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Analyzing uncertainties in model
response using the point estimate
method: Applications from railway
asset management
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Abstract
Predicting current and future states of rail infrastructure based on existing data and measurements is essential for opti-
mal maintenance and operation of railway systems. Mathematical models are helpful tools for detecting failures and
extrapolating current states into the future. This, however, inherently gives rise to uncertainties in the model response
that must be analyzed carefully to avoid misleading results and conclusions. Commonly, Monte Carlo simulations are
used for such analyses which often require a large number of sample points to be evaluated for convergence. Moreover,
even if quite close to the exact distributions, the Monte Carlo approach necessarily provides approximate results only.
In contrast to that, the present contribution reviews an alternative way of computing important statistical quantities of
the model response. The so-called point estimate method, which can be shown to be exact under certain constraints,
usually (i.e. depending on the number of input variables) works with only a few specific sample points. Thus, the point
estimate method helps to reduce the computational load for model evaluation considerably in the case of complex mod-
els or large-scale applications. To demonstrate the point estimate method, five academic but typical examples of railway
asset management are analyzed in more detail: (a) track degradation, (b) reliability analysis of composite systems, (c) ter-
minal reliability in rail networks, (d) failure detection/identification using decision trees, and (e) track condition modeling
incorporating maintenance. Advantages as well as limitations of the point estimate method in comparison with common
Monte Carlo simulations are discussed.
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Introduction

Prognostics and health management (PHM) aims at
increasing the reliability of technical systems and foster-
ing their availability and safety with adequate and cost-
efficient maintenance.1 This, in particular, requires
suitable models for diagnosing (i.e. fault detection, iso-
lation, and failure mode identification1,2) and predicting
degradation and potential failures of the system compo-
nents based on available data and measurements which
very often are uncertain. Due to the universality of the
approach and not least because of its (financial) rele-
vance for the industry, PHM has been applied in many
technical disciplines thus far, including health manage-
ment for batteries,3 wind turbines,4 nuclear power
plants,5 as well as bridges6 or other infrastructures.

Regarding railway systems, preventive and
condition-based maintenance of the tracks, as well as
of the control and signaling equipment, is a crucial
aspect in reducing interruptions and delays in train
operations. Given its optimal implementation, it helps
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to lower maintenance costs by avoiding expensive
instant repairs when sudden failures, including possible
incidental damages, occur. To be effective in this con-
text, asset managers not only need to estimate the cur-
rent health state of the rail infrastructure and its
components, but they also need to predict future condi-
tions based on available knowledge.

For instance, there is a significant interest in model-
ing track conditions and their temporal evolution7–9

because track geometry directly influences comfort and
safety in train operations potentially making immediate
maintenance inevitable. Furthermore, predictions of
the remaining useful life (RUL) of rail infrastructure
components are very helpful or even necessary to derive
optimal maintenance strategies.10 In this context, sys-
tem redundancies in terms of routes (or parallel tracks)
in the overall network (macroscopic view) as well as
with regard to the technical layout of a given infrastruc-
ture element (microscopic view) are an essential feature
that allows keeping on operation also in case of individ-
ual failures. As a consequence, asset managers have to
consider not only the reliability of single components
but also composite systems.11 Finally, automatic failure
detection and identification helps to prioritize necessary
repair activities and allocate related resources effec-
tively. Besides some rule-based approaches,12 decision
trees,13 as well as more advanced expert systems (e.g.
based on big data and artificial intelligence),14 have
shown to be useful tools in this context.

Note that nearly all above-mentioned tasks usually
require probabilistic elements in the models used
because of the stochastic nature of failures, RUL, and
asset degradation, for instance. This, of course, means
that the resulting stochastics in the output of such mod-
els need to be taken into account as well. That is, quan-
tifying the uncertainty in the model results essentially
helps to make better decisions in maintenance
planning.1,8

Commonly, Monte Carlo (MC) simulations are used
to analyze the stochastic distribution of the model
response whenever analytical solutions are not avail-
able or are difficult to obtain.15 In contrast to that, an
interesting alternative for numerically deriving impor-
tant statistical quantities related to the model results
(such as the mean or standard deviation) is given by
the so-called point estimate method (PEM).16,17 Given
a model f : Rn ! R

l with uncertain inputs and/or para-
meters X (where X is a random variable with values in
R

n), the basic idea of the PEM is to consider very spe-
cific realizations x(1), . . . , x(N) 2 R

n of X instead of ran-
dom samples (as in the standard MC approach) and
then suitably weighting the model outputs y(i) = f(x(i))
or proper variants of it in order to obtain the requested
assessment of the uncertainty in the model response
Y= f(X). By that, usually a substantial reduction of
the number (i.e. N) of sample points to be evaluated is
achieved which consequently means that—depending
on the model under consideration—the PEM has the

potential to considerably speed up the calculation of
relevant basic statistics of the model response in case of
large-scale applications, in particular. Moreover, note
that the PEM results are easily reproducible (and some-
times even exact) because of deterministic sampling. In
contrast to that, the convergence-based approach of
MC simulations refers to (typically non-reproducible)
finite random samples and thus necessarily yields more
or less accurate, but approximate results on a random
basis only. A detailed description of the proposed
methodology follows in the next section before several
numerical examples related to railway asset manage-
ment are discussed.

