
Publishing and Consuming GLUE v2.0 Resource
Information in XSEDE

Warren Smith
Texas Advanced Computing

Center
University of Texas at Austin
10100 Burnet Road (R8700)

Austin, TX 78758-4497
wsmith@tacc.utexas.edu

Sudhakar
Pamidighantam

Research Technologies, UITS
Indiana University
2709 East 10th St.

Bloomington, IN 47408
pamidigs@iu.edu

John-Paul Navarro
Mathematics and Computer

Science Division
Argonne National Laboratory

9700 S. Cass Avenue
Argonne, IL 60439

navarro@mcs.anl.gov

ABSTRACT
XSEDE users, science gateways, and services need a vari-
ety of accurate information about XSEDE resources so that
they can use those resources effectively. They need informa-
tion to decide which resources to use, to track their usage
of resources, and to provide services to their users. To sup-
port this, XSEDE is deploying a new system to gather and
publish static and dynamic resource information. This pa-
per gives an overview of the resource information available
with this new system, describes the design and performance
of the software and services that make up this system, and
finally provides examples of how to use this new resource
information.

1. INTRODUCTION
XSEDE [35] is an infrastructure funded by the National

Science Foundation that integrates a set of large resources
for scientific simulation and analysis. These resources sup-
port a variety of users and usage models. Large-scale com-
pute resources are available for tightly coupled parallel sim-
ulations, loosely coupled analyses, or workflows that consist
of a number of different types of computation. Visualization
resources allow users to analyze their results, and data stor-
age resources allow short- to long-term storage of user data.
In addition, new resource types, such as cloud computing
and data analysis resources, are being added to XSEDE.

The mission of the XSEDE project is to help users make
use of the diverse types of resources that are part of XSEDE.
We accomplish this in a variety of technical and nontechnical
ways, such as by providing training and advanced user sup-
port and by deploying common software and services across
XSEDE resources. As part of this effort, XSEDE has de-
ployed services that provide a variety of information about
XSEDE. Such information is important so that users, sci-
ence gateways, and tools have accurate information about

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

XSEDE ’15, July 26 - 30, 2015, St. Louis, MO, USA
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-3720-5/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2792745.2792770

XSEDE and can therefore make good decisions about how
to use XSEDE.

This paper describes new software and services that pro-
vide static and dynamic resource information to XSEDE
users. XSEDE initially used legacy TeraGrid information
services that provided less information and that information
that was typically out of date by the time it was received
by consumers. Our new design addresses these problems
in several ways. First, we created a new piece of software
called the Information Publishing Framework to efficiently
gather information from XSEDE resources and publish it.
This software gathers more information than was gathered
during TeraGrid. Second, we adopt GLUE v2.0, a standard
information model and JSON schema that can represent a
wide variety of grid resources, services, and software. Third,
we deliver information very quickly from producers to con-
sumers via a new XSEDE publish/subscribe messaging sys-
tem.

This paper also provides examples of how to use this new
information system. We describe a general approach to re-
ceiving and processing information from the XSEDE mes-
saging system. In addition, this paper includes two specific
examples of services which already use this information sys-
tem. The first example is the SEAGrid science gateway,
which uses GLUE v2.0 information to maintain a represen-
tation of the current state of XSEDE. The second example
is the Karnak queue prediction service that uses historical
resource information to train predictors and uses current re-
source information when making predictions. The final sec-
tion of this paper describes the current status of this work
and our future plans.

2. RESOURCE INFORMATION
A number of different types of resource information are

valuable to users and tools. In this work, we focus on pro-
viding the following:

1. Summaries of the static and dynamic state of resources.
A tool such as the XSEDE user portal can use this in-
formation to provide an at-a-glance overview of XSEDE.

2. Descriptions of the software installed on a resource. A
science gateway can use this information to determine
which resources have the software needed to perform
an analysis.



3. Description of queued jobs. A service can use this
information to suggest where to submit new jobs so
that they will execute quickest.

4. Individual job status. A workflow tool can use the
status of individual jobs to trigger succeeding tasks.

In addition to making this information available, its time-
liness is also important. For example, if a scheduling ser-
vice has queue information that is several minutes old, it
would not know about recent large job submissions from
other sources and could submit jobs to a system that is now
busy. Another example is that a complex workflow can exe-
cute much more quickly if it is notified of job state changes
within seconds, rather than within minutes.

