
A Lightweight Framework for Research Data Management
Extended Abstract

Dimitar Nikolov
Indiana University Research Technologies

Bloomington, Indiana
dnikolov@iu.edu

Esen Tuna
Indiana University Research Technologies

Bloomington, Indiana
metuna@iu.edu

ABSTRACT
We describe a framework for managing live research data involving
two major components. First, a system for the scalable schedul-
ing and execution of automated policies for moving, organizing,
and archiving data. Second, a system for managing metadata to
facilitate curation and discovery with minimal change to existing
workflows. Our approach is guided by four main principles: 1) to
be non-invasive and to allow for easy integration into existing
workflows and computing environments; 2) to be built on estab-
lished, cloud-aware, open-source tools; 3) to be easily extensible and
configurable, and thus, adaptable to different academic disciplines;
and 4) to integrate with and take advantage of infrastructure and
services available on academic campuses and research computing
environments. These principles give our solution a well-defined
place along the spectrum of research data management software
such as sophisticated electronic lab notebooks and science gate-
ways. Our lightweight and flexible data management framework
provides for curation and preservation of research data within a
lab, department or university cyberinfrastructure.

CCS CONCEPTS
• Applied computing → Document management and text
processing; Document metadata; Document searching; • Informa-
tion systems → Data management systems.

KEYWORDS
data management, data curation, metadata management, data poli-
cies
ACM Reference Format:
Dimitar Nikolov and Esen Tuna. 2019. A Lightweight Framework for Re-
search Data Management: Extended Abstract. In Practice and Experience in
Advanced Research Computing (PEARC ’19), July 28-August 1, 2019, Chicago,
IL, USA. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3332186.
3333157

1 INTRODUCTION
The success of data science, machine learning and similar disci-
plines in recent years has driven a sharp increase in the application

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7227-5/19/07.
https://doi.org/10.1145/3332186.3333157

of computational and data-intensive methods to many fields of sci-
ence. As a result, academic labs, departments, and IT providers on
university campuses have to adapt and respond with cyberinfras-
tructure for managing the large volumes of data being produced.
One class of cyberinfrastructure services is software systems for
curation and discovery of live research data. Such data is actively
used in research activities, and does not necessarily constitute the
final product of the research, or published data.

The heterogeneity of live data and the tools and platforms for
analyzing it across different fields are significant challenges in
creating robust, general-purpose data management systems. On
the ad-hoc spectrum of data management solutions, a research
group might utilize a set of available university services, such as
for file storage and document sharing, and adopt conventions for
handling the data. This is a non-invasive approach as it keeps the
abstraction level low, and handles the data in its original form.
In addition, it does not interfere with workflows around existing
computing environments and analysis tools. This strategy, however,
is not scalable to large teams or large data volumes, and can lead
to inconsistencies, omissions, and duplication in the storing and
preservation of data, which hinders research output, reproducibility
and open science. For example, failing to keep copies of original data
as it was collected from sensors or instruments, or failing to keep
track of process parameters, may lead to publication retraction. In
case of funded research, not meeting research agency requirements
in data management plans may have funding implications.

On the sophisticated end of the spectrum of data management
systems, shared electronic lab notebooks (ELNs) [1] can be de-
ployed as a data management solution to organize the activities
of a research group into a single system. ELNs can be deployed
on-premises or accessed on the cloud, and are a user-friendly, but
less customizable solution for data management. They require the
adaptation of existing workflows, so their input and output data can
be captured in the ELN. Another class of sophisticated services for
managing live data is science gateways [6] — highly-configurable
middleware usually delivered through a web interface for organiz-
ing a variety of university resources for storage and computation.
Science gateways can be tailored more specifically to a research
group’s workflows, but require significant expertise to deploy and
operate. In addition, their purpose and scope extend beyond data
management to the utilization of high-performance computing and
other infrastructure frequently found in academic environments.

In this paper, we describe a data management framework for
cases when ELNs and science gateways represent too significant
a change in existing workflows to be pracical. The framework is
based on open-source tools widely used in industry and can scale

https://doi.org/10.1145/3332186.3333157
https://doi.org/10.1145/3332186.3333157
https://doi.org/10.1145/3332186.3333157


PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA D. Nikolov and E. TunaArchitecture

Automated Workflows and SDA Transfers

1

Worker Airflow Nodes
(RabbitMQ)

Master Airflow Node

Worker 1Worker 2Worker MSchedulerWeb UI

ReportsLogs Data 
Policies DB

Data Policies Templates

HPSS API

HPSS: HTAR / HSI

Software Stack

Work
er 1
Work
er 2
Worke

r M
Work
er 1
Work
er 2
Worke

r M
Worker 1Worker 2Worker N

Research 
File Systems

NAS
File 

Storage
Tape 

Archive

Figure 1: Architecture for the service that handles the definition, scheduling and execution of data policies.

to a wide range of workflows. It complements data management
features of ELNs and science gateways by providing:

• Annotation of file system objects with metadata, the schema
of which may need to change frequently over time or based
on the type of data.

• Interfaces for intelligent search and browsing of file system
objects and their accompanying metadata.

