [13,14] to illustrate this idea.
We demonstrate that an artificial neural network (ANN) based regression model,
trained on data generated via these simulations, successfully learns pre-identified
key features associated with the output ionic density profile (the contact, mid-
point, and peak densities). The ML approach entirely bypasses simulations and
generates predictions that are in excellent agreement with results obtained from
explicit MD simulations. The results demonstrate that the performance gains of
parallel computing can be enhanced using data-driven approaches such as ML
which improves the usability of the simulation framework by enabling real-time
engagement and anytime access.

2 Background and Related Work

2.1 Coarse-Grained Simulations of Ions in Nanoconfinement

The distribution of ions often determines the assembly behavior of charged
or neutral nanomaterials such as nanoparticles, colloids, or biological macro-
molecules. Accurate knowledge of this ionic structure is exploited in many appli-
cations [8] including the design of double-layer supercapacitor and the extraction
of metal ions from wastewater. As a result, extracting the distribution of ions in
nanoconfinement created by material surfaces has been the focus of recent exper-
iments and computational studies [13,18,21,22,25]. From a modeling standpoint,
the surfaces are often treated as planar interfaces considering the size difference
between the ions and the confining material particles, and the solvent is coarse-
grained to speed-up the simulations. Such coarse-grained simulations have been
employed to extract the ionic distributions over a wide range of electrolyte con-
centrations, ion valencies, and interfacial separations using codes developed in
individual research groups [2,3,13] or using general purpose software packages
such as ESPRESSO [16] and LAMMPS [19].

Generally, the average equilibrium ionic distribution, resulting from the com-
peting inter-ionic steric and electrostatic interactions as well as the interactions
between the ions and surfaces, is a quantity of interest. However, in many cases,
the density of ions at the point of closest approach of the ion to the interface
(contact density), the peak density, or the density at the center of the slit (mid-
point density) directly relate to important experimentally-measurable quantities
such as the effective force between the confining surfaces or the osmotic pres-
sure [21,25]. It is thus useful to compute the variation of the contact, peak, and
mid-point densities as a function of the solution conditions or ionic attributes.

2.2 Machine Learning for Enhancing Simulation Performance

Recent years have seen a surge in the use of ML to accelerate computational
techniques aimed at understanding material phenomena. ML has been used to
predict parameters, generate configurations in material simulations, and classify

ML for Performance Enhancement of MD Simulations 119

material properties [4,9,17,24]. For example, Fu et al. [17] employed ANN to
select efficient updates to accelerate Monte Carlo simulations of classical Ising
spin models near critical parameters associated with the phase transition. Simi-
larly, Botu et al. [4] employed kernel ridge regression to accelerate MD method
for nuclei-electron systems by learning the selection of probable configurations in
MD simulations, which enabled bypassing explicit simulations for several steps.

The integration of ML layer for performance enhancement of scientific sim-
ulation frameworks deployed as web applications is relatively far less explored.
nanoHUB is the largest online resource for education and research in nanotech-
nology [15]. This cyberinfrastructure hosts over 500 simulation tools and serves
1.4 million users worldwide. Our survey indicated that only one simulation tool
on nanoHUB [10] employs ML-based methods to enhance the performance and
usability of the simulation software. This simulation tool employs a deep neural
network to bypass computational limitations in extracting transfer times asso-
ciated with the excitation energy transport in light-harvesting systems [10].

3 Framework for Simulating Ions in Nanoconfinement

We developed a framework for simulating ions in nanoscale confinement (referred
here as the nanoconfinement framework) that enabled a systematic investigation
of the self-assembly of ions characterized by different ionic attributes (e.g., ion
valency) and solution conditions (e.g., ion concentration and inter-surface sepa-
ration) [11–14,23]. The framework has been employed to extract the ionic struc-
ture in electrolyte solutions confined by planar and spherical surfaces. Results
have elucidated the microscopic mechanisms involving the ionic correlations and
steric effects that determine the distribution of ions [11–13].

