
Please cite this article as: M.A. Christie, A. Bhandar, S. Nakandala et al., Managing authentication and authorization in distributed science gateway middleware, Future
Generation Computer Systems (2019), https://doi.org/10.1016/j.future.2019.07.018.

Future Generation Computer Systems xxx (xxxx) xxx

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Managing authentication and authorization in distributed science
gatewaymiddleware
Marcus A. Christie a, Anuj Bhandar b, Supun Nakandala c, Suresh Marru a,∗,
Eroma Abeysinghe a, Sudhakar Pamidighantam a, Marlon E. Pierce a

a Science Gateways Research Center, Pervasive Technology Institute, Indiana University, Bloomington, Indiana 47408, USA
b Intuit, USA
c University of California, San Diego, USA

a r t i c l e i n f o

Article history:
Received 19 June 2018
Received in revised form 8 July 2019
Accepted 10 July 2019
Available online xxxx

Keywords:
Identity and access management
Keycloak
Apache Airavata
Science gateways
Authentication and authorization
Cyberinfrastructure

a b s t r a c t

Establishing users’ identities and determining their permissions before they access research infras-
tructure resources are key features of science gateways. With many science gateways now relying
on general purpose gateway platform services, the challenges of managing identity-derived features
have expanded to include network-based authentication and authorization scenarios that connect
science gateway tenants, science gateway platform middleware, and third party identity provider
services, including campus identity management systems. This paper examines both architectural and
implementation considerations for integrating these services. We provide a summary case study that
further shows how end-to-end authentication and authorization can be provided between gateways,
campus authentication systems, science gateway middleware, and campus computing resources. We
conclude with observations on lifecycle management of third party components in science gateway
platform services, which is an important consideration for both selection of new technologies and
transitioning from older systems.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Managing user identity is a critical feature for science gate-
ways [1,2], which must provide secure and auditable access to
restricted resources such as supercomputers, data sets, licensed
scientific applications, and for-fee computing clouds. Science
gateways must authenticate users, decide if they are authorized
to access specific resources, manage expired accounts, and disable
compromised accounts. The basic approach is for a gateway
to provide its own user management and authentication sys-
tem that is an integral part of the gateway’s implementation.
For example, a gateway that builds over a more general pur-
pose framework such as Django, Drupal, or Joomla may use
authentication add-ons for managing users. Gateway developers
today have several additional options, building on larger trends.
First is the emergence of well-supported authentication services,
such as the InCommon Federation [3,4] that is used by many
academic institutions. Facebook, Google, GitHub and other Web-
based companies also provide free authentication services that

∗ Corresponding author.
E-mail addresses: machrist@iu.edu (M.A. Christie), anujbhan@apache.org

(A. Bhandar), snakanda@eng.ucsd.edu (S. Nakandala), smarru@iu.edu (S. Marru),
eabeysin@iu.edu (E. Abeysinghe), pamidigs@iu.edu (S. Pamidighantam),
marpierc@iu.edu (M.E. Pierce).

can be integrated into online applications. OpenID Connect [5] has
become a popular protocol for Web authentication; it builds over
the OAuth 2 authorization protocol [6]. CILogon [7] provides a
unifying authentication layer over these different providers. Thus,
gateways may outsource user authentication to various services.
The gateway may still choose to manage its users internally
through a user store (such as an attached database or LDAP
server), or it may outsource this as well; a campus-centered
gateway may for example connect to a user account system (such
as LDAP) managed by the campus cluster providers. The second
important trend has been the emergence of science gateway
platform-as-a-service offerings. These are hosted services that can
serve multiple gateway tenants simultaneously. Science gateway
platforms provide general purpose services such as user manage-
ment, data management, and job execution, while the gateway
tenant provides specific access to computational and storage re-
sources, data and applications and user interfaces geared towards
a specific user community. Gateway tenants access the gateway
platform middleware through secure, network accessible APIs.
Various patterns for interactions between gateway tenants and
gateway middleware are reviewed in [8,9], which can be mapped
to different OAuth 2 authorization grant flows. This paper con-
siders how to implement basic interactions between a gateway
tenant and multi-tenanted middleware; we use Apache Airavata
middleware [10] to illustrate the main concepts, as described in

