
Django Content Management System Evaluation and
Integration with Apache Airavata

Stephen Paul Adithela
Indiana University

Bloomington, Indiana
stephenpaul2727@gmail.com

Marcus Christie
Science Gateways Research Center

Bloomington, Indiana
machrist@iu.edu

Suresh Marru
Science Gateways Research Center

Bloomington, Indiana
smarru@iu.edu

Marlon Pierce
Science Gateways Research Center

Bloomington, Indiana
marpierc@iu.edu

ABSTRACT
ApacheAiravata is an open-source software framework that enables
scientific researchers to compose, manage, execute and monitor
large-scale applications and workflows on distributed computing re-
sources. Airavata is currently leveraged by many science gateways
to perform computations on shared clusters. Currently, Gateway
Administrators managing content on their websites will require the
assistance of the Airavata Developer Team to make the slightest of
change to their website. This paper will overcome this challenge
by presenting the benefits of integrating a content management
system. It will also briefly evaluate various options available for
choosing a Content Management Platform which complies with
the Airavata Architecture Standards. This feature will enable re-
searchers with minimal web design knowledge to easily manage
content across their gateway. It is also poised to drastically increase
the productivity of the Airavata developer team and the gateway
administrators.

CCS CONCEPTS
• Software and its engineering → Integrated and visual de-
velopment environments; Object oriented frameworks;

KEYWORDS
ACM proceedings, text tagging, Apache Airavata, Science Gateway,
Wagtail CMS, Django Framework

ACM Reference Format:
Stephen Paul Adithela, Marcus Christie, Suresh Marru, and Marlon Pierce.
2018. Django Content Management System Evaluation and Integration with
Apache Airavata. In PEARC ’18: Practice and Experience in Advanced Research
Computing, July 22–26, 2018, Pittsburgh, PA, USA. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3219104.3229272

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6446-1/18/07.
https://doi.org/10.1145/3219104.3229272

1 INTRODUCTION
Apache Airavata Django Portal is a web portal for Apache Aira-
vata [4] which is currently provides user interface for gateway
administrators to create and manage resources for their applica-
tions. It is based on the popular Python-based web framework
called Django. This portal is now equipped with a Content Man-
agement System (CMS) which internally uses Wagtail CMS. With
the integration of the CMS, the portal is now capable of providing
gateway administrators, the ability to manage content on their own
without any assistance from the Airavata Developer team. It will
also provide them the ability to deploy changes on their own and
the ability to style the content on their website without writing a
single piece of code. We will discuss why the CMS based approach
will help researchers who are leveraging Apache Airavata and how
we arrived at choosing a CMS for Apache Airavata.

2 PROBLEM STATEMENT
Apache Airavata is currently being used by many science gate-
ways as a middleware between their job submissions and the Grid
systems. One of the Airavata components is the Airavata Django
Portal (User Interface) which will be used by researchers to create,
submit and manage jobs.

Researchers who leverage Airavata Django Portal request a
unique theme for their gateway which adheres to their organi-
zation’s web standards. To solve this problem, Airavata Developer
team designed unique themes for each gateway with the help of
gateway administrators. The following are the problems that are
still left unanswered by this approach.

(1) Gateway administrators with no knowledge of web design
won’t be able to make changes and maintain their website
on their own.

(2) Gateway administrators with no knowledge of web design
will delegate the task of making changes to the Airavata
Developer team.

(3) Each Gateway theme is maintained in a separate Github
repository which will add additional management responsi-
bilities for the Airavata Developer team.

1

https://doi.org/10.1145/3219104.3229272
https://doi.org/10.1145/3219104.3229272


PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA Stephen Paul Adithela, Marcus Christie, Suresh Marru, and Marlon Pierce

3 CONTENT MANAGEMENT SYSTEM
A content management system[6] is an application which supports
creation and modification of digital content. It typically supports
multiple users being able to manage content in a collaborative en-
vironment.

CMS features vary widely. CMS functionalities include format
management, history editing, version control, indexing, search, and
retrieval. By their nature, content management systems support
the separation of content and presentation. A typical CMS consists
of two major components:

(1) CMA: A CMA is a content management application which is
a front-end user interface which lets users even with limited
knowledge of web applications to add, modify and remove
content from a website without the intervention of the soft-
ware creators.