3. DESIGN
The architecture we use to provide the resource informa-

tion described in the previous section is shown in Figure 1.
The lowest level of the architecture consists of information
gatherers running on XSEDE resources. These gatherers are
implemented by using the Information Publishing Frame-
work [14, 13] and gather information from batch schedulers
and module files. When the information gatherers have new
information, they publish it to the messaging system.

The middle layer of our architecture is a fault tolerant
publish/subscribe messaging system. The messaging system
allows subscribers to register interest in message types and
accepts messages from publishers. When messages arrive,
the messaging system delivers them to the subscribers that
wish to receive them. This approach decouples information
producers from consumers but can still deliver high volumes
of information with low latency.

The top layer of the architecture is consumers of resource
information. This layer consists of tools such as the SEA-
Grid science gateway [6] and the Karnak queue prediction
service [31]. These tools subscribe for the types of resource
information they wish to receive and then process and act
on the information they receive.

3.1 Information Publishing Framework
XSEDE is deploying the Information Publishing Frame-

work (IPF) software to gather information about XSEDE
resources. IPF is implemented in Python and executes in-
formation gathering and publishing workflows. These work-
flows are defined as JSON [15] documents and they specify
a set of steps to execute. Each step can require input data,
can produce output data, and can publish representations
of data. Many steps have been implemented to discover in-
formation about resources and to monitor resource state. A
typical workflow consists of a number of information gather-
ing steps along with a few steps that publish representations.
Steps are currently available that can publish to local files,
REST services, and messaging services.

Since steps specify what data they require and produce,
IPF can construct workflows based on partial information.
A common case is that a JSON workflow specification sim-
ply lists the steps that should be executed and IPF connects
these steps into a workflow based on the input and out-
put types of the steps. Another example is that if a work-
flow does not specify steps to generate some inputs that are
needed by specified steps, IPF examines its catalog of steps
and adds the needed steps to the workflow.

Workflows can run to completion relatively quickly or they
can run continuously. The first type of workflow can be run
out of cron and can be used to run a few commands or look at
status files and publish that information. The second type
of workflow can be run as init processes and continuously
monitor log files or periodically run commands to gather
and publish new information.

IPF can be used to gather and publish a wide variety of
information. In this work, we focus on using IPF to gather
static and dynamic information about resources by interact-
ing with batch scheduling systems and module files. IPF
has steps to retrieve job, queue, and node information from
scheduling systems such as HTCondor, OpenStack, LSF,
Moab, SGE, SLURM, and Torque. IPF can also retrieve
module information from the modules package and from
lmod. In the next section, we describe how IPF publishes
this information using the JSON rendering of the GLUE
v2.0 standard.

3.2 GLUE v2.0
The Grid Laboratory for a Uniform Environment (GLUE)

schema was originally developed by several multi-institution
physics project to describe the resources and services avail-
able to them [9, 4]. This data was stored in Lightweight
Directory Access Protocol servers and accessed by users and
other services to help decide how best to process physics data
generated by instruments and how best to perform physics
simulations. The original GLUE effort was successful and
widely adopted in that community.

This success, the applicability of GLUE to other distrib-
uted infrastructures, and the identification of improvements
to GLUE resulted in the GLUE v2.0 effort in the Open Grid
Forum [20]. This effort first defined a generic GLUE v2.0
information model [3] and then defined different representa-
tions of this model, called renderings.

A number of entities are defined in GLUE v2.0. In addi-
tion to generic entities, there are entities to describe compute
infrastructure and ones to describe storage infrastructure. In
this work, we use the following entities to describe compute
infrastructure:

• ComputingManager and ComputingService, which pro-
vide a summary of a batch scheduler.

• ComputingShare, which describes a queue including a
summary of the jobs associated with the queue.

• ComputingActivity, which provides detailed informa-
tion about a batch job.

• ExecutionEnvironment, which describes a set of identi-
cal
nodes including the number of nodes that are avail-
able, down, or in use.

• ApplicationEnvironment and ApplicationHandle, which
provide informabion about an installed software pack-
age and its associated module.

XSEDE organizes these entities into several different docu-
ments for publication, as described in Section 3.3.