https://doi.org/10.1016/j.future.2019.07.018
0167-739X/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.future.2019.07.018
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:machrist@iu.edu
mailto:anujbhan@apache.org
mailto:snakanda@eng.ucsd.edu
mailto:smarru@iu.edu
mailto:eabeysin@iu.edu
mailto:pamidigs@iu.edu
mailto:marpierc@iu.edu
https://doi.org/10.1016/j.future.2019.07.018


Please cite this article as: M.A. Christie, A. Bhandar, S. Nakandala et al., Managing authentication and authorization in distributed science gateway middleware, Future
Generation Computer Systems (2019), https://doi.org/10.1016/j.future.2019.07.018.

2 M.A. Christie, A. Bhandar, S. Nakandala et al. / Future Generation Computer Systems xxx (xxxx) xxx

the following section. Apache Airavata is open source software
that the authors operate as part of the Science Gateways Platform
as a service (SciGaP.org) project. We use Keycloak [11], an open
source identity management system, to implement SciGaP’s Iden-
tity and Access Management system. Keycloak can authenticate
users through a number of different mechanisms, replacing our
previous approach based on WSO2 Identity Server (WSOS IS) [12]
that was described in [8].

2. Gateway identity management and Apache Airavata

Apache Airavata is an open source software framework that
enables gateway providers to compose, manage, execute, and
monitor large scale applications and workflows on distributed
computing resources such as local clusters, supercomputers, com-
putational grids, and computing clouds. Apache Airavata is mid-
dleware that runs separately from the computational resources
that it serves; a single gateway can use many different back-
end systems to execute jobs. Science gateways access Apache
Airavata through a network accessible, programming language-
independent Application Programming Interface (API). Apache
Airavata middleware can support multiple science gateway ten-
ants simultaneously, with each tenant maintaining its own user
store, backend resources, and internal metadata description in-
stances for resources and available software. The authors operate
a hosted version Apache Airavata and other services (such as
Keycloak) needed to run a production version of the system for
client gateways.

Fig. 1 provides a high level summary of Apache Airavata. Users
authenticate to a gateway tenant, which in turn interacts with
Apache Airavata’s API server. The API server routes requests to
the appropriate internal components, which provide access to
data and metadata, execute applications on remote resources,
manage security credentials for accessing remote resources, move
data between resources, and manage notifications between com-
ponents. Internal components in Airavata are distributed and
typically exposed through Apache Thrift-based component pro-
gramming interfaces [13,14]. Airavata security is handled in two
phases. Gateway providers and power users can deploy computa-
tional resource credentials to Airavata as a one time registration
step. Users authenticate and authorize with the gateway and Aira-
vata services to use these credentials to perform computational
tasks. Gateways interact with Airavata over secured API imple-
mented with standard compliant OAuth protocols, as described
in [8].

The general interaction between Web-based gateway tenants
and Apache Airavata middleware is shown in Fig. 2; see [8] for
a full discussion. When a user logs in (Step 1), the gateway
contacts the Authorization Server (Step 1a), which redirects to a
federated authentication service such as CILogon (Step 1b) which
in turn redirects to institutional identity system (Step 1c). After
a successful authentication (Step 1d), the Authorization Server
returns an access token to the gateway. The gateway can use this
access token to request services through the API server (Step 2).
The API server validates the access token (Step 2a) and may make
additional authorization decisions.