In the work presented here, we focus on ions confined by unpolarizable sur-
faces where the simulations are relatively faster [13], thus easing the training
and testing of the ML model. We identify the following system attributes as key
parameters that determine the self-assembly of ions: inter-surface separation or
confinement length h, ion valencies (zp, zn associated with the positive and neg-
ative ions), electrolyte concentration c, and ion diameter d. We ignore the effects
arising due to the solvent-induced asymmetry in ionic sizes, and assign the pos-
itive and negative ions with the same diameter. Additional details regarding the
model and simulation method can be found in the original paper [13].

The nanoconfinement framework employs a code written in C++ for simu-
lating ions near unpolarizable interfaces. The code, available as an open-source
repository on GitHub [14], is accelerated using a hybrid parallel programming
technique (see Sect. 3.1). This framework is also deployed as a web application
(Ions in Nanoconfinement) on nanoHUB [14] (see Sect. 3.2). We have verified
that the ionic density profiles obtained using our code agree with the densities
extracted via simulations performed in LAMMPS. We note that the ML model
proposed in this work to predict the desired key ionic densities is agnostic to the
code engine that enables the MD simulations for generating the training dataset.

120 J. Kadupitiya et al.

3.1 Hybrid OpenMP/MPI Parallelization

The nanoconfinement framework is based on a code that employs the velocity-
Verlet algorithm to update the positions and velocities at each simulation step.
First, the velocities of all ions are updated for half timestep Δ/2, following which
the positions of all ions are updated for Δ. At this point, the forces on all ions
are computed, and finally the velocities for all ions are updated for the next
Δ/2. Once the system reaches equilibrium, the positions of the ions are stored
periodically to extract density profiles.

Fig. 2. Hybrid model implemented in the Force Calculation block using MPI and
OpenMP to accelerate the nanoconfinement framework.

To improve the runtime of the simulation, the framework employs the hybrid
master-only model that uses one MPI process per node and OpenMP on the
cores of the node, with no MPI calls inside the parallel regions. This hybrid
model is applied for the force and energy calculation subroutines, and it enables
the domain decomposition under a two-level mechanism. On the MPI level,
coarse-grained domain decomposition is performed using boundary conditions

ML for Performance Enhancement of MD Simulations 121

Fig. 3. A screenshot of the GUI (top left) and usage statistics of the nanoconfinement
framework deployed on nanoHUB.

as explained in Fig. 2. The second level of domain decomposition is achieved
through OpenMP loop level parallelization inside each MPI process. This mul-
tilevel domain decomposition has advantages over pure MPI or pure OpenMP,
when cache performance is taken into consideration. This strategy also provides
the maximum access locality, a minimum number of cache misses, non-uniform
memory access (NUMA) traffic and inter-node communication [20].

3.2 Deployment on nanoHUB

The nanoconfinement framework is deployed as a web application (Ions in
Nanoconfinement) [14] on the nanoHUB cyberinfrastructure. nanoHUB provides
user-friendly, web-based access for executing simulation codes to researchers, stu-
dents, and educators broadly interested in nanoscale engineering [15]. In less than
1 year of its launch, the Ions in Nanoconfinement application has nucleated 58
users worldwide and has been run over 1200 times [14] (Fig. 3). This application
is designed to launch simulations that use virtual machines or supercomputing
clusters depending on user-selected inputs, and it has been employed to teach
graduate courses at Indiana University. Advances in the framework that enable
real-time results can significantly enhance the experience of users that employ
this application in both education and research. The current version of “Ions
in Nanoconfinement”, like almost all other applications on nanoHUB, does not
support this feature.