XSEDE uses the JSON rendering because JSON is the
representation preferred by many consumers of information
in XSEDE, such as the XSEDE user portal and science gate-
ways. JSON is popular because it is a simple way to repre-



resource.site.xsede.org

info1.dyn.xsede.org

RabbitMQ 
Service

info2.dyn.xsede.org

RabbitMQ 
Serviceclustering

Karnak

AMQP client

Module 
Files

Scheduler 
Logs

Scheduler 
Commands

Information Publishing Framework

AMQP client

GLUE v2.0 
JSON

resource.site.xsede.org

Module 
Files

Scheduler 
Logs

Scheduler 
Commands

Information Publishing Framework

AMQP client

SEAGrid

AMQP client

GLUE v2.0 
JSON

Figure 1: XSEDE publish/subscribe messaging architecture with GLUE v2.0 information.

sent machine-parsable information and is also easy for hu-
mans to read.

3.3 Publish/Subscribe Messaging
XSEDE has deployed a publish/subscribe messaging ser-

vice to distribute information gathered from XSEDE re-
sources to consumers that wish to receive this information.
The publish/subscribe messaging model deployed by XSEDE
consists of the following:

• Producers of information, which publish messages to
the
messaging service as they have new information to
publish. A message consists of data and a routing key
that provides a small amount of metadata about the
message. Messages are delivered to exchanges in vir-
tual hosts in the messaging service. An exchange is
a logical location to publish messages to, and a virtual
host is a logical container of other entities.

• Consumers, which create a queue in the messaging
service to hold messages until the consumer is ready
to receive them. The consumer then binds a queue to
an exchange with a filter that describes what messages
should be forwarded from the exchange to the queue.

• The messaging service, which receives messages, routes
messages to queues, and then sends messages to con-
sumers. If the consumer is connected when a message
arrives in its queue, the message is sent to it immedi-
ately. If the consumer is not connected, messages will
be sent to the consumer when it does connect.

An important characteristic of this approach is that infor-
mation is delivered very quickly from where it is produced
to the tools that use the information.

We selected a standard messaging protocol called the Ad-
vanced Message Queuing Protocol (AMQP) [1, 2]. Several
production-quality messaging services implement this stan-
dard, as well as a wide variety of client libraries. Selecting

a standard protocol allows us to more easily switch to a
different client library or messaging service if we encounter
problems with specific software.

We selected RabbitMQ [25] as our AMQP service. Rab-
bitMQ is a production-quality messaging service that pro-
vides mechanisms for scalability and fault tolerance and has
been shown to have high performance [32, 26].

While some of the published information is not sensitive
and can be made available to any consumer, other infor-
mation (detailed job descriptions) is sensitive and can be
made available only to XSEDE participants. A consumer
that wants sensitive information must authenticate to the
messaging service, typically via an X.509 certificate, and be
authorized. All publishers of information must authenticate,
again typically via an X.509 certificate.

XSEDE has configured the four exchanges shown in Ta-
ble 1 in the xsede virtual host to distribute GLUE v2.0
information. The glue2.applications exchange receives
messages that describe the modules available on an XSEDE
resource. The messages use the XSEDE resource name as
their routing key, and the message contains a JSON doc-
ument that uses ApplicationEnvironment and Application-
Handle GLUE v2.0 entities to describe modules. These doc-
uments are published relatively infrequently (hourly) and
can be consumed without having to authenticate to Rab-
bitMQ.

The glue2.compute exchange receives messages that pro-
vide high-level information about a resource. The messages
use the XSEDE resource name as their routing key and con-
tain a JSON document with ComputingService, Comput-
ingManager, ComputingShare, and ExecutionEnvironment
GLUE v2.0 entities. These documents are published fre-
quently (every minute or two) so that consumers have accu-
rate information about the dynamic state of XSEDE. These
messages can also be consumed without authentication.

The glue2.computing_activities exchange receives mes-
sages that contain the detailed queue state of a resource.
The routing key is again the XSEDE resource name. The



Table 1: RabbitMQ exchanges.
Exchange Information Type Authenticate
glue2.applications Module definitions No
glue2.compute Compute resource description No
glue2.computing activities Queue state Yes
glue2.computing activity Job information Yes

content of each message is a JSON document containing a
list of GLUE v2.0 ComputingActivity entities. Each of these
entities describes a job being managed by the batch sched-
uler for that resource. These documents are also published
frequently (every minute or two) so that consumers have ac-
curate information about the dynamic state of XSEDE. A
consumer must authenticate and be authorized to consume
these messages.