In addition to establishing user identity, the other core ac-
tivity is securing calls between the science gateway tenant and
the Apache Airavata middleware. Airavata’s Application Program-
ming Interface (API) contains methods for both users and gateway
administrators. Regular gateway users, for example, set up and
execute computational experiments through API calls embedded
in the gateway, while administrators have access to API methods
for modifying metadata about the gateway tenant’s available
computing resources and software. Thus before executing an API
method, Apache Airavata needs to establish that the user has

successfully logged in and that the user has the appropriate
permissions.

The three major components in Fig. 2 (the Science Gateway,
the Keycloak Authorization Server, and Apache Airavata) are not
co-located and communicate over public networks, so we must
establish trust between the gateway tenant, the Authorization
Server and Airavata. This is done in the following layers. Briefly,
we must establish secure connections between the components
of Fig. 2 (preventing man-in-the-middle and similar attacks), and
we must also verify the communications from the tenant that are
initiated by user interactions through the gateway.

First, all communication between components uses TLS [15]
for connection-level security. To make tenant registration more
scalable, we do not use mutual authentication at this layer as this
requires operating a Public Key Infrastructure (PKI) [16] and only
covers point-to-point authentication between services. Second,
the gateway tenant is registered as an OpenID Connect client
with the Authorization Server and uses its client ID and secret
to securely obtain an access token (see [5,6]). Third, Airavata uses
the access token to call the userinfo endpoint of the Authorization
Server and verifies that the username in the request matches the
username returned in the userinfo response. Airavata’s Security
Manager figures out the userinfo endpoint based on the gateway
id passed in the request. Therefore, if the access token is able to
be used to successfully retrieve a response, then both the gateway
id and the user’s username have been verified.

3. Implementation details and related considerations

As discussed in [13], we believe that science gateway middle-
ware should leverage best of breed third-party systems whenever
possible, and gateway middleware developers should not rein-
vent their own versions of subsystems (such as messaging or
authentication). Science gateways and science gateway platforms
are integration technologies that need to provide a wide range of
services, including very prominently authentication and autho-
rization. Selecting third party technologies is thus an extremely
important activity. Over time, third party software will also need
to be replaced in favor of new solutions for various reasons.
Thus it is also important to future-proof the integrating gateway
system to effectively shield itself from this switchover between
systems.

Identity management in Apache Airavata provides a concrete
example. In previous work [8], we implemented the architecture
illustrated in Fig. 2 using WSO2 IS to manage authentication
and authorization. We were motivated however to find a re-
placement service when we encountered technical difficulties
integrating with CILogon. In theory, WSO2 IS supports external
identity providers, but in practice we encountered difficulties
configuring the PKI trust store so that it would accept the signing
Certificate Authority (CA) of CILogon’s SSL certificate.

We identified an alternative technology as a replacement.
Keycloak offers a feature set very similar to WSO2 IS. For exam-
ple, Keycloak provides a user store and administrative functions
for administering users, including user roles. Keycloak also pro-
vides some interesting new features. For example, Keycloak also
supports identity federation for identity providers that support
OpenID Connect or SAML.

Another interesting feature is integration with CILogon’s ad-
ministration API. The CILogon service provides an OpenID Con-
nect service including a self-service ability to register clients and
OpenID Connect endpoints for retrieving user information for
further use. Once an administrator registers a web portal with
CILogon, the client ID and client secret can be used to setup
and configure a CILogon identity provider in Keycloak. This en-
ables new gateway tenants to set up CILogon integration without
requiring any manual steps by SciGaP administrators.



Please cite this article as: M.A. Christie, A. Bhandar, S. Nakandala et al., Managing authentication and authorization in distributed science gateway middleware, Future
Generation Computer Systems (2019), https://doi.org/10.1016/j.future.2019.07.018.

M.A. Christie, A. Bhandar, S. Nakandala et al. / Future Generation Computer Systems xxx (xxxx) xxx 3

Fig. 1. Apache Airavata’s conceptual framework.

Fig. 2. Gateway-middleware integration using OpenID Connect and OAuth2.

