PHASTA Science Gateway for High Performance Computational
Fluid Dynamics

Extended Abstract

Cameron W. Smith
Rensselaer Polytechnic Institute
Troy, NY
smithcl1@rpi.edu

Suresh Marru®
Indiana University
Bloomington, Indiana
smarru@iu.edu

ABSTRACT

The Parallel Hierarchic Adaptive Stabilized Transient Analysis
(PHASTA) software supports modeling compressible or incom-
pressible, laminar or turbulent, steady or unsteady flows in 3D
using unstructured grids. PHASTA has been applied to industrial
and academic flows on complex, as-designed geometric models
with over one billion mesh elements using upwards of one million
compute cores. The PHASTA Science Gateway (phasta.scigap.org)
brings these increasingly critical technologies to a larger user base
by providing a central hub for simulation execution, simulation
data management, and documentation. Researchers and engineers
using the gateway can easily define and execute simulations on the
TACC Stampede2 Skylake and Knights Landing nodes without be-
ing burdened by the details of remote access, the job scheduler, and
filesystem configuration. In addition to simplifying the simulation
execution process, the gateway creates a searchable archive of past
jobs that can be shared with other users to support reproducibility
and increase productivity. Our poster presents the construction
of the gateway with Apache Airavata, the simulation definition
process, applications it currently supports, and our ongoing efforts
to expand functionality, the user base, and the community.
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1 INTRODUCTION

PHASTA is a parallel [20] computational fluid dynamics (CFD)
analysis package that supports simulation of complex physical flow
systems on unstructured meshes [4, 21, 22, 29, 35] using a stabilized
finite element method [34]. Users define PHASTA simulations using
CAD modeling systems, mesh generators, and attribute definition
interfaces. Problem definition information is then uploaded to the
PHASTA science gateway for execution on high performance com-
puting systems. When analysis completes the user downloads a
subset of the outputs for post-processing.

Sections 2 and 3 review the technologies supporting PHASTA
simulation definition and the gateway’s implementation. Next, in
Section 4, the goals of the NSF SI2-S212 conceptualization grant to
generalize and improve workflows and tools for the greater fluid
dynamics community are introduced. Section 5 closes the abstract
with a summary of capabilities and ongoing developments.

2 PHASTA SIMULATION WORKFLOW

A typical PHASTA workflow is composed of the following steps: (1)
problem definition and mesh generation, (2) processing user inputs
to produce data structures PHASTA needs for analysis execution,
(3) partitioning and load balancing [30], (4) adaptive flow analysis,
and (5) post-processing. The PHASTA science gateway automates
the execution of steps (2) through (4) on a remote HPC system.
Step (4) uses in-memory streams [28] to iteratively execute the
PHASTA analysis with mesh adaptation, dynamic load balancing,
and reordering functionality provided by the PUMI unstructured
mesh services library [8, 11, 24]. Steps (1) and (5) are executed on a
user’s system using interactive tools.

In Step (1), user’s define a PHASTA simulation based on a geo-
metric model; a specific combination of topological and shape in-
formation for the problem domain’s boundary [25, 33]. The source
of this information can be full-featured solid modeling kernels (e.g.,
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Figure 1: Graphical interfaces for Gmsh mesh generation
(top) and Simmetrix SimModeler mesh generation and prob-
lem definition (bottom).

OpenCASCADE [23], Parasolid [26], ACIS [2], and Granite [19]), a
simplified kernel [7], or voxel image data [12], Problem definition
information is associated with geometric model entities via a graph-
ical interface, such as Simmetrix SimModeler [27], or via a plain
text file. Mesh generation is supported via script, API, and graphical
interfaces. Figure 1 depicts the Gmsh [5, 6] and SimModeler mesh
generation interfaces. Functionalities also exist to import meshes
from ALFR UGRID [13] and other file formats. Importing meshes
in this manner comes at the cost of reduced geometric model infor-
mation which limits the ability of mesh adaptation to improve the
geometric approximation of the mesh to the model.

After a job completes, PHASTA checkpoint files can be loaded
into Kitware’s ParaView [31] to visualize analysis fields on the
partitioned mesh.

3 PHASTA SCIENCE GATEWAY PORTAL

3.1 Design and Implementation

Providing PHASTA analysis capabilities through a web-based inter-
face allows users to execute complex simulations on HPC systems
without being encumbered by remote access, filesystem, and job
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Figure 2: PHASTA Gateway interactions with Apache Aira-
vata and computational resources.

scheduler interactions. Users are also given a built-in simulation
data management functionality; the inputs, outputs, and execu-
tion environment metadata associated with a completed gateway
simulation is archived for later reuse and sharing with other users.
Reuse and sharing of a given problem can support fixing errors, per-
formance tuning, studying the effect of model or input parameter
changes, and publication. Embedding data management and remote
execution into the gateway enables experts in those domains to pro-
vide simplified interfaces that let researchers and engineers focus
on gaining knowledge from their simulations.