The glue2.computing_activity exchange receives mes-
sages that contain updates for individual jobs being man-
aged by XSEDE resources. The routing keys for these mes-
sages are more complex and include the batch scheduler job
identifier, the local user who owns the job, and the name of
the XSEDE resource. The extra information in these routing
keys allows consumers to more effectively filter the messages
(for example, only job information for a specific user). Each
message contains a single ComputingActivity with updated
information about that job. These messages are published
as jobs state change entries appear in the batch scheduler
logs of XSEDE resources.

4. PERFORMANCE
In previous work [32], we evaluated the performance of

RabbitMQ under loads as large as and larger than the loads
that XSEDE places on it. We found that RabbitMQ easily
handles this volume of messaging traffic in terms of through-
put (messages per second) and bandwidth (MB per second).
In addition we found that a significant amount of excess ca-
pacity is available.

To verify these results, we observed the age of the GLUE
v2.0 messages received from the XSEDE RabbitMQ services.
These messages include a creation time attribute that we
compared against the current time on the receiving server.
These results are shown in Table 2. As the table shows, in-
formation is available to the client at most 10 seconds after
the producer created the GLUE v2.0 document. On aver-
age, information is available in less than 2 seconds. When
these observations were made, information about the TACC
Stampede system was consistently the oldest. The reason is
that Stampede was publishing more than 5 times the amount
of information as the other systems, primarily because of the
number of jobs it was managing at this time. It therefore
tooks longer to gather, organize, and publish these larger
documents.

We note that system clocks are generally well synchro-
nized across XSEDE, but this is not guaranteed. Our obser-
vations did not indicate that any of the clocks were signifi-
cantly unsynchronized: The time the client reported receiv-
ing each message was after the time the publisher reported
creating it, and while it took several seconds longer to re-
ceive information from Stampede, this is explained by the
amount of information being organized and sent from Stam-
pede.

Table 2: Age of received GLUE v2.0 information
Age (seconds)

Exchange Maximum Mean
glue2.compute 5.8 2.1
glue2.computing activities 10.1 3.5
glue2.computing activity 1.1 0.4

5. USING XSEDE GLUE V2.0
Using the GLUE v2.0 information published by XSEDE is

relatively easy. Many programming languages have AMQP
client libraries so consumers can connect to RabbitMQ to
receive GLUE v2.0 messages. These libraries support client
authentication via X.509 certificates or username/password,
as XSEDE requires for a consumer to receive messages con-
taining job information.

Typically, the programming language used by the con-
sumer has several JSON parsing libraries. For example,
Python has the json module and Java has the Jackson li-
brary. JSON libraries often parse JSON documents into
generic programming structures such as lists and maps that
are relatively easy to use. A more advanced approach is
to use a JSON library that parses JSON documents into
specific GLUE v2.0 objects. The Open Grid Forum GLUE
working group provides such Plain Old Java Objects (POJO)
for use with the Jackson data processing toolkit [16]. These
objects are generated from the GLUE v2.0 JSON schema
definition using jsonschema2pojo [17] and some post pro-
cessing.

Figure 5 provides an example of how to use the Rab-
bitMQ Java client library, Jackson, and the POJO classes
from the Glue working group to handle GLUE v2.0 docu-
ments published by XSEDE. This example consumes from
the glue2.compute exchange, which does not require au-
thentication. To connect to one of the exchanges that re-
quires authentication, see the examples on the RabbitMQ
SSL [27] web page for how to configure the ConnectionFac-
tory.

The example connects anonymously to the xsede virtual
host of the RabbitMQ service running on info1.dyn.xsede.

org. When creating the connection factory, no authentica-
tion information is provided so the default user guest and
password guest is used. An exchange glue2.compute al-
ready exists to receive messages from IPF, so the code only
creates a queue and binds the queue to the exchange using
a filter of #. This filter indicates that the consumer wants
to receive messages with any routing key. The example then
begins to consume messages, and handleDelivery() is in-
voked whenever a message arrives. For each message, the
Jackson library is used to parse it into the GLUE v2.0 POJO
objects and the consumer then handles these objects as it
likes.



info1.dyn.xsede.org

RabbitMQ 
Service

gridchem.uits.iu.edu

Relational 
Database

Middleware 
Server

Glue2 
Service

AMQP client

System descriptions

glue2.compute

Figure 2: Integration of SEAGrid gateway and
XSEDE GLUE v2.0 publishing.