Users of a gateway tenant who authenticate via CILogon are
automatically provisioned in Keycloak’s user store. Once the user
is authenticated during the signin process, Keycloak redirects
back to the web portal with an authorization code. The web
portal can then use the authorization code to get an access token
and retrieve the user’s profile from Keycloak. This user profile
(first name, last name, email address) will match the details that
Keycloak itself retrieves from CILogon.

Users are assigned to one or more roles to grant them access
to different subsets of Apache Airavata API methods. Keycloak
exposes a REST API that allows a gateway administrator to man-
age a user’s roles. This functionality is exposed in the web portal
to users with the admin role. Admins are able to manage the
roles assigned to a user. Typically new users are assigned to a
role which has no API access and a decision must be made by an
admin user as to which role(s) to assign the user.

User authorization occurs in the Apache Airavata API server,
which securely brokers requests to other Airavata services. When
the gateway tenant calls an API server method, it passes the user’s
access token. The API server first makes a call to Keycloak to verify
the access token is valid. If the access token is valid a second call
is made to Keycloak to get a list of roles that are assigned to the
user. The API server has a list of API methods that are accessible
to each role. The request is authorized if the user has a role that
can access the given API method.

Another design goal we had was to use Keycloak as a backend
service so that the user is never exposed to the Keycloak user
interfaces. The reason for not exposing the user to the Keycloak
user interface is simply to avoid needing to build user trust in this
additional authentication service and thus avoid user confusion.

When a user is doing a standard username–password login,
this is accomplished by using a Resource Owner Password Cre-
dentials grant flow by which the web portal directly submits
the username and password to Keycloak and gets a code that
can be exchanged for an access token. When a user is logging
in through CILogon, the web portal redirects to Keycloak with
a special query parameter indicating to Keycloak which identity
provider to redirect to for the user’s authentication. Thus, the
web portal redirects to Keycloak, which immediately redirects to
CILogon, and the user never sees the Keycloak login page.

Based on our past experience with third party identity
providers like WSO2 IS, a major design goal with the Keycloak
integration was to create abstractions for all the functionalities
needed by Airavata for managing users and their roles. Calls to
the Keycloak REST API are made indirectly through defined inter-
faces, providing a layer of separation between the core Airavata
code and the Keycloak API. This design will shield Airavata from
creating provider-specific dependencies and enable easy replace-
ability. As a part of this initiative, we developed interfaces for
Tenant Management, client configuration and user management.



Please cite this article as: M.A. Christie, A. Bhandar, S. Nakandala et al., Managing authentication and authorization in distributed science gateway middleware, Future
Generation Computer Systems (2019), https://doi.org/10.1016/j.future.2019.07.018.

4 M.A. Christie, A. Bhandar, S. Nakandala et al. / Future Generation Computer Systems xxx (xxxx) xxx

Table 1
API methods for managing new tenant requests.
Method name Description

addTenant Creates a new realm in Keycloak and creates
default realm level roles for the realm

createTenantAdminAccount Creates an admin account for the realm. This
is a special utility user account that is used
to make REST API calls to Keycloak for this
realm. (The REST API calls to create this
admin account are made using an admin
account of the master realm.)

Table 2
Client configuration API method.
Method name Description

configureClient Creates a default client to be used by the
web portal. This also adds allowed redirect
URIs for this client, to match the domain
name of the science gateway when the
tenant was created.

Table 3
API methods for user management.
Method name Description

createUser This is used to create a local user account. The
user account is created in a disabled state and
only enabled when the email address is verified
(see enableUserAccount).

enableUserAccount Enables the local user account when email
address is verified.

isUserAccountEnabled Check if account is enabled or not
resetUserPassword Updates the Keycloak User’s Credential record

with a new password

findUser Search for Keycloak users by username or email
address

updateUserProfile Updates the Keycloak User’s profile record
(called when the user updates their first name
or last name, for example)

addRoleToUser Adds a realm role to the user
removeRoleFromUser Removes a realm role from the user
getUsersWithRole Gets a list of all users with the given realm role
getUserRoles Gets a list of roles for the user with the given

username

Each of these interfaces will also help automate the process of
creating a new gateway without the need of an administrator
to manually configure the new tenant identity provider’s admin
console.