(2) CDA: A CDA is a content delivery application that compiles
the information modified by the user and updates the web
application.

Not only does a Content Management System(CMS) solve all the
issues with the current Airavata User Interface, It will also provide
many advantages as shown below:

• Ability to create a unified look and feel
• Reusable components
• Version control
• Easy Deployment
• Reduced need to code from scratch
• Secure Permission Management
• SEO Friendly URLs
• Support for various databases
• Media Management

Although a Content Management System (CMS) has its advan-
tages, using it requires the user to have a good understanding of
how the it works. A limited amount of training is required for the
content editors before they are given access to the system itself.

4 DJANGO ARCHITECTURE
Airavata Djagno Portal is currently utilizing Python-based web
framework called Django which encourages rapid development.
Django supports the MVT Pattern which is similar to the very fa-
miliar MVC Pattern.

MVC Pattern: [3] MVC Pattern is a common architectural pat-
tern followed in designing software applications. This pattern di-
vides the modules into three parts. They are model, view, and con-
troller. This is done to separate internal representations with the
information that is presented to the users.

MVT Pattern: [3] The model-view-template pattern is slightly
different from the MVC Pattern. Here the controller part is taken
care of by the framework itself. This leaves us with the ability to
configure models and templates. The template is an HTML file
mixed with Django Template Language (DTL). The models are the

Figure 1: A Normal Django Application’s internal Architec-
ture Diagram

Django representations of tables inside the database.

[1] Django is open source and free. Out of the box, it provides
with the application structure and files everything pre-configured.
So, the developer only needs to worry about the important aspects
of the software he is making.

Django framework is structured such that it is very modular
and versatile. A new module can be easily added into the Django
application in the form of an app. Each app inside the Django
application is modularized to perform a particular task. This versa-
tility and extensibility of Django makes it a perfect framework for
implementing a content management system.

5 CHOOSING A CMS
Many websites around the world are using a Content Management
System to facilitate editors of their website easily manage content
without going through the meticulous and arduous routines of Soft-
ware Development. Some of the most used Content Management
Systems (CMS) around the world are as follows:

(1) WordPress
(2) Drupal
(3) Joomla
(4) TextPattern
Although these content management systems are versatile and

are used by many major companies, they are not suitable for the

2



Django Content Management System Evaluation and Integration with Apache AiravataPEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA

current Airavata Django Portal Architecture. The following are
some reasons why these content management systems would be
bad choices for the current Airavata Django Portal.

(1) Integration Problem: Airavata Django Portal is just miss-
ing CMS capabilities. These content management systems
are written in various programming languages and don’t
have a way of integration with an existing Django Applica-
tion.

(2) BlackBox: If the developer want to change the underlying
code of these content management systems according to
his requirements. Due to the large codebase understanding
underlying implementations can be an arduous task.

(3) Database Constraints: Some of these content management
systems are restricted to using a particular database. Inte-
grating with the existing Airavata Django Portal will make
the application use two databases which can carry a lot of
overhead.

(4) LanguageConstraints: Python’s just-in-time compilermakes
it faster to compile and run scripts when compared to PHP.
Django Framework by itself checks for security vulnera-
bilites like SQL Injection, CSRF, etc. where the developer is
given the task of making these security advancements on
PHP which makes Django Python more secure.

(5) Heavyweight: By default, these CMS’s come all the features
which are not required for the application under considera-
tion. This will result in bloated code and will occupy a huge
amount of disk space.

(6) Additional Dependencies: Because these frameworks are
built using different languages and different software depen-
dencies, the dependencies list which already includes the
dependencies for the Airavata Django Portal will increase
even more which in turn makes the application heavy and
puts a lot of load on the hosted web server.

From the above analysis, it is clear that if we leverage an existing
CMS which itself is a Django application, we can reduce a lot of
overhead. Currently, there are two powerful well-maintained open-
source content management systems implemented using Django
framework, they are Django CMS & Wagtail CMS.