Methodology

Let f : Rn ! R
l be a mathematical function (or model)

mapping an n-dimensional probabilistic input vector
X=(X1, . . . ,Xn)

T with given distribution P
X on the

l-dimensional model response Y= f(X), where the Xi

for i=1, . . . , n are stochastically independent random
variables. Thus, Y is a random variable, too, whose dis-
tribution P

Y usually is unknown. Without loss of gen-
erality, let l=1 in the following as analyzing
f=(f1, . . . , fl)

T at large is equivalent to analyzing its
one-dimensional components f1, . . . , fl separately
instead. Then, the PEM can be used for estimating the
most important statistical quantities of P

Y, such as
mean or variance as a representation of the uncertainty
in the model response, that is

E Yð Þ=E f Xð Þð Þ=
ð
R

n

f xð ÞpdfX xð Þdx ð1Þ

and

Var Yð Þ=Var f Xð Þð Þ=
ð
R

n

f xð Þ � E f Xð Þð Þð Þ2pdfX xð Þdx

ð2Þ

where pdfX : Rn ! R is the probability density function
of X. Of course, other quantities that are described by
similar integrals such as higher order (centralized)
moments, for instance, can be considered as well.

Needless to say, depending on f and the distribution
of X, it can be very difficult or even impossible to solve
these integrals analytically. This, in particular, holds
whenever f is given as a simulation or black box model
only without any tractable analytical representation.
For that reason, the PEM tries to find suitable approxi-
mations based on a small set of sample points that are
defined by so-called generator functions GF½��. For
instance, when X is a three-dimensional standard
Gaussian random variable with stochastically indepen-
dent components (i.e. Xi ;N (0, 1) for i=1, 2, 3), the
first three generator functions are defined by

GF½0� :¼ f 0, 0, 0ð ÞTg ð3Þ
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GF½6q� :¼ fðq, 0, 0ÞT, ð�q, 0, 0ÞT, ð0,q, 0ÞT,
ð0, � q, 0ÞT, ð0, 0,qÞT, ð0, 0, � qÞTg

ð4Þ

GF½6q,6q� :¼ fðq,q, 0ÞT, ð�q, � q, 0ÞT,
ðq, � q, 0ÞT, ð�q,q, 0ÞT, ðq, 0,qÞT, ð�q, 0, � qÞT,
ðq, 0, � qÞT, ð�q, 0,qÞT, ð0,q,qÞT, ð0, � q, � qÞT,
ð0,q, � qÞT, ð0, � q,qÞTg

ð5Þ

where q 2 R is a suitable scalar parameter. Further
generator functions for arbitrary n 2 N follow the same
pattern.

Let now g : Rn ! R be an arbitrary function and let
X=(X1, . . . ,Xn)

T consist of n stochastically indepen-
dent standard Gaussian components first. Then, the
PEM rests upon the following approximation scheme
with suitable weights w0, . . . ,wm 2 R that are derived
later in detail where m4nð

R
n

g xð ÞpdfX xð Þdx’w0g(GF½0�)+w1

X
g(GF½6q�)

+ � � � +wm

X
g

�
GF 6q, . . . ,6q½ �|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

m times

�

ð6Þ

The total number of sample points, thus, is given by

N=
Xm
j=0

2j
n
j

� �
ð7Þ

which often is much fewer than the hundreds or thou-
sands of sample points needed by standard MC simula-
tions in order to converge.

The case of general distributions of X, by the way,
can usually be handled with component-wise transfor-
mations of the generator functions in equation (6). For,
if Xi for any i 2 f1, . . . , ng has an arbitrary continuous
distribution with a strictly monotone cumulative distri-
bution function FXi

, one obtains that (F�1Xi 8 F)(X0i) and
Xi have the same distribution where X0i is a standard
Gaussian random variable with cumulative distribution
function F. Consequently, the only thing to do with
regard to applying the PEM scheme from equation
(6)—which was based on the assumption of standard
Gaussian random variables—is transforming each
component of the original values j0=(j01, . . . , j0n)

T of
the generator functions (where j0i 2 f0,q, � qg for all
i; cf. equations (3)–(5)) via j0i 7!ji :¼ (F�1Xi 8 F)(j0i) for
i=1, . . . , n before applying function g. For the read-
er’s convenience, Table 1 explicitly lists (approximate)
component-related transformations for the most com-
mon types of distributions, including some that do not
have a strictly monotone distribution function.

The general PEM scheme then reads

ð
R

n

gðxÞpdfXðxÞdx’w0gðt(GF½0�)Þ

+w1

X
gðt(GF½6q�)Þ

+ � � � +wm

X
gðtðGF 6q, . . . ,6q½ �|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

m times

ÞÞ
ð8Þ

where t : Rn ! R
n denotes the component-wise trans-

formation of the original generator function values as
described above. Obviously, choosing g :¼ f yields the
original integral from equation (1) and
g :¼ (f� E(f(X)))2 refers to equation (2). The remain-
ing question is how to determine the weights wj for
j=0, . . . ,m and parameter q in equations (6) and (8).

For this purpose, let X=(X1, . . . ,Xn)
T consist of n

stochastically independent standard Gaussian compo-
nents again (i.e. Xi;N (0, 1) for i=1, . . . , n) in order
to avoid the need to take account of a specific transfor-
mation as discussed above. Then, replace the general
function g in equation (6) with the monomial functions
gi, k : Rn ! R as defined by gi, k(x1, . . . , xn) :¼ xki for
i=1, . . . , n and k 2 N [ f0g. This finally yields the fol-
lowing (over-determined) system of partly (i.e. with
regard to i and odd k) redundant equations as reason-
able conditions for the weights w0, . . . ,wm 2 R based
on the corresponding raw moments of the N (0, 1)
distribution

Xm
j=0

2j
n

j

� �
wj =

ð
R

n

1pdfX xð Þdx and

qk +(�q)k
� �Xm

j=1

2j�1
n� 1

j� 1

� �
wj

=

ð
R

n

xki pdfX xð Þdx (for all k. 0)

ð9Þ

Taking only the first three raw moments into
account (i.e. k=0, 1, 2, 3) and choosing m=1, equa-
tion (9) becomes

w0 +2nw1 =1 and 2q2w1 =1 ð10Þ

Table 1. Transformation functions16,18 with erf( � ) being the
Gauss error function.