4 ML-Enabled Performance Enhancement

We now describe an approach based on ML to enhance the overall performance
and usability of the nanoconfinement framework. Figure 4 shows the overview

122 J. Kadupitiya et al.

Fig. 4. System overview of the enhanced nanoconfinement framework.

of the implemented methodology. First, the attributes of the ions and solu-
tion conditions that characterize the system are fed to the nanoconfinement
framework. These inputs are used to launch the MD simulation on the high-
performance computing (HPC) cluster. Simultaneously, these inputs are also fed
to the ML-based density prediction module to predict the contact, mid-point,
and peak densities. The outputs of the MD simulation are the ion density profiles
that characterize the ionic structure near unpolarizable interfaces. Error handler
aborts the program and displays appropriate error messages when a simulation
fails due to any pre-defined criteria. In addition, at the end of the simulation
run, ionic density values are saved for future retraining of the ML model. ML
model is retrained for every 2500 new simulation runs.

After reviewing and experimenting with many ML techniques for parameter
tuning and prediction including polynomial regression, support vector regression,
decision tree regression, and random forest regression, the artificial neural net-
work (ANN) was adopted for predicting critical features associated with the out-
put ionic density. Figure 5 shows the details of this ANN-based ML model. The
data preparation and preprocessing techniques, feature extraction and regression
techniques as well as their validation are discussed below.

4.1 Data Preparation and Preprocessing

Prior domain experience and backward elimination using the adjusted R squared
is used for creating the training data set. Five input parameters that significantly
affect the dynamics of the system are identified: confinement length h, positive
valency zp, negative valency zn, salt concentration c, and the diameter of the
ions d. Future work will explore the training with additional input parameters
such as temperature and solvent permittivity that are fixed in this initial study
to room temperature (298 K) and water permittivity (≈80) respectively.

Contact density ρc, mid-point (center of the slit) density ρm, and peak
density ρp associated with the final (converged) distribution for positive ions
were selected as the output parameters. Few discrete values for each of the
input/output parameters were experimented with and swept over to create and
run 6,864 simulations for training the ML model. The range for ionic system

ML for Performance Enhancement of MD Simulations 123

Fig. 5. ANN-based regression model to enhance the nanoconfinement framework.

parameters was selected based on physically meaningful and experimentally-
relevant values: h ∈ (3.0, 4.0) nm, zp ∈ 1, 2, 3 (in units of electronic charge |e|);
zn ∈ −1,−2 (in units of |e|); c ∈ (0.3, 0.9) M, and d ∈ (0.5, 0.75) nm. All sim-
ulations were performed for over ≈5 ns. The entire data set was separated into
training and testing sets using a ratio of 0.7:0.3. Min−max normalization filter
was applied to normalize the input data at the preprocessing stage.

4.2 Feature Extraction and Regression

The ANN algorithm with two hidden layers (Fig. 5) was implemented in Python
for regression of three continuous variables in the ML model. Outputs of the
hidden layers were wrapped with the relu function; the latter was found to
converge faster compared to the sigmoid function. No wrapping functions were
used in the output layers of the algorithm as ANN was trained for regression.

By performing a grid search, hyper-parameters such as the number of first
hidden layer units, second hidden layer units, batch size, and the number of
epochs were optimized to 17, 9, 25, and 100 respectively. Adam optimizer was
used as the backpropagation algorithm. The weights in the hidden layers and in
the output layer were initialized to random values using a normal distribution at
the beginning. The mean square loss function was used for error calculation. To
stop overtraining the network, a drop out mechanism for hidden layer neurons
was employed during the training time. ANN implementation, training, and
testing were programmed using scikit-learn, Keras, and TensorFlow ML libraries
[1,5,7]. Rest of the regression methods were implemented using scikit-learn ML
libraries. For the kernel ridge regression, radial basis function kernel was used.