• Definition, scheduling and execution of automated data poli-
cies for moving data between different storage environments,
or applying transformations to the data.

The system satisfies these requirements without placing signifi-
cant burden on the users to use specific interfaces for ingesting and
staging out data by using a combination of file system monitoring
and regularly scheduled tasks. Thus, the system overcomes some of
the deployment and workflow adjustments required by ELNs and
science gateways.

In summary, the framework we describe makes the following
contributions:

• It provides a lightweight model and tools for data manage-
ment that is non-invasive and integrates into existing work-
flows and computing environments.

• It provides a model for integrating industry-tested, cloud-
aware tools with academic infrastructure such as tape archives,
HPSS [5], and Globus [2].

• It is customizable and configurable with popular tools and
formats, such as Python and JSON.

2 ARCHITECTURE
The framework consists of distinct services for data policies and
metadata management, which can be integrated according to the
specific needs of a particular organization.

2.1 Data Policies
The architecture of the service for defining, scheduling and exe-
cuting data policies is shown in Figure 1. The service is based on
Apache Airflow [3] — an open-source platform used widely in in-
dustry for authoring workflows. In Airflow, workflows are defined
as directed acyclic graphs (DAGs) consisting of one or more de-
pendent tasks. A given data policy can be implemented by one or
more DAGs. The DAGs are defined as Python code and are sched-
uled and executed by a scheduler. The schedules are specified in

crontab format. A web server delivers a user interface (UI) for in-
specting the DAG code and schedule, monitoring execution status
and examining the logs. The scheduler executes each of a DAG’s
tasks in a separate process, which can reside on the master node,
or the tasks can be distributed over multiple worker nodes via an
asynchronous message queue such as RabbitMQ. In addition to the
scheduler, the service consists of APIs and templates for data poli-
cies that interface with cyberinfrastructure available on university
campuses. For example, we have written a Python API on top of the
High Performance Storage System (HPSS) and its suite of tools for
high-performance transfer to and from tape archive systems. DAG
templates for common activities such as archiving, backup, and
cleanup allow for the deployment of these policies after minimal
customization. Such policies can be applied to a variety of storage
environments over SAMBA and NFS protocols — from centralized
research file systems (GPFS) and tape archives (HPSS) to lab and
department resources like network-attached storage devices.

We chose this architecture over a more monolithic system be-
cause it allows us to use tools that are well-suited to their specific
tasks, while taking advantage of expertise that already exists in aca-
demic cyberinfrastructure environments. Researchers can benefit
from the extensive logging and user-friendly interface for moni-
toring DAGs provided by Airflow. IT specialists can scale the per-
formance of the system as the needs of the research group change.
The ability to define data policies as DAGs using an accessible and
widely used programming language like Python enables researchers
in addition to IT specialists to author data policies. Finally, unlike
systems like iRODS [4], this architecture does not use an abstrac-
tion layer over the data storage systems and data can be handled
in its native form, thus allowing researchers to keep their existing
workflows unchanged.

2.2 Metadata Management
The architecture of the metadata management service is shown
in Figure 2. At the core of the system are two RESTful APIs for
file system and metadata manipulation. The file system API allows
for manipulating the contents of the file system or downloading
files remotely. Access to file manipulation functions can be disabled
to comply with security protocols at each deployment environ-
ment. The metadata API allows the creation, editing, deletion and
searching of metadata entries associated with file objects. The user
interacts with the system through a mobile-friendly web UI, but



A Lightweight Framework for Research Data Management PEARC ’19, July 28-August 1, 2019, Chicago, IL, USAMetadata Management for Live Data

Automated Workflows and SDA Transfers

2

Metadata Catalog and Search
DatabaseDatabase

Web UI

Angular JS

Filesystem API

Extractors

URI ExifTool

Backends

Database
Image 

File
SearchIn

dex

Core

| HTTP

SearchIn
dex

Search 
Index

Metadata API
Research 

File Systems NAS

File Storage

File Monitor
(watchdog, inotify, kqueue)

File Monitor
(watchdog, inotify, kqueue)

File Monitor
(watchdog, inotify, kqueue)

Tape 
Archive

Figure 2: Architecture for the metadata management service.

the decoupling of the UI from the APIs means that other interfaces,
such as command-line, can be integrated into the system.

The metadata API is meant to be extensible to accommodate a va-
riety of data management needs across fields. Metadata is attached
to file system objects in the form of JSON strings that are stored
in a catalog. The metadata is also indexed in a Solr engine, which
facilitates intelligent search and faceted browsing. Also part of the
metadata API are metadata extractors, which are configured per file
type or location using regular expressions. Additional extractors
can be added to the system by extending a simple Python interface.
Auto-extraction of metadata is triggered either through the UI by a
user, or by the file monitor service installed at each storage system
being monitored by the metadata manager. The file monitor detects
changes to the file system and uses the metadata API to update
the metadata catalog and the search engine. Thus, when a file is
moved, its metadata is reassigned to the correct file system object.
When a new file enters the system, the relevant auto-extractor is
triggered, and when a file is deleted, the metadata entries for it are
removed. This combination of auto-extraction and file monitoring
is transparent to the users and alleviates the necessity to manually
enter and maintain the metadata in the vast majority of cases. It
also allows the users to complete the majority of their file manipula-
tion through familiar OS interfaces, while only using the metadata
manager UI in specific cases when metadata needs to be modified
or searched.