Distribution of Xi Transformation function

N (m, s) (Gaussian
distribution)

ji = m + sj0i

LogN (m, s) (Log-normal
distribution)

ji = exp m + sj0i
� �

U(a, b) (Uniform
distribution)

ji = a + b� að Þ 1
2 + 1

2 erf j0i
ffiffiffi
2
p� �� �

Exp(b) (Exponential
distribution)

ji = � 1
b

log 1
2 + 1

2 erf
j0iffiffi
2
p
� 	� 	

G a, bð Þ (Gamma
distribution) ji = ab j0i �

ffiffiffiffi
1

9a

q
+ 1� 1

9a

� 	3

W b, hð Þ (Weibull
distribution)

ji = h � �log 1�F(j0i )
� �� �1=b

Neumann et al. 3



after the elimination of all redundancies. The resulting
PEM scheme (cf. equation (6)) readsð

R
n

gðxÞpdfXðxÞdx’ 1� n

q2

� �
g(GF½0�)+

1

2q2

X
g(GF½6q�)

ð11Þ

Note that the corresponding scheme for arbitrary
distributions of X (cf. equation (8)) uses the same
weights. For some reason,16 by the way, a common
value of the remaining parameter is q=

ffiffiffi
3
p

. Moreover,
it can be shown easily that the scheme from equation
(11) is exact whenever the function g is a polynomial of
degree not greater than 3. The same naturally holds for
the more general scheme with the additional transfor-
mation t : Rn ! R

n if the composite function g 8 t has
such a form in this case.

In order to increase the accuracy of the PEM for
polynomials of higher degrees, one may choose larger
values of k and m, but at the cost of additional sam-
ple points that need to be evaluated, of course.
Consider the first five raw moments in equation (9),
for instance, where m=2. Moreover, in order to
finally guarantee exact precision for polynomials of
degree not greater than 5, join further equations
based on the non-monomial functions gi, 2jl, 2 : Rn ! R

with gi, 2jl, 2 (x1, . . . , xn) :¼ x2i x
2
l for i, l=1, . . . , n and

i 6¼ l to the conditions from equation (9) when deter-
mining the corresponding weights w0,w1 and w2 as
well as parameter q. Namely

4q4w2 =

ð
R

n

x2i x
2
l pdfX xð Þdx=1 ð12Þ

for stochastically independent Xi ;N (0, 1) and
Xl ;N (0, 1). The resulting (improved) PEM scheme
for standard Gaussian inputs X then readsð

R
n

g xð ÞpdfX xð Þdx’ 1+
n2 � 7n

18

� �
g(GF½0�)

+
4� n

18

X
g(GF½6q�)+ 1

36

X
g(GF½6q,6q�)

ð13Þ

where necessarily q=
ffiffiffi
3
p

.
As already suggested, this scheme is exact up to poly-

nomials of degree not greater than 5. That is, whenever
the function g or g 8 t, respectively, is well-approximated
by such a polynomial, the PEM can be expected to pro-
vide highly accurate results. However, it is very difficult
to say in advance how well the PEM performs when g or
g 8 t become more complex. The section ‘‘Applications’’,
therefore, discusses some of these examples using the
PEM scheme from equation (13) as default.

In this context, the PEM becomes a simple step-by-
step procedure that can easily be applied to nearly any
given model f with input variables given by the vector

X=(X1, . . . ,Xn)
T. Here, n is the number of uncertain

input variables with distributions that are expected to
be known. With regard to the model response Y= f(X),
the PEM workflow (cf. Figure 1) reads as follows:

i. Make a list of the n-dimensional tuples
j0=(j01, . . . , j0n)

T based on the pattern from
equations (3) to (5) where q=

ffiffiffi
3
p

.
ii. Compute the actual PEM sample by element-wise

transformations of the tuples from step (i) using
Table 1. This results in a set of transformed tuples
j =(j1, . . . , jn)

T. (Note that in case of standard
Gaussian components such a transformation is
not necessary.)

iii. Depending on the quantity of interest, choose
one of the following functions g for the further
computations:
(a) For E(Y) (=mean), consider the function

g : j 7! f(j)
(b) For E(Y2) (=second moment), consider the

function g : j 7! f(j)2

(c) For Var(Y) (=variance), consider the func-
tion g : j 7! (f(j)� E(Y))2 where E(Y) is the
previously derived PEM estimate for the
mean using the function from step (iii-a).
(Note that the variance can also be com-
puted via Var(Y)=E(Y2)� (E(Y))2 where
E(Y) and E(Y2) are the PEM estimates for
the mean and the second moment using the
functions from step (iii-a and b.))

(d) For E(Yk) (=kth moment), consider the
function g : j 7! f(j)k.

(Note that other statistical quantities are possi-
ble as well. Each one corresponds to a specific
definition of the function g in the PEM scheme
from equation (13).)

iv. Compute the model response values using the
function g from step (iii) based on the trans-
formed tuples j =(j1, . . . , jn)

T from step (ii).
v. Compute the weighted sum according to the

PEM scheme from equation (13) based on the
specific model response values from step (iv)
which yields the PEM estimate for the quantity
of interest.