124 J. Kadupitiya et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1 1.2

C
on

ta
ct

 D
en

si
ty

 fr
om

 M
L

(M
)

Contact Density from MD (M)

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.5 1 1.5 2 2.5

P
ea

k
D

en
si

ty
 (

M
L)

Peak Density (MD)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.2 0.4 0.6 0.8 1 1.2

C
en

te
r

D
en

si
ty

 (
M

L)

Center Density (MD)

Fig. 6. Accuracy comparison between ML predictions and MD simulation results for
the contact densities (red circles) of ions in systems characterized by inputs selected
from the following ranges of parameters: h ∈ (3.0, 4.0) nm, zp ∈ 1, 2, 3, zn ∈ −1,−2,
c ∈ (0.3, 0.9) M, and d ∈ (0.5, 0.75) nm. Top-left and bottom-right insets show the com-
parison for the peak (blue squares) and mid-point (green diamonds) densities respec-
tively for a subset of the selected systems. Black dashed lines with a slope of 1 represent
perfect correlation. All densities are shown in units of molars. (Color figure online)

5 Results

5.1 Bypassing Simulations with ML-Enabled Predictions

We experimented with 6 regression models to predict the key output density
features identified above: contact density (ρc), mid-point density (ρm), and
peak density (ρp). These models were tested on 2060 sets of input parame-
ters (h, zp, zn, c, d). These sets were comprised of parameter values within the
range for which the models were trained; see Sect. 4.1. Table 1 shows the suc-
cess rate and the mean square error (MSE) for testing data sets. The success
rate was calculated based on the error bars associated with the density values
obtained via MD simulations: ML prediction was considered successful when
the predicted density value was within the error bar of the simulation estimate.
Simulations were run for sufficiently long times (over ≈5 ns) to obtain converged
density estimates and error bars. MSE values are calculated using k-fold cross-
validation techniques with k = 20. ANN based regression model predicted ρc,
ρm and ρp accurately with a success rate of 95.52% (MSE ≈0.0000718), 92.07%
(MSE ≈0.0002293), and 94.78% (MSE ≈0.0002306) respectively. ANN outper-
formed all other non-linear regression models (Table 1).

Figure 6 shows the comparison between the predictions made by the ML
model and the results obtained from MD simulations for the contact, mid-point,

ML for Performance Enhancement of MD Simulations 125

Table 1. Comparison of regression models for the prediction of output density values.

Model Contact density Midpoint density Peak density

Success % MSE Success % MSE Success % MSE

Polynomial 61.04 0.0129300 60.84 0.0187700 61.87 0.0100400

Kernel-Ridge 78.86 0.0030900 76.57 0.0041200 75.93 0.0049800

Support vector 80.11 0.0012700 79.55 0.0024900 81.98 0.0010600

Decision tree 68.44 0.0084600 64.54 0.0094900 62.47 0.0110700

Random forest 74.15 0.0045700 70.85 0.0078900 75.09 0.0040800

ANN based 95.52 0.0000718 92.07 0.0002293 94.78 0.0002306

and peak densities associated with positive ions. For clarity, results are shown for
a randomly selected subset of the entire testing dataset described in Sect. 4.1. ρc,
ρm and ρp predicted by the ML model were found to be in excellent agreement
with those calculated using the MD method; data from either approach fall on
the dashed lines which indicate perfect correlation.

5.2 Rapid Access to Trendlines Using ML

Trendlines exhibiting the variation of ρc, ρm, and ρp for a wide range and com-
binations of the five input parameters (h, zp, zn, c, d) were extracted using the
ML model. In Figs. 7 and 8, we show a small selected subset of these trends.

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.5 0.55 0.6 0.65 0.7 0.75

C
on

ta
ct

 D
en

si
ty

 (
M

)

Ion diameter d (nanometers)

ML

MD

0.205

0.210

0.215

0.220

0.225

 3 3.2 3.4 3.6 3.8 4

C
on

ta
ct

 D
en

si
ty

 (
M

)

Confinement Length h (nanometers)

ML

MD

Fig. 7. (Top) Trendlines for contact density vs. ion diameter for systems with h =
4 nm, zp = 3, zn = −1, and c = 0.85 M. (Bottom) Trendlines for contact density vs.
confinement length for systems with zp = 2, zn = −1, c = 0.9 M, and d = 0.553 nm.