5.1 SEAGrid
Our first example of using GLUE v2.0 information in

XSEDE is the Science and Engineering Applications Grid
(SEAGrid) science gateway [30]. SEAGrid, previously known
as the Computational Chemistry Grid [6], is a virtually
organized community cyberinfrastructure [34]. The cyber
component of the infrastructure is made up of several high-
performance XSEDE resources, a middleware server, and
mass storage facilities to archive user data. The organization
has provided over 6.4 million XSEDE service units of allo-
cated CPU time to execute 15,280 jobs from 12 applications
of in the last year. The infrastructure provides a Java-based
desktop client application named GridChem/DESSERT. Users
typically select an application that is supported by the or-
ganization from a menu and subsequently choose an HPC
resource to execute the application. Inputs and other job pa-
rameters such as memory, number of processors, wall time,
and a queue are also specified by the user. The estimation
of these job parameters is currently based on user intuition
and experience, and estimating across the resources avail-
able in XSEDE is difficult. The GridChem/DESSERT client
should ideally provide the dynamic conditions such as the
how loaded the resource is in terms of the number of jobs
queued ahead and the queue waittime and runtime estimates
based on the user’s initial choice and perhaps also advise the
user of other configurations that are estimated to have com-
parable or better completion times for the run. Between
the estimated start and runtimes and the dynamic informa-
tion regarding resources users would have all the information
needed to select the best resource and queue for their job.
The queue waittime estimation for XSEDE resources has
been previously implemented [8]. Runtime predictions are
application dependent, and work is ongoing to provide rea-
sonable predictions for some SEAGrid applications. Here we
discuss the inclusion of dynamic resource information into
the GridChem/DESSERT client.

SEAGrid currently receives XSEDE GLUE v2.0 informa-
tion as shown in Figure 2. A Glue2 Service, which is an
independent process from the rest of the SEAGrid services,
subscribes to the glue2.compute RabbitMQ exchange and
receives updates on the state of XSEDE resources. This

Figure 3: Resource-level load information for a given
HPC system available in GridChem client.

modular architecture allows components of SEAGrid to be
updated or replaced individually without affecting the entire
system.

As this service receives state updates, it writes to the SEA-
Grid relational database to set the current number of jobs in
the running, waiting, or other states for each queue and for
each resource as a whole. It also writes the current CPU and
memory load of each resource (fraction of total CPU/mem-
ory in use). The SEAGrid middleware server then provides
this information to GridChem/DESSERT graphical clients,
and it is presented during the job submission process as de-
picted in Figure 3. The availability of this dynamic informa-
tion for various queues and resources helps users make the
best choice for their run.

5.2 Karnak
Our second example of using XSEDE GLUE v2.0 infor-

mation is the Karnak service [33, 31], which provides pre-
dictions about how long batch jobs will wait in scheduling
queues on XSEDE systems before they begin to execute.
Users can request predictions for jobs that they want to sub-
mit or that have already been submitted. For a hypothetical
job, the user provides the number of cores, the requested ex-
ecution time, and a list of queue/system combinations. For
an already submitted job, the user simply provides a job
identifier and a system name. In either case, the service
replies with a predicted wait time (represented either as a
duration to wait or as a date/time the job will start) and a
prediction interval that indicates how confident the service
is of the prediction. For example, the service might reply to
a query with 4 hours ±1 hour for queue Q1 on system S1
and 6 hours ±3 hours for queue Q2 on system S2.

The service creates predictions using machine learning
where a predictor is trained by using past information and is
then used to make predictions about what will occur in the
future. To train predictors, the Karnak service needs histor-
ical information about job wait times on XSEDE resources.
For each job, this information includes a description of the
job (for example, the number of cores and the requested wall
time) and a description of the queue state at the time a pre-
diction would have been made (for example, right before the



info1.dyn.xsede.org

RabbitMQ 
Service

karnak.xsede.org

Archiver

AMQP client

Relational 
Database

Experience 
Generator

Prediction 
Service

System 
Information

AMQP client

Queue descriptions
Job descriptions System descriptions

glue2.computing_activities
glue2.computing_activity

glue2.compute

Figure 4: Integration of the Karnak service and
XSEDE GLUE v2.0 publishing.

job is submitted). The description of the queue state con-
sists of characteristics such as the number of jobs waiting
to run and the amount of cores and node hours requested
by waiting jobs. To make a prediction, the Karnak service
needs information about the job being predicted and about
the current state of XSEDE queues.