For tenant management we introduced the interface methods
shown in Table 1.

For client configuration we introduced the interface method
shown in Table 2.

For user management we introduced the interface methods
shown in Table 3.

4. Case study: LDAP integration for end-to-end authentication

A larger security problem for science gateways is end-to-end
authentication. Apache Airavata-based gateways and many others
support remote executions of computational jobs on supercom-
puters. In the XSEDE model [17], these jobs run under community
accounts. The user typically does not have an account on the
target resource and may not know it is even being used. The
gateway or gateway middleware is accountable for proper usage
and reporting of the community account. However, this model is
not adopted widely outside XSEDE, and many resource providers
(such as campus clusters) require users to use their own accounts
through the gateway in order to comply with university policies.

In our architectural approach, as illustrated in Fig. 1, there are
two authentication and authorization steps that are decoupled:
(a) the authentication of a user of a gateway and his or her
subsequent authorization to use an Apache Airavata API method,
and (b) the authentication and authorization between the Apache
Airavata middleware and the target computing resource.

Apache Airavata servers run independently of any particular
computing resource and can allow users to execute software on
multiple resources; communications use SSH and SCP and build
on the JSch libraries [18] to optimize these connections. Access to
remote resources is done with public–private key pairs. Airavata’s
Credential Store [19] creates and manages the key pairs, and the
public key can be exported to be installed on the target resource.
This step is manual and does not scale well when community
accounts cannot be used.

We describe here an approach that we are using for one gate-
way tenant, the Indiana University Cyberinfrastructure Gateway,
which links a user’s Web authentication (through IU’s Central
Authentication Service via CILogon) with access to IU clusters
over SSH via keys managed by an LDAP server maintained by IU’s
Research Technologies group. This approach provides an end-to-
end integration in which the user’s gateway authentication is tied
directly to subsequent authentications to the end resource, and it
may be of general interest and a model that can be used by other
resource providers.

In Airavata’s metadata schema [20], an SSHAccountProvisioner
can be configured for each compute resource used by a gateway.
The SSHAccountProvisioner interface defines methods for check-
ing if a user has an account on that compute resource as well as
methods for creating an account or installing an SSH key on the
compute resource.

For the IU Cyberinfrastructure Gateway we implemented an
SSHAccountProvisioner that will update an entry for the user
with an SSH public key in the compute cluster’s LDAP server.
The compute cluster’s SSHD daemon is configured to authenticate
SSH connections against public keys in the cluster’s LDAP server
(in addition to the usual method of comparing against the user’s
authorized_keys file). The SSH key is generated by Airavata’s
Credential Store service on behalf of the user and the public part
is stored in the LDAP server. This SSHAccountProvisioner is not
able to create the cluster account directly, but it can query the
LDAP server to see if the user has an account. This information
is then used in the gateway to inform the user if they need to
request an account and to provide the user details and where to
request an account (a web form must be submitted on a separate
IU web application to request a cluster account).

The IU Cyberinfrastructure Gateway only allows users with an
IU account to log into the gateway. Authentication is performed
by CILogon which redirects the user’s browser to IU’s Central
Authentication Service page. Airavata connects securely to the
compute cluster’s LDAP repository using TLS and a username and
password, credentials that are also stored in Airavata’s Credential
Store. The LDAP repository has a firewall but access between the
Airavata servers and the LDAP repository was opened up to allow
this communication.

5. Related work

Science gateway security has been examined in [2,17]. These
works are the basis of the current paper but do not consider the
details of multi-tenanted science gateway middleware.