126 J. Kadupitiya et al.

Figure 7 shows the variation of the contact density ρc with the ion diameter
d and confinement length h. Figure 7 (top) illustrates how ρc varies with d ∈
(0.5, 0.75) nm at constant h = 4 nm, zp = 3, zn = −1, and c = 0.85 M. Figure 7
(bottom) illustrates the variation in ρc when the confinement length h is tuned
between 3.0 and 4.0 nm, with other parameters held constant (zp = 2, zn = −1,
c = 0.9 M, and d = 0.553 nm). Circles represent ML predictions and squares
show MD results. ML predictions are within the errorbars generated via MD
simulations and follow the simulation-predicted trends for both cases. Results
demonstrate that contact density varies rapidly when the diameter is changed
but exhibits a slower variation when the confinement length is varied. We find
that the same ML model is able to track the distinct variations while exhibiting
different resolution (sensitivity) criteria.

Figure 8 shows similar comparison between ML and MD results for the varia-
tion of ρc, ρm and ρp vs. salt concentration c. Excellent agreement is seen between
the two approaches. We note that the prediction time for the ML model to obtain
these densities is in the order of a few seconds while the simulations can take
up to hours to compute one contact density with similar accuracy level.

5.3 Speedup

Traditional speedup formulae associated with parallel computing methods need
to be adapted for evaluating the speedup associated with the ML-enhanced sim-
ulations. We propose the following simple formula which is illustrative at this
preliminary stage. We define the ML speedup as:

S =
tsim

tp + ttr · Ntr/Np
, (1)

where tsim is the time to run the MD simulation via the sequential model, tp
is the time for the ML model to perform a forward propagation for one set of
inputs (prediction or “lookup” time), Np is the number of predictions made using
the ML model, Ntr is the number of elements in the training dataset, and ttr
is the average MD simulation walltime to create one of these elements. Ntrttr
represents the total time to create the training dataset and it is much larger
than the TensorFlow training time.

The above formula highlights the key feature of the ML-based approach: the
speedup S increases as ML model is used to make more predictions, that is,
S rises with increasing Np. As Np approaches infinity, S approaches tsim/tp;
for our MD simulations (tsim ≈ 12 h) and ANN model (tp ≈ 0.25 s), we find
this ratio to be over 105. On the other hand, if the number of predictions made
through the ML model is small (smaller Np), then S is expected to be small.
We explore this scenario further. For implementing our ML model, the training
dataset consisted of 4804 simulation configurations, making Ntr = 4804. The
time ttr to generate one element of this training set is similar to the average
runtime of the parallelized MD simulation; we find ttr ≈ tsim/100. Using these
relations and noting tp � tsim, a lower bound on speedup can be derived as the

ML for Performance Enhancement of MD Simulations 127

 0.5

 1

 1.5

 2

 2.5

 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
en

si
ty

 (
M

)

Salt Concentration c (M)

Contact, ML

Contact, MD

Center, ML

Center, MD

Peak, ML

Peak, MD

Fig. 8. Contact, peak, and center-of-the-slit (mid-point) density vs. salt concentration
associated with the distribution of ions for systems characterized with h = 3.2 nm,
zp = 1, zn = −1, and d = 0.714 nm. Closed symbols represent ML predictions and
open symbols with error bars are MD simulation results.

result for Np = 1. For this case, we find the “speedup” S ≈ tsim/(ttrNtr) ≈ 10−2.
Finally, when the number of predictions Np are similar to the number of elements
in the training dataset Ntr, then Eq. 1 yields S ≈ tsim/ttr, which is equivalent
to the speedup associated with the traditional parallel computing approach.