5.1 Django CMS
Django CMS[7] is a free and open source content management
system platform for publishing content on the World Wide Web
and intranets. It is written in Django and Python. Django CMS re-
leased in 2007. Currently, it is backed by Divio AG a Swiss software
company. Django CMS is a mature content management system
which can provide CMS capabilities to complex web apps built
using Django. It also has great community support both for de-
velopers and users. The project is open sourced and under active
development. Django CMS is very versatile, easily upgradeable,
extendable and secure.

5.2 Wagtail CMS
Wagtail CMS[8] is a free and open source content management
system written in Python. It is currently maintained by a team of

open source contributors. Wagtail is still a developing project which
started back in 2014. It is not as mature as Django CMS, but it has
gained traction very quickly and development process is also faster.
It offers support for all the content management functionalities. It
also provides support for some important features like Revision
Control which are not present in Django CMS

The Following is a table which will differentiate between the
two CMS platforms based on the following categories:[5]

Features Content Management Systems
Django CMS Wagtail CMS

WYSIWYG Editor Yes Yes
Revision Management No Yes

App Integration Yes Yes
Media Asset Management Yes Yes

Pypi Installable Yes Yes
508 Compliant[2] Yes Yes

Granular Permissions Yes Yes
Multi-Device Support Partial Yes Yes

Plugin Support Yes Yes
Multi-site Support Yes Yes

Tagging No Yes
Migrations Yes Yes

Internationalization Yes Yes
SEO Friendly Yes Yes

Community Support Great Good

Table 1: Differences between wagtail and Django CMS based
on the evaluation criteria.

From the above comparison, both Wagtail and Django CMS are
pretty promising and integrate well with the existing Airavata
Django Portal. Both of them offer all the features of a typical
content management system.

Django CMS excels over Wagtail on the following aspects:

(1) None to little knowledge of Django Framework is required
by the developers for implementing Django CMS as opposed
to Wagtail which requires the developer to have good knowl-
edge of Django.

(2) Configuring and Initializing Django CMS is effortless com-
pared to configuring Wagtail CMS.

(3) Integrating an existing Django application is straightforward
and creating custom plugins is uncomplicated.

But Wagtail stands out as the best future-proof option for
implementing CMS functionalities into the existing Airavata
Django Portal. The following are the main reasons:

(1) Configuring Wagtail will result in one additional depen-
dency whereas configuring Django CMS requires multiple
additional dependencies. This makes Django CMS hard to

3



PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA Stephen Paul Adithela, Marcus Christie, Suresh Marru, and Marlon Pierce

manage with new updates and the complexity will keep
increasing in the future.

(2) Django CMS does not have Revision Control and Version
management integrated. It also doesnâĂŹt have third-party
plugins which can perform this essential task. On the other
hand, Wagtail has this feature inbuilt.

(3) Django CMS is a black box where internal implementations
cannot be customized easily. While wagtail offers customiza-
tion to its core models. In this sense, Django CMS performs
all the essential tasks but might be limited in scope as the
software progress towards the future.

(4) Django CMS provides an admin panel which is integrated
with the default Django Admin. Integration will be difficult
for a Django application which already has a custom admin
application which is the case for Airavata Django Portal.

(5) Wagtail is database-centric and doesn’t disturb the file or
the folder structure of the Airavata Django Portal code base.

6 AIRAVATA DJANGO PORTALWITH
WAGTAIL

Airavata Django Portal is now configured to provide content
management functionalities to the researchers and Gateway
administrators with the integration of Wagtail. Wagtail comes with
a login interface for accessing the CMS dashboard.

Airavata Django Portal uses Keycloak which is an open-source
software product to allow single sign-on with identity management
and access management. The Wagtail Login functionality is
configured to authenticate by re-using the existing credentials in
the Keycloak instead of creating new credentials again for each
gateway researcher and maintaining a separate database. ’Admin’
Privilege is the highest access level for a CMS user. An admin
will be able to create/edit/update/delete any page in the database.
Other groups of CMS users include ’Editors’ and ’Moderators’.
Moderators will have higher access rights than an editor. An Editor
will responsible for editing content and making changes on the
website. Moderator will have the right to approve those changes to
be published live or suggest any modifications. Any Authorized
user with Access Level ’Admin’, ’Moderator’ or an ’Editor’ can
access the CMS Dashboard.