Applications

Railway asset management usually requires tools for mon-
itoring and predicting the health states of the rail infra-
structure. These tools can rely on physical (i.e. model-
based) and/or statistical (i.e. data-driven) approaches, for
instance.1 Moreover, causes of failure need to be identified
effectively (diagnosis) in order to optimize maintenance
processes whenever malfunctions occur.

Track degradation

Regarding railway track sections, Andrews and col-
leagues19,20 proposed a quite complex Petri net model
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for simulating the interaction between all relevant pro-
cesses in track asset management. Their model includes
parts for deterioration, inspection, intervention, and
renewal. A similar Petri net model, by the way, is avail-
able for bridge maintenance,21 for instance. Figure 2
shows the degradation part of the model in an extended
version with five instead of four health states (i.e.
P0, . . . ,P4). In this context, the transitions T1, . . . ,T4

describe the durations in time (in days) after which the
system switches to the corresponding next health state.
They are considered to be stochastically independent
random variables having Weibull distributions

Figure 1. Work-flow of the PEM (exemplarily shown for the case m = 1).

Figure 2. Petri net model for track degradation.19

Figure 3. Probability density functions of the transition
times Tr.

Neumann et al. 5



W(br,hr) for r=1, . . . , 4 (see Figure 3) with para-
meters as in Table 2.

Starting from state P0 (i.e. directly after renewal or
new construction), the duration before the system
reaches the state Ps for s=1, . . . , 4 is defined then by

~Ts :¼
Xs
r=1

Tr ð14Þ

Thus, the expectation and standard deviation of ~Ts

(in days) are given by

E ~Ts

� �
=
Xs
r=1

E Trð Þ=
Xs
r=1

hrG 1+
1

br

� �
ð15Þ

and

s ~Ts

� �
=Var ~Ts

� �1
2 =

Xs
r=1

Var Trð Þ
 !1

2

=
Xs
r=1

h2
r G 1+

2

br

� �
� G 1+

1

br

� �� �2
" # !1

2

ð16Þ

In comparison with these analytical solutions, Table 3
shows the numerical results obtained by standard MC
simulations with 10,000 samples and PEM approxima-
tions using equation (13) for E( ~Ts) and Var( ~Ts) with an
additional application of the transformation for Weibull
distributions from Table 1. The corresponding relative

errors Drel referring to the exact (i.e. analytical) values
from equations (15) and (16) are given in Table 4.

The full (approximate) distributions of ~Ts for
s=1, . . . , 4—as derived from the MC simulations—
are depicted in Figure 4(a) in the form of the corre-
sponding reliability functions t 7!R ~Ts

(t) :¼ 1� F ~Ts
(t)

where F ~Ts
is the cumulative distribution function of ~Ts.

Moreover, Figure 4(b) shows the simulated probabil-
ities for the states P0, . . . ,P4 depending on the time
since renewal.

As can be seen, the PEM and the MC simulations
both provide good results for the degradation model. In
fact, the PEM approximations are even nearly exact (cf.
Tables 3 and 4) which is not that surprising in this case
because ~Ts is a simple linear combination of the input
variables Tr. Moreover, the function ( ~Ts � E( ~Ts))

2

which is used for computing the variances via the PEM
is quadratic then. Consequently, as the PEM scheme
from equation (13) is exact for polynomials of degree
not greater than 5, the only source of error results from
the (more or less) exact Weibull transformation in
Table 1. In contrast, the MC approach shows relative
errors up to 61% despite a large sample size (i.e.
10,000 evaluations). This result is quite striking when
noting that the (nearly exact) PEM in this case requires
33 distinguished sample points only. Effectively, even
just 25 (!) sample points need to be considered because
the second weight in equation (13) equals zero when
n=4. However, note that the PEM is not directly able
to reconstruct the full distributions of ~Ts in Figure 4.
Because of its small sample size, the direct empirical
computation of the cumulative distribution functions
analogously to the MC approach is not possible with
sufficient quality. That is, the model response for ~Ts,
for instance, takes merely 33 (or even fewer) different
discrete values in case of the PEM sampling while the
true distributions are continuous. Consequently, the
PEM usually provides statistical moments (e.g. mean or
variance) only. Of course, if the shape of the output dis-
tribution is known in some rare situations, the

Table 2. Expert guess of the Weibull parameters of the
degradation model.22

T1 T2 T3 T4

br (shape) 1.5 1.5 1.6 1.7
hr (scale) 600 500 370 280

Table 3. Comparison of the results for E(~Ts) and s(~Ts) (in days).

E(~T1) s(~T1) E(~T2) s(~T2) E(~T3) s(~T3) E(~T4) s(~T4)

Analytical 541.6 367.8 993.0 478.7 1324.8 523.7 1574.6 545.1
MC 538.0 369.6 983.1 478.6 1317.3 526.3 1566.8 548.7
PEM 541.7 367.6 993.1 478.6 1324.8 523.4 1574.7 544.7

MC: Monte Carlo; PEM: point estimate method.

Table 4. Relative errors of the MC approach and PEM for E(~Ts) and s(~Ts).

Drel E(~T1) s(~T1) E(~T2) s(~T2) E(~T3) s(~T3) E(~T4) s(~T4)

MC �0:68% + 0:50% �1:00% �0:03% �0:56% + 0:50% �0:49% + 0:67%
PEM + 0:00% �0:03% + 0:00% �0:03% + 0:01% �0:05% + 0:01% �0:07%

MC: Monte Carlo; PEM: point estimate method.
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statistical moments computed by the PEM might be
used to estimate the full distribution via common statis-
tical techniques nonetheless.