6 Outlook and Future Work

Based on the aforementioned investigations, we propose to design and integrate
an ML layer with the nanoconfinement framework. This enhanced application
will be deployed on nanoHUB using the Jupyter python notebook interface.
Figure 9 shows a sketch of the proposed GUI. Users will be able to click both
“Run with MD” button and “Predict with ML” button simultaneously or sep-
arately depending on the desired information. “Predict with ML” will activate
the ML layer and predict ρc, ρm, and ρp almost instantaneously. These ML-
predicted values will be shown in three text boxes and will appear as markers on
the density profile plot. If users also select “Run with MD”, the entire density
profile will be added at the end of the simulation. For illustration purposes, Fig. 9
shows the final density plot using this integrated MD + ML approach for the
input parameters h = 3.0 nm, zp = 1, zn = −1, c = 0.9 M, and d = 0.714 nm.

In this initial study, we focused on a particular example framework to illus-
trate the idea of using ML-based methods to enhance the performance and
usability of scientific simulations. The results from this investigation are encour-
aging and we intend to explore these ideas in the future to provide a richer set
of predictions (finer-grained density profile) for the nanoconfinement framework,
and extend the method to other simulation techniques. Here, the training data

128 J. Kadupitiya et al.

Fig. 9. Proposed GUI for integrating an ML layer with the nanoconfinement framework
deployed on nanoHUB. The GUI includes text boxes (top) showing the ML-predicted
contact, mid-point, and peak densities for an example ionic system. These results also
appear as markers on the plot showing the density profile generated by MD simulations.

was created as a distinct step during the process of generating the ML model.
Future approaches will involve implicit training of the ANN while the simula-
tions are used in research and education. We expect that the usefulness of the
ML-enabled enhancements demonstrated in this work strengthen the case for sci-
entific simulation applications to be designed and developed with an ML wrapper
that both optimizes the application execution and learns from the simulations.

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. OSDI 16,
265–283 (2016)

2. Allen, R., Hansen, J.P., Melchionna, S.: Electrostatic potential inside ionic solu-
tions confined by dielectrics: a variational approach. Phys. Chem. Chem. Phys. 3,
4177–4186 (2001)

3. Boda, D., Gillespie, D., Nonner, W., Henderson, D., Eisenberg, B.: Computing
induced charges in inhomogeneous dielectric media: application in a monte carlo
simulation of complex ionic systems. Phys. Rev. E 69(4), 046702 (2004)

4. Botu, V., Ramprasad, R.: Adaptive machine learning framework to accelerate ab
initio molecular dynamics. Int. J. Quantum Chem. 115(16), 1074–1083 (2015)

5. Buitinck, L., et al.: API design for machine learning software: experiences from the
scikit-learn project. arXiv:1309.0238 (2013)

http://arxiv.org/abs/1309.0238

ML for Performance Enhancement of MD Simulations 129

6. Butler, K.T., Davies, D.W., Cartwright, H., Isayev, O., Walsh, A.: Machine learning
for molecular and materials science. Nature 559(7715), 547 (2018)

7. Chollet, F., et al.: Keras (2015)
8. Feng, G., Qiao, R., Huang, J., Sumpter, B.G., Meunier, V.: Ion distribution in

electrified micropores and its role in the anomalous enhancement of capacitance.
ACS Nano 4(4), 2382–2390 (2010)

9. Ferguson, A.L.: Machine learning and data science in soft materials engineering.
J. Phys. Condens. Matter 30(4), 043002 (2017)

10. Häse, F., Kreisbeck, C., Aspuru-Guzik, A.: Machine learning for quantum dynam-
ics: deep learning of excitation energy transfer properties. Chem. Sci. 8(12), 8419–
8426 (2017)

11. Jadhao, V., Solis, F.J., Olvera de la Cruz, M.: Simulation of charged systems in
heterogeneous dielectric media via a true energy functional. Phys. Rev. Lett. 109,
223905 (2012)