Figure 4 shows how the Karnak service obtains the infor-
mation it needs and processes that information. An Archiver
daemon, written in Python, is subscribed to the glue2.

computing_activities and the glue2.computing_activity
RabbitMQ exchanges. The daemon receives descriptions of
queue states over the first exchange and updates on individ-
ual job states over the second exchange. The Archiver dae-
mon writes the queue and job information that it receives
to the relational database. A second System Information
daemon is subscribed to the glue2.compute exchange and
is receiving descriptions of system hardware and the queues
used for managing jobs on a system. This daemon also up-
dates the relational database with this information.

As this information is added to the database, a daemon is
generating experiences from that information, and the pre-
diction service is using these experiences to train predictors.
The predictors in the prediction service then use informa-
tion about the current state of XSEDE systems to provide
predictions to users.

6. RELATED WORK
XSEDE is a continuation of TeraGrid [5] and is still partly

using the TeraGrid information services. There are a vari-
ety of TeraGrid/XSEDE information subsystems [18], and
these subsystems are only partially integrated. The Inte-
grated Information Service (IIS) is implemented using the
Globus WS-MDS [29] and contains information about re-
source configuration, resource load, and the software and
services deployed on systems.

The Open Science Grid (OSG) is a consortium of eighty
sites that advances science through open distributed com-
puting [22]. OSG uses an older version of GLUE to publish
resource and software information using a Condor-based Re-
source Selection Service (ReSS) service [10]. The GLUE
data is collected centrally into an LDAP-based server called
the Berkeley Database Information Index (BDII) [21]. For

monitoring, OSG utilizes the Resource and Service Valida-
tion (RSV) software [28] consisting of a client that executes a
number of tests and publishes it to a centralized accounting
service called Gratia [11].

The Partnership for Advanced Computing in Europe
(PRACE) spans twenty-four countries to provide a super-
computing infrastructure for Europe [23]. Like XSEDE,
PRACE utilizes Inca to verify its software infrastructure, the
PRACE Common Production Environment [24], and uses
perfSONAR for network monitoring [24].

The European Grid Infrastructure (EGI) is a federation of
approximately forty resource providers to deliver a sustain-
able, integrated and secure computing services to European
researchers and their international partners [7]. For moni-
toring, EGI uses Gstat [12], a monitoring solution built on
top of Nagios [19]. EGI has deployed several instances of the
ActiveMQ message broker and is experimenting with using
messaging in their infrastructure. One example is publish-
ing status information gathered by tools such as Nagios to
these brokers.

7. STATUS AND FUTURE WORK
A pilot version of the information system described here

has been deployed on XSEDE since 2014. This deployment
includes two RabbitMQ servers, publishing of GLUE v2.0
JSON documents, and information gathering from many
XSEDE resources. This pilot has been used to validate our
approach as well as refine and fix bugs in the IPF software.
At the time of publication, this information system is being
tested by XSEDE Operations. Once the software passes this
testing, it will be deployed in production on XSEDE.

The GLUE v2.0 information provided via messaging has
been integrated into the SEAGrid science gateway and the
Karnak queue prediction service. SEAGrid is using this in-
formation to keep an up-to-date representation of the dy-
namic state of XSEDE resources and provides this infor-
mation to its users so that they can better select where to
perform their analyses. The Karnak service uses GLUE v2.0
information to know the current state of XSEDE resources
and to maintain an archive of jobs and the past state of re-
sources. Karnak uses this information to train queue wait-
time predictors and to make predictions given the current
state of XSEDE.

In the future, XSEDE will publish additional GLUE v2.0
information such as Services and Endpoints so that users
and tools can learn what services are available in XSEDE
and how to contact these services. We also expect to publish
GLUE v2.0 storage entities to describe the storage systems
attached to XSEDE resources. Additionally, XSEDE will
publish additional types of information via RabbitMQ, such
as Inca and Nagios test results, and will explore publishing
other types of information, such as accounting data.

While many consumers are best served by a publish/sub-
scribe messaging interface, other consumers prefer a query/
response interface. To support this, XSEDE plans to deploy
a REST interface that will be layered atop an information
warehouse that receives its information via the messaging
service. This warehouse will contain both current informa-
tion and historical information.