Reliability of composite systems

Rail infrastructures are commonly characterized by a
complex interaction of many elements (e.g. tracks, sig-
naling, switches, and crossings). Moreover, note that
each such element can be composed of several redun-
dant and/or non-redundant components itself.
Consequently, assessing reliability in this context natu-
rally means also to analyze composite systems instead
of single components only. As a simple generic exam-
ple, consider a (technical) system that consists of three
independent components X1,X2,X3 each having an
exponential life distribution, that is, Xi ;Exp(bi) with
scale parameters bi . 0 for i=1, 2, 3. Let the first two
components (X1,X2) be connected in series, while the
third component (X3) is connected in parallel (cf.

Figure 5). The system is considered as ready for service
whenever all components of at least one of the
branches in Figure 5 are available.

In reliability theory,23 it is common then—similar to
the previous degradation example—to ask for the prob-
ability that the considered system survives until time t.
In this context, the survival functions RXi

: ½0,‘)! R

for the single components are defined by

RXi
tð Þ :¼ 1� FXi

tð Þ= exp � t

bi

� �
ð17Þ

where FXi
: ½0,‘)! R for i=1, 2, 3 is the cumulative

distribution function of Xi. Moreover, the system sur-
vival function Rsys : ½0,‘)! R can be derived easily23

from the system structure in Figure 5 because of the
assumption of independent Xi. Namely

Rsys tð Þ=1� 1� RX1
tð ÞRX2

tð Þð Þ 1� RX3
tð Þð Þ

=RX1
tð ÞRX2

tð Þ+RX3
tð Þ � RX1

tð ÞRX2
tð ÞRX3

tð Þ
ð18Þ

Obviously, this is a deterministic function given
fixed scale parameters bi for i=1, 2, 3. From an uncer-
tainty perspective, however, bi for i=1, 2, 3 in equa-
tion (17) usually (i.e. for most practical purposes) is an
estimated value only and thus must finally be consid-
ered a random variable as well. In such a way, Rsys(t)
as defined in equation (18)—for each tø 0—corre-
sponds to function f in the description of the PEM
above with the probabilistic input vector (b1,b2,b3)

T.
In order to demonstrate that the PEM really is able to
cope with various combinations of input distributions,
the following (artificial) assumptions on the variables
bi for i=1, 2, 3 were made

b1 ; G 2, 0:5ð Þ Gammadistributionð Þ ð19Þ
b2 ;U 1, 3ð Þ Uniformdistributionð Þ ð20Þ
b3 ;LogN 1, 0:4ð Þ Log� normal distributionð Þ

ð21Þ

Figure 6 shows the corresponding probability den-
sity functions of b1,b2,b3. The expected value and
variance of b1,b2,b3 are given by E(b1)=4 and
Var(b1)=8; E(b2)=2 and Var(b2)=0:3333;
E(b3)=2:9447 and Var(b3)=1:5045.

Applying the PEM scheme from equation (13) to
the function Rsys(t) with uncertain bi, together with
the appropriate transformations from Table 1, yields
approximate values of E(Rsys(t)) as well as Var(Rsys(t))
for any given t. Figure 7 depicts these PEM results—
computed for several values of t—as a time series where
standard MC simulations were performed as reference.

As can be seen, the PEM is able to provide highly
accurate estimates for E(Rsys(t)) and Var(Rsys(t)) in this
example while requiring only 19 (!) sample points to be
evaluated per value of t. In contrast to that, the MC
results are based on the evaluation of 10,000 sample
points per value of t as in previous examples. In other

Figure 5. Structure of the analyzed composite system.

Figure 4. (a) Simulated track reliability with regard to the
modeled degradation levels and (b) simulated state probabilities
depending on time since renewal in days.
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words, the uncertainty of Rsys(t)—depending on the
distributions of the input parameters b1,b2,b3—is fig-
ured out very well by the PEM. It seems that (also after
the transformation according to Table 1) the non-
polynomial function Rsys(t) from equation (18) is suffi-
ciently approximated by a polynomial with a degree
not greater than 5 for which the PEM scheme from
equation (13) would provide even exact results.

Terminal reliability in rail networks

The concept of system reliability, which is based on the
analysis of corresponding survival functions as in the
previous example, is not only relevant to technical ele-
ments but can also be applied to study the availability
of operational connections between given locations in
transportation networks (i.e. terminal reliability24)
when links randomly fail. Fecarotti,10 for instance, used
such a system reliability approach in the context of
optimizing maintenance strategies for railway networks
in order to take account of the effect that maintenance-
induced temporary link closures have on the overall
network connectivity.

As a simple example, consider the rail network from
Figure 8 and ask for the reliability of the connection
between the stations A and B when the links degrade
according to the Petri net model from Figure 2. In
other words, how likely is it that there is a connection
available at time t when every single link may fail (i.e.
requires to be closed) due to degradation as modeled
previously in the first presented example (see section
‘‘Track degradation’’)?

According to equation (14), the survival time ~T(i) of
link Xi is the sum of four Weibull variables. For the
sake of simplicity, however, assume that it is a Weibull

variable directly; that is, ~T(i) ;W(b(i),h(i)) for
i=1, . . . , 6. The parameters b(i) and h(i) are defined via
a maximum likelihood estimation in a first step based

Figure 6. Probability density functions of the input parameter distributions: (a) b1 ; G(2, 0:5), (b) b2 ;U(1, 3), and
(c) b3 ; LogN (1, 0:4).

Figure 7. PEM results in comparison with standard MC
simulations: (a) E(Rsys(t)) and (b) Var(Rsys(t)).