12. Jadhao, V., Solis, F.J., Olvera de la Cruz, M.: A variational formulation of electro-
statics in a medium with spatially varying dielectric permittivity. J. Chem. Phys.
138(5), 054119 (2013)

13. Jing, Y., Jadhao, V., Zwanikken, J.W., Olvera de la Cruz, M.: Ionic structure in
liquids confined by dielectric interfaces. J. Chem. Phys. 143(19), 194508 (2015)

14. Kadupitiya, K., Marru, S., Fox, G.C., Jadhao, V.: Ions in nanoconfinement, Decem-
ber 2017. https://nanohub.org/resources/nanoconfinement, online on nanoHUB;
source code on GitHub at https://github.com/softmaterialslab/nanoconfinement-
md

15. Klimeck, G., McLennan, M., Brophy, S.P., Adams III, G.B., Lundstrom, M.S.:
nanohub.org: advancing education and research in nanotechnology. Comput. Sci.
Eng. 10(5), 17–23 (2008)

16. Limbach, H.J., Arnold, A., Mann, B.A., Holm, C.: ESPResSo - an extensible sim-
ulation package for research on soft matter systems. Comp. Phys. Comm. 174(9),
704–727 (2006)

17. Liu, J., Qi, Y., Meng, Z.Y., Fu, L.: Self-learning monte carlo method. Phys. Rev.
B 95, 041101 (2017)

18. Luo, G., et al.: IoN distributions near a liquid-liquid interface. Science 311(5758),
216–218 (2006)

19. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Com-
put. Phys. 117(1), 1–19 (1995)

20. Rabenseifner, R., Hager, G., Jost, G.: Hybrid MPI/OpenMP parallel programming
on clusters of multi-core SMP nodes. In: 2009 17th Euromicro International Con-
ference on Parallel, Distributed and Network-Based Processing, pp. 427–436. IEEE
(2009)

21. dos Santos, A.P., Netz, R.R.: Dielectric boundary effects on the interaction between
planar charged surfaces with counterions only. J. Chem. Phys. 148(16), 164103
(2018)

22. Smith, A.M., Lee, A.A., Perkin, S.: The electrostatic screening length in concen-
trated electrolytes increases with concentration. J. Phys. Chem. Lett. 7(12), 2157–
2163 (2016)

23. Solis, F.J., Jadhao, V., Olvera de la Cruz, M.: Generating true minima in con-
strained variational formulations via modified lagrange multipliers. Phys. Rev. E
88(5), 053306 (2013)

https://nanohub.org/resources/nanoconfinement
https://github.com/softmaterialslab/nanoconfinement-md
https://github.com/softmaterialslab/nanoconfinement-md

130 J. Kadupitiya et al.

24. Spellings, M., Glotzer, S.C.: Machine learning for crystal identification and discov-
ery. AIChE J. 64(6), 2198–2206 (2018)

25. Zwanikken, J.W., Olvera de la Cruz, M.: Tunable soft structure in charged fluids
confined by dielectric interfaces. Proc. Nat. Acad. Sci. 110(14), 5301–5308 (2013)

	Machine Learning for Performance Enhancement of Molecular Dynamics Simulations
	1 Introduction
	2 Background and Related Work
	2.1 Coarse-Grained Simulations of Ions in Nanoconfinement
	2.2 Machine Learning for Enhancing Simulation Performance

	3 Framework for Simulating Ions in Nanoconfinement
	3.1 Hybrid OpenMP/MPI Parallelization
	3.2 Deployment on nanoHUB

	4 ML-Enabled Performance Enhancement
	4.1 Data Preparation and Preprocessing
	4.2 Feature Extraction and Regression

	5 Results
	5.1 Bypassing Simulations with ML-Enabled Predictions
	5.2 Rapid Access to Trendlines Using ML
	5.3 Speedup

	6 Outlook and Future Work
	References