Our previous work [8] considered a larger number of gateway-
middleware integration use cases. The basic case, depicted in
Fig. 2, assumes the user store is attached to the Authorization
server. Other cases include user stores attached to the gate-
way and user stores provided by external services (such as an



Please cite this article as: M.A. Christie, A. Bhandar, S. Nakandala et al., Managing authentication and authorization in distributed science gateway middleware, Future
Generation Computer Systems (2019), https://doi.org/10.1016/j.future.2019.07.018.

M.A. Christie, A. Bhandar, S. Nakandala et al. / Future Generation Computer Systems xxx (xxxx) xxx 5

LDAP server maintained by a department). Ref. [8] also examined
other OAuth2 grant flow cases such as those that occur when
integrating desktop interfaces.

The Globus Auth [21] service is a software-as-a-service system
that implements many of the same capabilities as Keycloak and
WSO2 IS. Globus Auth additionally provides support for groups
and is integrated with other Globus services such as file transfer.
Keycloak and WSOS IS are open source software that can be
used by gateways and middleware operators to offer identity
management services. It is possible to integrate these with Globus
Auth as well by making Globus Auth a trusted identity provider.
This would enable an Apache Airavata-based gateway to use
Keycloak-based identity management services and Globus file
transfer services.

With cloud platform services proliferating through enterprises,
similar challenges to the ones described here for gateway tenants
accessing platform services exist within industry, and solutions
exist as well. Cloud providers such as Amazon have bundled
solutions, and a few companies have dedicated standalone so-
lutions similar to the ones described in this paper. Auth0 [22]
and Okta [23] are the leaders in the commercial sector. While
these services are good for out of box solutions, they do not
necessarily cater to academic needs such as integrating with
campus identity management systems. Moreover, these services
are very expensive [24,25] and are proprietary.

Our primary consideration in this paper is authentication and
its use in enforcing API level authorization between a gateway
tenant and a multi-tenanted science gateway middleware like
Apache Airavata. However, there are many other considerations
beyond API access. For example, a user may or may not have
access to a particular computing resource or piece of software,
which involves the same API methods but not the same parame-
ters. This type of authorization goes beyond the semantics of API
calls. We enforce these with group-based authorization based on
the Apache Airavata Sharing Service [26].

6. Conclusions

This effort touches on two larger challenges faced by sci-
ence gateways. First, gateways no longer need to implement all
required capabilities themselves. We refer to this as the build ver-
sus buy decision, in which a gateway development team decides
if they should use a third party piece of software or service or if
they should build what they need from scratch. The case under
consideration, identity management, has matured significantly
over the last decade, and there are a number of high quality
solutions that a gateway can choose from. The case for integrating
third party identity management and related software and ser-
vices is especially strong, given the importance of cybersecurity
to the gateway client, the middleware provider, and the resource
providers.

Although the buy option (that is, use a third party software
or service) has many advantages over the build option over the
long term, it is inevitable that the gateway will need to replace
a solution over time. In our case, WSO2 IS worked well for our
initial use cases, and we put it successfully into production, but
it failed to support new requirements that we did not initially
consider. Furthermore, even though WSO2 IS is open source
software, we realized that the modifications needed to implement
our use case were too much of a burden to implement and
maintain ourselves, and we furthermore needed to trust WSO2’s
open source governance model to make sure any changes we
made would be integrated into the main code base. Creating a
branch of an open source project that only we maintain is not a
sustainable option.

Replacing WSO2 IS with Keycloak, even though the products
have similar capabilities, was complicated by the use of WSO2
IS-specific code within our reference implementation gateway.
Keycloak also does not support XACML, which we used in WSO2
IS to make access control decisions on API access. Instead the
API server uses Keycloak’s REST API to apply a simple role based
access control as described above. This complication could have
been ameliorated by providing more wrapping coding to isolate
implementation details, which we have now done as described in
Section 3.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

This work is supported by NSF, USA Award #1339774.