The RabbitMQ messaging system that we have deployed
has a significant amount of unused capacity. We will inves-
tigate using this unused capacity to provide Messaging as
a Service so that XSEDE users and gateways can publish



custom information for their own use.

Acknowledgments
This material was based upon work was supported in part
by the National Science Foundation under grant 1053575
and the U.S. Department of Energy Office of Science under
Contract DE-AC02-06CH11357.

8. REFERENCES
[1] S. Aiyagari et al. AMQP: Advanced Message Queuing

Protocol Specification Version 0.9.1. Technical Report
0.9.1, AMQP Working Group, November 2008.

[2] AMQP: Advanced Message Queuing Protocol.
http://www.amqp.org.

[3] S. Andreozzi, S. Burke, F. Ehm, L. Field, G. Galang,
B. Konya, M. Litmaath, P. Millar, and J. Navarro.
GLUE Specification v. 2.0. Technical Report
GFD-R-P.147, The Open Grid Forum, March 2009.

[4] S. Burke, S. Andreozzi, and L. Field. Experiences with
the GLUE Information Schema in the LCG/EGEE
Production Grid. In Proceedings of the International
Conference on Computing in High Energy and Nuclear
Physics (CHEP 2007), 2007.

[5] Charlie Catlett. The Philosophy of TeraGrid: Building
an Open, Extensible, Distributed TeraScale Facility.
In Proceedings of the 2nd International Symposium on
Cluster Computing and the Grid, 2002.

[6] R. Dooley, K. Milfeld, C. Guiang, S. Pamidighantam,
and G. Allen. From Proposal to Production Lessons
Learned Developing the Computational Chemistry
Grid Cyberinfrastructure. Journal of Grid Computing,
4:195–208, 2006.

[7] European Grid Infrastructure – towards a sustainable
infrastructure. http://www.egi.eu.

[8] Y. Fan, S. Pamidighantam, and W. Smith.
Incorporating Job Predictions into the SEAGrid
Science Gatewa. In Proceedings of the XSEDE’14
Conference, July 2014.

[9] L. Field and M. W. Schulz. Grid Deployment
Experiences: The path to a production quality LDAP
based grid information system. In Proceedings of the
Conference for Computing in High-Energy and
Nuclear Physics, pages 723–726, 2004.

[10] G. Garzoglio, T. Levshina, P. Mhashilkar, and
S. Timm. ReSS: A Resource Selection Service for the
Open Science Grid. Technical report, Fermilab, 2008.

[11] Gratia. https://www.opensciencegrid.org/bin/view/
Accounting/WebHome.

[12] Gstat 2.0. http://gstat2.grid.sinica.edu.tw.

[13] M. Hanlon, W. Smith, and S. Mock. Providing
Resource Information to Users of a National
Computing Center. In Proceedings of the XSEDE13
conference, July 2013.

[14] The Information Publishing Framework.
https://bitbucket.org/wwsmith/ipf.

[15] Introducing JSON. http://www.json.org.

[16] JSON Java examples from the Open Grid Forum Glue
working group. https://github.com/OGF-GLUE/
JSON/tree/master/examples/java.

[17] Generate Plain Old Java Objects from JSON or
JSON-Schema. http://www.jsonschema2pojo.org.

[18] L. Liming et al. TeraGrid’s integrated information
service. In Proceedings of the 5th Grid Computing
Environments Workshop, GCE ’09, pages 8:1–8:10,
New York, NY, USA, 2009. ACM.

[19] Nagios - The Industry Standard In IT Infrastructure
Monitoring. http://www.nagios.org.

[20] Open Grid Forum. http://www.ogf.org.

[21] The Open Science Grid.
http://www.opensciencegrid.org.

[22] R. Pordes et al. The Open Science Grid. Journal of
Physics: Conference Series, 78, 2007.

[23] PRACE Research Infrastructure - The top level of the
European HPC ecosystem.
http://www.prace-project.eu.

[24] First Annual Operations Report of the Tier-1 Service.
http://www.prace-ri.eu/IMG/pdf/D6-1\ 2ip.pdf.

[25] RabbitMQ: Messaging that just works.
http://www.rabbitmq.com.

[26] RabbitMQ Performance Measurements, part 2.
http://www.rabbitmq.com/blog/2012/04/25/
rabbitmq-performance-measurements-part-2/.