The CMS dashboard hosts the content which reflects Airavata
Django Portal live website. An authorized CMS user can perform
some/all of the following actions based on his access level in the
dashboard:

(1) Create, Update, Delete and Modify a Page
(2) Publish/Unpublish a page
(3) Add new users, new groups of CMS users
(4) Add Custom CSS
(5) Add/Delete Images
(6) Add/Delete Documents
(7) Update Site Details
(8) Revert a page back to previously published version
(9) Add permissions to a Page/Image/Document.

With the integration of the CMS, all the Science Gateways
which leverage Apache Airavata Middleware are converted from
using themes in separate GitHub Repositories to use the CMS
directly to style their website. This integration has rendered the
process of hosting website themes in separate repositories obsolete.
Sufficient amount of documentation is provided to the Gateway
administrators to make them knowledgeable of using CMS.

The revamped architecture will promote easy management of
the Airavata Django Portal for the Airavata Developer team.
Python Scripts are created which can load a particular gateway
themewith one single command. For example, pythonmanage.py
load_seagrid_data will load the Seagrid Gateway website on the
same host environment without again having to configure the envi-
ronment for the other website. This makes the process of switching
between gateways easy and intuitive. This functionality will make
the current Airavata Django Portal Architecture very simple, pow-
erful and versatile.

7 CONCLUSION
Integrating a Content Management System into the existing

Airavata Django Portal has proved to be far more intuitive,
simple and easy to manage than the previous versions. Gateway
administrators and researchers who generally don’t have much
knowledge of web development can now add images, documents
and static pages to their website with full control.

Airavata Developer Team will not be burdened with the
arduous tasks of making changes to the gateway portals upon
request and deploying them to production. This process can
now be accomplished by the Gateway administrators/researchers
themselves which will make the overall deployment process
faster and simple. Content Editors for each gateway can now
effortlessly modernize their website or build upon an existing gate-
way theme by loading the desired gateway and building on top of it.

Integrating CMS into the existing Airavata Django Portal has sim-
plified the Software Development Life-Cycle of the Apache Airavata
powered Science Gateways. It also enhanced the productivity of
Airavata Developer team and the gateway administrators.

REFERENCES
[1] 2013. The web framework for perfectionists with deadlines | Django. https:

//www.djangoproject.com/
[2] 2018. 508 Compliance in the United States of America. https://www.section508.

gov/manage/laws-and-policies
[3] 2018. Django Overview. https://www.tutorialspoint.com/django/django_

overview.htm
[4] SureshMarru, Lahiru Gunathilake, Chathura Herath, Patanachai Tangchaisin, Mar-

lon Pierce, Chris Mattmann, Raminder Singh, Thilina Gunarathne, Eran Chinthaka,
Ross Gardler, et al. 2011. A high-level approach to computer document formatting.
In Proceedings of the 2011 ACM workshop on Gateway computing environments.
ACM, 21–28.

[5] Daniel Roy-Greenfeld and Audrey Roy-Greenfeld. 2018. Django Content Manage-
ment Systems evaluation criteria and differences. https://djangopackages.org/
grids/g/cms/

[6] Wikipedia. 2018. Content Management System Definition and Features. https:
//www.wikipedia.org/

[7] Wikipedia. 2018. Django CMS Introduction. https://en.wikipedia.org/wiki/
Django_CMS

[8] Wikipedia. 2018. Wagtail CMS Introduction. https://en.wikipedia.org/wiki/
Wagtail_(CMS)

4

https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.section508.gov/manage/laws-and-policies
https://www.section508.gov/manage/laws-and-policies
https://www.tutorialspoint.com/django/django_overview.htm
https://www.tutorialspoint.com/django/django_overview.htm
https://djangopackages.org/grids/g/cms/
https://djangopackages.org/grids/g/cms/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://en.wikipedia.org/wiki/Django_CMS
https://en.wikipedia.org/wiki/Django_CMS
https://en.wikipedia.org/wiki/Wagtail_(CMS)
https://en.wikipedia.org/wiki/Wagtail_(CMS)

	Abstract
	1 Introduction
	2 Problem Statement
	3 Content Management System
	4 Django Architecture
	5 Choosing a CMS
	5.1 Django CMS
	5.2 Wagtail CMS

	6 Airavata Django Portal With Wagtail
	7 Conclusion
	References