Figure 8. A simple rail network.
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on simulated random samples of ~T(i) using the original
model from Figure 2. This results in b(i) = 3:035 and
h(i) = 1754:2 which—in good agreement with Table 3—
corresponds to a mean survival time of E( ~T(i))=1567:3
(in days) for all i=1, . . . , 6. Note that degradation
characteristics may differ from one link to another, of
course, meaning that the Weibull parameters above are
typically uncertain to some extent. In particular, the
scale parameters h(i) can be expected to vary consider-
ably among the links, while b(i) for i=1, . . . , 6 is finally
considered as deterministic. In the following, the para-
meters h(i) for i=1, . . . , 6 are modeled as stochastically
independent and identically distributed Log-normal
random variables. Note that even if there is no specific
(i.e. empirically motivated) reason for choosing this
type of distribution for h(i) in this academic example,
the Log-normal distribution—instead of a Gaussian
distribution, for instance—ensures that h(i) never gets
negative and thusW(b(i),h(i)) always is a valid distribu-
tion for ~T(i). More precisely, let h(i) ;LogN (m,s) with
m=6:96977 and s=1:0 which means that the expecta-
tion of the survival time ~T(i) remains the same as before
despite the additional stochasticity of h(i). In fact

E ~T
(i)

� 	
=E h(i) � G 1+

1

b(i)

� �� �

=E h(i)
� �

� G 1+
1

b(i)

� �
=1567:3 (in days)

ð22Þ

for all i=1, . . . , 6.

Because of ~T(i) ;W(b(i),h(i)) for i=1, . . . , 6, the
survival functions RXi

: ½0,‘)! R for the links
X1, . . . ,X6 are given as time-dependent random vari-
ables according to

RXi
(t)= exp � t

h(i)

� �b(i)
 !

ð23Þ

Furthermore, the system survival function
Rsys : ½0,‘)! R, which corresponds to the rail network
from Figure 8, reads

Rsys tð Þ=1� 1� RX1X2X3X4X5
tð Þð Þ � 1� RX6

tð Þð Þ
ð24Þ

with

RX1X2X3X4X5
tð Þ :¼ RX1X2

tð Þ � RX3
tð Þ � RX4X5

tð Þ ð25Þ

and

RX1X2
tð Þ :¼ RX1

tð Þ+RX2
tð Þ � RX1

tð ÞRX2
tð Þ ð26Þ

RX4X5
tð Þ :¼ RX4

tð Þ+RX5
tð Þ � RX4

tð ÞRX5
tð Þ ð27Þ

In this context, note that the network from Figure 8
can also be depicted as a standard block diagram (see
Figure 9).

Estimates of E(Rsys(t)) are finally derived by using
the PEM based on 73 sample points and MC simula-
tions with 10,000 sample points for each considered
value of t. Figure 10 shows the results. As can be seen,
the PEM does not provide sufficiently accurate results
in this case even if the asymptotic trends of the depicted
curves have some similarity.

It turns out that the lack of accuracy is mostly
because of the non-polynomial structure of the survival
functions from equation (23) which is induced by the
shape parameters b(i) 6¼ 1. If, for instance, b(i) = 1 for
all i=1, . . . , 6, the PEM results become much better.
In fact, there is hardly any difference between the esti-
mates as generated by the PEM and the MC simula-
tions in that situation (see Figure 11). Obviously,
exponentially distributed survival times ~T(i) with
b(i) = 1 (instead of Weibull distributions with b(i) 6¼ 1)
are more accessible for polynomial approximations
which turns out to be a crucial requirement for

Figure 9. Block diagram representation of the rail network
from Figure 8.

Figure 10. Expected network reliability in case of Weibull
distributed survival times per link (i.e. b(i) = 3:035).

Figure 11. Expected network reliability in case of
exponentially distributed survival times per link (i.e. b(i) = 1).
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obtaining highly accurate PEM results based on the
scheme from equation (13).

Failure mode identification using decision trees

Consider a technical system or component—this could
be a track element or a switch component, for
instance—that usually adopts one of the following
three possible operating states Z: ‘‘No failure’’ (z0),
‘‘Failure type 1’’ (z1), or ‘‘Failure type 2’’ (z2). Assume
further that the system is monitored based on three
(conditionally) independent feature values X1,X2,X3

having Gaussian (conditional) distributions given Z as
listed in Table 5.

It is possible then to derive a suitable decision tree
(model) for identifying the operating states from (mea-
sured) feature values. Applications and discussions of
decision tree modeling in the context of railway asset
management, for instance, can be found in the litera-
ture.13,25,26 With regard to the features and distribu-
tions from Table 5, Figure 12(a) shows the decision tree
that was automatically built from an artificial training
data set using state-of-the-art algorithms.27 Given the
realization of the three feature values X1,X2,X3, a cor-
responding estimate of the operating state is easily
obtained by simply finding the related branch in the
decision tree. Figure 12(b), for instance, shows this
branch for a virtual measurement, where X1 =0:65,
X2 =0:5, and X3 =0:3. Obviously, the model yields
‘‘Failure type 1’’ as result in this case.

The question is how likely the diagnostic outcome of
the model is correct. That is, what is the uncertainty in
the model output? For this purpose, let

f X1,X2,X3ð Þ=
f0 X1,X2,X3ð Þ
f1 X1,X2,X3ð Þ
f2 X1,X2,X3ð Þ

0
B@

1
CA

:=

1fX3 . 0:532g

1fX1 . 0:496g � 1fX340:532g

1fX140:496g � 1fX340:532g

0
B@

1
CA

ð28Þ

be the formula-based representation of the decision tree
model from Figure 12(a) where fi : R! f0, 1g for
i=0, 1, 2 is the indicator function whether the model
‘‘predicts’’ zi as operating state (i.e. fi X1,X2,X3ð Þ=1)
or not (i.e. fi X1,X2,X3ð Þ=0).