[27] RabbitMQ SSl Support.
https://www.rabbitmq.com/ssl.html.

[28] The Resource and Service Validation (RSV) Service.
http//www.opensciencegrid.org/bin/view/
Documentation/Release3/RsvOverview.

[29] J. M. Schopf, L. Pearlman, N. Miller, C. Kesselman,
and A. Chervenak. Monitoring the grid with the
Globus Toolkit MDS4. Journal of Physics: Conference
Series, 46, 2006.

[30] N. Shen, Y. Fan, and S. Pamidighantam. E-science
infrastructures for molecular modeling and
parametrization. Journal of Computational Science,
5(4):576 – 589, 2014.

[31] W. Smith. A Service for Queue Prediction and Job
Statistics. In Proceedings of the 6th Gateway
Computing Environments Workshop (GCE ’10),
November 2010.

[32] W. Smith and S. Smallen. Building an Information
System for a Distributed Testbed. In Proceedings of
the XSEDE’14 conference, July 2014.

[33] The Karnak Prediction Service.
http://www.karnak.xsede.org.

[34] N. Wilkins-Diehr, D. Gannon, G. Klimeck, S. Oster,
and S. Pamidighantam. TeraGrid Science Gateways
and Their Impact on Science. IEEE Computer,
41(11):32–41, 2008.

[35] XSEDE: eXtreme Science and Engineering Discovery
Environment. http://www.xsede.org.



import com . f a s t e rxml . jackson . databind . ObjectMapper ;
import com . rabbitmq . c l i e n t . ∗ ;

public class Subscr ibeGlue2 {
public stat ic void main ( St r ing [ ] argv ) throws Exception {

ConnectionFactory f a c t o r y = new ConnectionFactory ( ) ;
f a c t o r y . setHost ( ‘ ‘ i n f o 1 . dyn . xsede . org ’ ’ ) ;
f a c t o r y . s e tPort ( 5 6 7 2 ) ;
f a c t o r y . s e tV i r tua lHos t ( ‘ ‘ xsede ’ ’ ) ;
Connection connect ion = f a c t o r y . newConnection ( ) ;
Channel channel = connect ion . createChannel ( ) ;

S t r ing queueName = channel . queueDeclare ( ) . getQueue ( ) ;
channel . queueBind (queueName , ’ ’ g lue2 . compute ’ ’ , ’ ’\# ’ ’ ) ;
channel . basicConsume (queueName , true ,new Glue2Consumer ( ) ) ;

System . out . p r i n t l n ( ‘ ‘∗∗∗∗ To e x i t p r e s s CTRL+C ∗∗∗∗ ’ ’ ) ;
while ( true ) {

try {
Thread . s l e e p (1∗1000 ) ;

} catch ( Inter ruptedExcept ion e ) { }
}

}
}

class Glue2Consumer implements Consumer {
public Glue2Consumer ( ) { }
public void handleConsumeOk ( St r ing consumerTag ) { }
public void handleCancel ( S t r ing consumerTag ) { }
public void handleCancelOk ( St r ing consumerTag ) { }
public void handleShutdownSignal ( S t r ing consumerTag , ShutdownSignalException s i g ) { }
public void handleRecoverOk ( St r ing consumerTag ) { }

public void handleDe l ivery ( S t r ing consumerTag ,
Envelope envelope ,
AMQP. Bas i cPrope r t i e s p rope r t i e s ,
byte [ ] body ) throws java . i o . IOException {

System . out . p r i n t l n ( enve lope . getRoutingKey ( ) ) ;
ObjectMapper mapper = new ObjectMapper ( ) ;
try {

org . og f . g lue2 . Glue2 g lue2 = mapper . readValue ( body , org . og f . g lue2 . Glue2 . class ) ;
i f ( g lue2 . getComputingService ( ) . s i z e ( ) > 0) {

// handle d e s c r i p t i o n o f s chedu l e r
}
i f ( g lue2 . getComputingShare ( ) . s i z e ( ) > 0) {

// handle d e s c r i p t i o n s o f queues
}
i f ( g lue2 . getExecutionEnvironment ( ) . s i z e ( ) > 0) {

// handle d e s c r i p t i o n s o f node t ype s
}

} catch (com . f a s t e rxml . jackson . core . JsonParseException e ) {
// handle parse excep t i on

}
}

} Figure 5: Example code for receiving GLUE v2.0 documents via RabbitMQ.