References

[1] M.E. Pierce, M.A. Miller, E.H. Brookes, W. Wong, L.Y. Afgan, E.S. Gesing,
M. Dahan, S. Marru, T. Walker, Towards a science gateway reference ar-
chitecture, in: Proceedings of the 10th International Workshop on Science
Gateways, IWSG, 2018.

[2] J. Basney, V. Welch, Science gateway security recommendations, in: Cluster
Computing (CLUSTER), 2013 IEEE International Conference on, IEEE, 2013,
pp. 1–3.

[3] InCommon Federation (Accessed June 18, 2018). URL https://www.
incommon.org/.

[4] W. Barnett, V. Welch, A. Walsh, C.A. Stewart, A roadmap for using nsf
cyberinfrastructure with incommon, Tech. rep. (2011).

[5] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, C. Mortimore, Openid
connect core 1.0 incorporating errata set 1, The OpenID Foundation,
specification, 2014.

[6] D. Hardt, The oauth 2.0 authorization framework, 2012.
[7] J. Basney, T. Fleury, J. Gaynor, Cilogon: A federated x. 509 certification

authority for cyberinfrastructure logon, Concurr. Comput.: Pract. Exper. 26
(13) (2014) 2225–2239.

[8] S. Nakandala, H. Gunasinghe, S. Marru, M. Pierce, Apache airavata security
manager: Authentication and authorization implementations for a multi-
tenant escience framework, in: E-Science (E-Science), 2016 IEEE 12th
International Conference on, IEEE, 2016, pp. 287–292.

[9] R. Heiland, S. Koranda, S. Marru, M. Pierce, V. Welch, Authentication and
authorization considerations for a multi-tenant service, in: Proceedings
of the 1st Workshop on the Science of Cyberinfrastructure: Research,
Experience, Applications and Models, ACM, 2015, pp. 29–35.

[10] S. Marru, L. Gunathilake, C. Herath, P. Tangchaisin, M. Pierce, C. Mattmann,
R. Singh, T. Gunarathne, E. Chinthaka, R. Gardler, et al., Apache airavata:
a framework for distributed applications and computational workflows,
in: Proceedings of the 2011 ACM Workshop on Gateway Computing
Environments, ACM, 2011, pp. 21–28.

[11] Keycloak (Accessed June 18, 2018). URL http://www.keycloak.org/.
[12] WSO2 Identity Server (Accessed June 18, 2018). URL http://wso2.com/

identity-and-access-management.
[13] M.E. Pierce, S. Marru, L. Gunathilake, D.K. Wijeratne, R. Singh, C.

Wimalasena, S. Ratnayaka, S. Pamidighantam, Apache airavata: design and
directions of a science gateway framework, Concurr. Comput.: Pract. Exper.
27 (16) (2015) 4282–4291.

[14] S. Marru, M. Pierce, S. Pamidighantam, C. Wimalasena, Apache airavata as
a laboratory: architecture and case study for component-based gateway
middleware, in: Proceedings of the 1st Workshop on the Science of
Cyberinfrastructure: Research, Experience, Applications and Models, ACM,
2015, pp. 19–26.

[15] T. Dierks, E. Rescorla, The transport layer security (tls) protocol version
1.2, Tech. rep. (2008).

[16] R. Housley, W. Ford, W. Polk, D. Solo, Internet x. 509 public key
infrastructure certificate and crl profile, Tech. rep. (1998).

[17] V. Welch, J. Barlow, J. Basney, D. Marcusiu, N. Wilkins-Diehr, A aaaa model
to support science gateways with community accounts, Concurr. Comput.:
Pract. Exper. 19 (6) (2007) 893–904.