The metadata service is customizable in a number of additional
ways. It makes use of different storage back-ends, so that a range
of database storage systems can be supported for the metadata
catalog. In addition, the metadata service allows specification of
extraction rules based on regular expressions to accommodate nam-
ing conventions that research labs can use to automate metadata
extraction.

2.3 Integration
The data policies and metadata services can be deployed separately
or integrated more closely. For example, the metadata API can be
accessed from DAGs that implement an archiving policy based on
metadata fields. The use of RESTful API and a flexible JSON schema
for metadata makes this possible without any further development
on the metadata service. The structure of the data policy service
also does not change for such an integration, but only the addition
of a new policy (DAG) is required.

3 DEPLOYMENT AND IMPLEMENTATION
The data management framework arose from many conversations
with researchers about their specific needs and workflows. As such,
it was important that we could receive and integrate feedback fre-
quently throughout the development process. To this end, we have
automated the deployment of the different parts of the framework
using Vagrant. This allows us to rapidly stand-up and configure
iterations of the frameworks, receive feedback, and incorporate it
in the development process.

Because this framework opens up research data to web access, it
was important that it integrates with university security protocols.
Both the metadata manager and the data policies service use sin-
gle sign-on campus authentication. Authorization to the services
can be further restricted using LDAP queries to restrict access to
specific groups in a directory service. Access to university cyberin-
frastructure resources is handled through Kerberos-based keytab
security, NFS and Samba.

For the long-term sustainability of this framework, it is important
that we use established open-source tools as well as widely used and
accessible programming languages such as Python and JavaScript,
for which there is significant expertise on university campuses.
This has allowed us to leverage existing resources and expertise in
providing a highly-customizable framework.

4 FUTUREWORK
The framework is actively being extended to adapt to new use cases.
We are currently leveraging the framework for the development
of a centralized service for managing archives that allow users to
schedule large-scale transfer to archival storage. Such a service
allows users to better manage their storage in a centralized system
where they are subject to quotas. From the service provider per-
spective, the framework facilitates more effective use of various
types of storage systems.

We are also planning to extend themetadatamanagement service
with additional storage backends, as well as interfacing with cloud
storage resources such as Box.

Of central importance to the framework is the file-monitoring
component that ensures metadata is updated and extracted as users
manipulate their files. This component depends on a diverse set
of operating system and kernel APIs for file monitoring. We are
working on benchmarks to assess the scalability of file monitoring
to different file systems and environments.



PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA D. Nikolov and E. Tuna

Finally, we are continuing to pilot the framework for different
research groups in order to validate and extend its supported func-
tions.

ACKNOWLEDGMENTS
We would like to thank Professor Hui-Chen Lu and Bruna Kutche
from the Gill Center for Biomolecular Science at Indiana University
for their enthusiasm and feedback as first adopters of the framework
described here. We are also thankful Wolf Hey for his feedback and
support towards wider adoption.

REFERENCES
[1] Declan Butler. 2005. A new leaf. Nature 436 (06 07 2005), 20–21. https://doi.org/

10.1038/436020a
[2] I. Foster. 2011. Globus Online: Accelerating and Democratizing Science through

Cloud-Based Services. IEEE Internet Computing 15, 3 (May 2011), 70–73. https:
//doi.org/10.1109/MIC.2011.64

[3] Apache Foundation. 2019. Apache Airflow. https://airflow.apache.org. (2019).
[Online; accessed 20-February-2019].

[4] Arcot Rajasekar, Mike Wan, Reagan Moore, and Wayne Schroeder. 2006. A proto-
type rule-based distributed data management system. (2006).

[5] R. W. Watson. 2005. High performance storage system scalability: architecture,
implementation and experience. In 22nd IEEE / 13th NASA Goddard Conference
on Mass Storage Systems and Technologies (MSST’05). IEEE Computer Society,
Washington, DC, USA, 145–159. https://doi.org/10.1109/MSST.2005.17

[6] Nancy Wilkins-Diehr. 2007. Special Issue: Science Gateways — Common Com-
munity Interfaces to Grid Resources. Concurrency and Computation: Prac-
tice and Experience 19, 6 (2007), 743–749. https://doi.org/10.1002/cpe.1098
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.1098

https://doi.org/10.1038/436020a
https://doi.org/10.1038/436020a
https://doi.org/10.1109/MIC.2011.64
https://doi.org/10.1109/MIC.2011.64
https://airflow.apache.org
https://doi.org/10.1109/MSST.2005.17
https://doi.org/10.1002/cpe.1098
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.1098

	Abstract
	1 Introduction
	2 Architecture
	2.1 Data Policies
	2.2 Metadata Management
	2.3 Integration

	3 Deployment and Implementation
	4 Future Work
	Acknowledgments
	References