As now X1,X2,X3 are random variables given Z,
one directly obtains that fi X1,X2,X3ð Þ for i=1, 2, 3 are
random variables as well. More precisely

P fi X1,X2,X3ð ÞjZ= zj
� �

=B 1, pij
� �

ð29Þ

for all i, j=0, 1, 2 with unknown parameters pij 2 ½0, 1�
for the appearing Bernoulli distributions B(1, p). Thus,
pij is the probability that the decision tree model from
Figure 12(a) yields the operating state zi given that the
true operating state is zj. Moreover, for all j=0, 1, 2,
the expected value and variance of f(X1,X2,X3) given
Z= zj are finally defined by

E f X1,X2,X3ð ÞjZ= zj
� �

=

E f0 X1,X2,X3ð ÞjZ= zj
� �

E f1 X1,X2,X3ð ÞjZ= zj
� �

E f2 X1,X2,X3ð ÞjZ= zj
� �

0
B@

1
CA

=

p0j

p1j

p2j

0
B@

1
CA

ð30Þ

and

Var f X1,X2,X3ð ÞjZ= zj
� �

=

Var f0 X1,X2,X3ð ÞjZ= zj
� �

Var f1 X1,X2,X3ð ÞjZ= zj
� �

Var f2 X1,X2,X3ð ÞjZ= zj
� �

0
B@

1
CA= p0j 1� p0j

� �
p1j 1� p1j
� �

p2j 1� p2j
� �

0
B@

1
CA

ð31Þ

respectively.
Needless to say, it is very easy then to apply the

PEM scheme from equation (13) together with the

Table 5. Conditional distributions of the feature values X1, X2, X3.

P(XijZ = zj) X1 X2 X3

Z = z0 (No failure) N (0:6, 0:1) N (0:5, 0:12) N (0:7, 0:1)
Z = z1 (Failure type 1) N (0:6, 0:1) N (0:5, 0:12) N (0:35, 0:05)
Z = z2 (Failure type 2) N (0:35, 0:1) N (0:35, 0:1) N (0:4, 0:08)

Figure 12. (a) Decision tree model and (b) relevant branch in
the case of X1 = 0:65, X2 = 0:5, and X3 = 0:3.
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appropriate transformations from Table 1 in order to
compute explicit estimates for the unknown values in
equations (30) and (31). The only thing one has to be
careful with is that the input variables X1,X2,X3 have
different (conditional) distributions depending on the
current operating state (see Table 5). Figure 13 shows
the resulting estimates for E(f(X1,X2,X3)jZ= zj) in
comparison with MC simulations, as well as exact
results which are obtained by directly solving the condi-
tional equations

P fi X1,X2,X3ð Þ=1jZ= zj
� �

= pij ð32Þ

for pij where i, j=0, 1, 2 (see Appendix 1). The esti-
mates for Var(f(X1,X2,X3)jZ= zj) are displayed in
Figure 14.

As can be seen, the PEM yields almost correct
trends for all the values in equations (30) and (31).
That is, whenever E(fi(X1,X2,X3)jZ= zj) or
Var(fi(X1,X2,X3)jZ= zj) attains its maximum for any
fixed j, the PEM yields the highest value among all i,
too. The bar charts in Figures 13 and 14, however, also
imply that the accuracy of the PEM is much lower than
that of the MC approach in this example. Obviously,
the discontinuity and step structure of the model

function f from equation (28) (which, of course, is far
from being polynomial) prevent the PEM from gener-
ating sufficiently accurate results. Consequently, in
contrast to the previous examples, the PEM turns out
to be not well-suited for analyzing uncertainty propa-
gation in the case of decision tree models as in Figure
12.

Track condition modeling incorporating maintenance

Consider a track section that deteriorates according to
the degradation model as given in Figure 2.
Furthermore, assume that maintenance (e.g. tamping)
brings the track conditions back to the (new) state P0

whenever a specific health state Pi with iø 1 is detected
(and repaired) before the track section degrades to the
next worse state. The extended model with added tran-
sitions Mr for r=1, . . . , 4 (see Figure 15) is very simi-
lar to the original Petri net presented by Andrews and
colleagues.19,20 Although, for simplicity, it does not
consider that the degradation parameters of the track
section may change after each maintenance
intervention.28

Note that every Mr in the proposed model is com-
posed of a random time Dr until the health state Pr (if

Figure 13. Comparison of the results for E(f (X1, X2, X3)jZ = zj).

Figure 14. Comparison of the results for Var(f (X1, X2, X3)jZ = zj).
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present) is detected via inspection and the related sto-
chastic repair time Rr. In other words, Mr =Dr +Rr

for r=1, . . . , 4 where the repair times also include a
certain potential of postponing the related maintenance
interventions depending on their urgency. In case of
state P1, for instance, that means that the values of
E(R1) and Var(R1) may be very different from those
related to the other health states because of a much
lower priority of opportunistic maintenance compared
to routine or even emergency interventions. Given that
there is a fixed inspection interval Tinspect, the detection
delays Dr can be modeled then as (independent) uni-
formly distributed random variables for all r, namely,
Dr ;U(0,Tinspect). Moreover, repair times are consid-
ered having Log-normal distributions with parameters
as in Table 6, that is, Rr ;LogN (mr,sr) for
r=1, . . . , 4. Table 7 lists the corresponding mean
repair times and their standard deviations, respectively.