[18] JSch (Accessed June 18, 2018). URL http://www.jcraft.com/jsch/.

http://refhub.elsevier.com/S0167-739X(18)31472-9/sb1
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb1
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb1
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb1
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb1
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb1
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb1
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb2
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb2
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb2
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb2
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb2
https://www.incommon.org/
https://www.incommon.org/
https://www.incommon.org/
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb7
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb7
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb7
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb7
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb7
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb8
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb8
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb8
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb8
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb8
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb8
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb8
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb9
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb9
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb9
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb9
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb9
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb9
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb9
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb10
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb10
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb10
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb10
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb10
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb10
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb10
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb10
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb10
http://www.keycloak.org/
http://wso2.com/identity-and-access-management
http://wso2.com/identity-and-access-management
http://wso2.com/identity-and-access-management
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb13
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb13
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb13
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb13
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb13
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb13
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb13
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb14
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb14
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb14
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb14
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb14
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb14
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb14
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb14
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb14
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb17
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb17
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb17
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb17
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb17
http://www.jcraft.com/jsch/


Please cite this article as: M.A. Christie, A. Bhandar, S. Nakandala et al., Managing authentication and authorization in distributed science gateway middleware, Future
Generation Computer Systems (2019), https://doi.org/10.1016/j.future.2019.07.018.

6 M.A. Christie, A. Bhandar, S. Nakandala et al. / Future Generation Computer Systems xxx (xxxx) xxx

[19] T.A. Kanewala, S. Marru, J. Basney, M. Pierce, A credential store for multi-
tenant science gateways, in: Cluster, Cloud and Grid Computing (CCGrid),
2014 14th IEEE/ACM International Symposium on, IEEE, 2014, pp. 445–454.

[20] Apache Airavata API Data Model Definitions (Accessed June 18, 2018).
URL https://github.com/apache/airavata/tree/master/thrift-interface-
descriptions/data-models.

[21] S. Tuecke, R. Ananthakrishnan, K. Chard, M. Lidman, B. McCollam, S. Rosen,
I. Foster, Globus auth: A research identity and access management plat-
form, in: E-Science (E-Science), 2016 IEEE 12th International Conference
on, IEEE, 2016, pp. 203–212.

[22] auth0 (Accessed June 18, 2018). URL https://auth0.com/.
[23] Okta (Accessed June 18, 2018). URL https://www.okta.com/.
[24] Auth0 Pricing (Accessed June 18, 2018). URL https://auth0.com/pricing.
[25] Okta Pricing (Accessed June 18, 2018). URL https://www.okta.com/pricing/.

[26] S. Nakandala, S. Marru, M. Piece, S. Pamidighantam, K. Yoshimoto, T.
Schwartz, S. Sivagnanam, A. Majumdar, M.A. Miller, Apache airavata
sharing service: A tool for enabling user collaboration in science gateways,
in: Proceedings of the Practice and Experience in Advanced Research
Computing 2017 on Sustainability, Success and Impact, ACM, 2017, p. 20.

Suresh is Deputy Director of the Science Gateway
Research Center at Indiana University and a nominated
Member of the Apache Software Foundation and vice-
president of the Apache Airavata project. His research
interest is to advance the deep and wide boundaries of
computational and data sciences.

http://refhub.elsevier.com/S0167-739X(18)31472-9/sb19
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb19
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb19
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb19
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb19
https://github.com/apache/airavata/tree/master/thrift-interface-descriptions/data-models
https://github.com/apache/airavata/tree/master/thrift-interface-descriptions/data-models
https://github.com/apache/airavata/tree/master/thrift-interface-descriptions/data-models
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb21
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb21
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb21
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb21
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb21
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb21
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb21
https://auth0.com/
https://www.okta.com/
https://auth0.com/pricing
https://www.okta.com/pricing/
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb26
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb26
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb26
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb26
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb26
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb26
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb26
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb26
http://refhub.elsevier.com/S0167-739X(18)31472-9/sb26

	Managing authentication and authorization in distributed science gateway middleware
	Introduction
	Gateway identity management and Apache Airavata
	Implementation details and related considerations
	Case study: LDAP integration for end-to-end authentication
	Related work
	Conclusions
	Declaration of competing interest
	Acknowledgment
	References