The PHASTA gateway is implemented over the open source
Apache Airavata [14] software framework. To focus on the commu-
nity, PHASTA gateway is leveraging SciGaP services, the Science
Gateway Platform as a Service [17, 18], a hosted platform based
on Apache Airavata. Leveraging a common platform builds upon
identity management, accounts and authorization, and the ability
to access multiple computational resources. Figure 2 displays the
functional features provided by Apache Airavata middleware that
connect the gateway web client interface to multiple remote HPC
and other resources.

3.2 Access

PHASTA gateway users are given access by the gateway’s ad-
ministrators. User identity management is handled by the Key-
cloak [1] identity management system. Keycloak supports user
access through either existing organizational accounts via a fed-
erated authentication system, or by creation of local accounts in
the gateway. Sets of users with common access and analysis needs
can be placed into groups [16]. Specifically, groups can be used
to associate users with HPC system allocations, to limit resource
usage on a system, and control which workflows and software
deployments are accessible. For example, a group of workshop par-
ticipants may have access to a limited number of compute nodes
and wall time relative to a group created for researchers. Likewise,
research groups may need access to a version of the software that
may include experimental physics models that are not ready for a
production or training environment.

3.3 Experiment Execution

The PHASTA gateway allows its users to create, execute, moni-
tor, share, and manage computational jobs, which are referred to
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as ‘experiments’ in the gateway interface. Launching an experi-
ment in the gateway submits a computational job to the XSEDE
Stampede?2 cluster. Apache Airavata communicates with Stampede2
through secure SSH connections. Gateway administrators can gen-
erate SSH key+token pairs as needed using Credential Store [10] in
the gateway. PHASTA problem information required for simulation
execution is specified in the gateway interface through file uploads
and fields for STRING, INTEGER and FLOAT values.

Once the job is submitted, the job status in the cluster will be
periodically updated. Additionally, users can provide their email
addresses to receive messages with these status updates. At job
completion or failure the gateway will display all the output files
moved from the Stampede2 to the gateway’s data storage area.
Output could be in the form of files as well as text derived from
specified files by the gateway admin at the application configuration
level.

PHASTA experiments that require more wall time than allowed
by the system for a single batch job can be automatically split into
a sequence of chained jobs. The number of jobs needed depends
on the HPC system’s job queue limits. For example, if the user
requests 5760 minutes for a job in the Stampede2 ‘normal’ queue
whose max wall-time is 2880 minutes, the gateway will submit two
jobs, breaking each at the maximum wall-time limit. The second
PHASTA job in the sequence will restart using a PHASTA file-based
checkpoint-restart mechanism [3].

4 EXPANDING THE COMMUNITY

A next generation of tools, like the PHASTA Science Gateway and
the SimVascular Supercomputing Gateway [15, 32], are needed by
the broader fluid dynamics community to accelerate discovery, facil-
itate deeper interactions between experimental and computational
practitioners, and provide graduate students in the field a high
quality set of interoperable components to base their work on. To
support the definition of extensible end-to-end workflows the tools
need to leverage best practices from fluid dynamics research, data
analytics/science, and software engineering. Towards this, the Com-
putational Fluid Dynamics Software Infrastructure (CFDSI) [9] is
being conceptualized over the next 18 months to determine the spe-
cific capabilities needed, and their operational requirements in an
HPC environment. In this first year of CFDSI, an all-hands kick-off
meeting and several sub-committee meetings will be held to formal-
ize these software details. Topics include distinguishing modeling
and discretization errors, defining comprehensive benchmarks and
tests to verify and validate components, post-processing high-order
field information, and reducing the barrier for verification against
experiments. Although these capabilities are focused on supporting
the fluid dynamics community, improvements in functionality, per-
formance, and usability of the tools that provide them will impact
other problem domains governed by partial differential equations.

5 CLOSING REMARKS

The PHASTA Science Gateway simplifies the execution of paral-
lel, adaptive PHASTA simulations by hiding the details on data
management and job submission for complex workflows on high
performance computing system. For new PHASTA users the gate-
way reduces the technical barrier to interactions with the graphical
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and text-based tools for problem definition, mesh generation, and
post-processing. Ongoing efforts with the Science Gateway team
are addressing gateway usability improvements and conceptualiza-
tion of a software institute for CFDSI: Model, Data, and Analysis
Integration for End-to-End Support of Fluid Dynamics Discovery
and Innovation.
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