Based on this model, an asset manager could now be
interested in the expected time of sojourning in a state
that requires line restrictions (i.e. speed restriction or
line closure) between two maintenance interventions.
Thus, consider the related functions

TSpeedRestriction :¼ 1fM1 øT2g � 1fM2 øT3g

� 1fM3 \T4g �M3 + 1fM3 øT4g � T4

� � ð33Þ

and

TLine Closure :¼ 1fM1 øT2g � 1fM2 øT3g � 1fM3 øT4g �M4

ð34Þ

as derived from the model above and compute their
expectation values. Again, MC simulations (with 100,000
sample points) and the PEM (with 163 sample points in
case of TSpeedRestriction and 243 sample points in case of
TLineClosure) were applied. Figure 16 shows the results for
several values of the inspection interval Tinspect.

As can be seen, the PEM reproduces correct trends
compared to the MC results. But yet, the accuracy

lacks behind that of the MC approach which mostly is
because of the obvious discontinuity of the model func-
tions from equations (33) and (34), as in the decision
tree example from above. Nevertheless, remember the
large difference concerning the number of sample
points processed by the MC simulations in comparison
with the PEM for generating the plots from Figure 16.
Hence, if rough results are sufficient, the PEM still
might be an appropriate approach in the context of
models such as in Figure 15.

Conclusion

The examples from above show that the PEM is a very
flexible approach that can successfully be applied to

Table 6. Repair time parameters for the extended degradation
model based on the numbers in Table 7.

R1 R2 R3 R4

mr 7.2218 2.9654 2.2830 �0:7128
sr 0.2119 0.2462 0.1980 0.1980

Figure 15. Extended Petri net model for track degradation
incorporating maintenance.

Table 7. Expert guess of mean repair time and standard
deviations (SD) (in days).22

R1 R2 R3 R4

Mean 1400 20 10 0.5
SD 300 5 2 0.1

Figure 16. PEM results in comparison with standard MC
simulations: (a) E(TSpeedRestriction) and (b) E(TLineClosure).
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various (but not all) types of models from railway asset
management in order to analyze uncertainties in the
model response in terms of the mean, variance, or even
higher (centralized) moments. In contrast to common
MC simulations, the described method usually (i.e. at
least for small n) also requires the evaluation of only
very few sample points. Thus, the computational load
when assessing uncertainties in the model response can
be considerably reduced in many cases, namely, if run-
ning the model under consideration for given realiza-
tions of its input vector is computationally expensive
because of potentially complex calculations needed or
simply because of large modeling scales.

Moreover, the PEM provides exact results whenever
it is applied to polynomial functions (with a given max-
imum degree), whereas the MC approach necessarily
yields approximate numbers only. On the contrary,
MC simulations always converge toward the exact
solution whenever the sample used is sufficiently
large—whatever ‘‘sufficiently large’’ means depending
on the specific situation—while there is no such guar-
antee or indicator for the accuracy of the PEM, in gen-
eral. Thus, PEM results always have to be analyzed
carefully—perhaps even more carefully than standard
MC results—in order to avoid misinterpretations of the
findings as well as wrong or at least inefficient decisions
in practical applications. Consequently, a reasonable
procedure in practice could be validating the accuracy
of the PEM for the specific model under consideration
once in a first step using more or less extensive MC
simulations as a reference. Next, if successful, apply it
to similar models on a larger scale usually without the
need of further computationally expensive MC
simulations.

Note that another critical aspect of the PEM (as
described above) is that it requires stochastically inde-
pendent input variables X1, . . .Xn. That means if some
Xi for i=1, . . . , n are correlated, one has to try out
other tools29 or make suitable adjustments to the pres-
ent approach by, for example, using alternative trans-
formation functions30,31 (cf. Table 1) before applying
the general PEM scheme from equation (8). Moreover,
further approaches in combination with the PEM (e.g.
polynomial chaos expansion16,32) are able to produce
approximations for the complete cumulative distribu-
tion functions of the model response instead of basic
statistics (i.e. mean, variance, etc.) only. Thus, overall,
the PEM becomes an interesting and efficient alterna-
tive to standard MC simulations in various situations
when it is applied carefully with awareness of the natu-
ral limitations of the approach.
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Appendix 1

Given f as in equation (28), the conditional equation

P fi X1,X2,X3ð Þ=1jZ= zj
� �

= pij ð35Þ

(cf. equation (32)) for i, j=0, 1, 2 can be solved easily
as exemplarily shown for i= j=1 in the following.
For, in this case, the conditional distributions of X1

and X3 (given Z= z1) are defined as N (0:6, 0:1) and
N (0:35, 0:05), respectively, according to Table 5. Thus,
by transformation, one obtains the random variables

~X1 :¼ X1 � 0:6

0:1
ð36Þ

and

~X3 :¼ X3 � 0:35

0:05
ð37Þ

both having a standard Gaussian distribution given
Z= z1. Moreover, note that X1 and X3 are condition-
ally independent given Z by assumption. Hence, equa-
tion (35) yields

p11 =P f1 X1,X2,X3ð Þ=1jZ= z1ð Þ
=P X1 . 0:496 and X340:532jZ= z1ð Þ
=P X1 . 0:496jZ= z1ð Þ � P X340:532jZ= z1ð Þ
=P ~X1 . � 1:04jZ= z1

� �
� P ~X343:64jZ= z1
� �

= 1�F �1:04ð Þð Þ �F 3:64ð Þ
’ 0:8508 � 0:9998
=0:8506

ð38Þ

where F is the cumulative distribution function of the
standard Gaussian distribution. The expected value and
variance as in equations (30) and (31) are then directly
given by E(f1(X1,X2,X3)jZ= z1)= p11 ’ 0:8506 and
Var(f1(X1,X2,X3)jZ= z1)= p11(1� p11)’ 0:1271,
respectively.

14 Proc IMechE Part O: J Risk and Reliability 00(0)




