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Abstract: In (bio)chemical process engineering, first-principles process models have played a
central role for some time in better understanding, monitoring, and controlling these complex
processes. Dynamic process models have become even more critical in the context of Industry
4.0 and the use of digital twins in the last decade. However, the quality and the technology
readiness level of digital process models depend crucially on the reliability of the model
predictions. In addition to a suitable model structure/hypothesis, the model parameters of the
implemented kinetics are of paramount importance. The accuracy of the parameter estimation,
in turn, depends on the quantity and quality of the data as well as on the employed parameter
identification solving strategies, where ordinary least squares concepts are still the standard.
We propose a novel parameter identification concept that combines systems theory and machine
learning principles. The parameter identification problem is formulated as a total least squares
optimization problem that uses neural ordinary differential equations for surrogate modeling
and recalculates the model control inputs with the algebraic differential flatness framework for
model inversion. The usefulness of the proposed concept for more precise kinetic parameters is
demonstrated with a simulation study of an enzyme-catalyzed biochemical process, where the
total least squares approach leads to lower parameter uncertainties compared to the standard
concept based on ordinary least squares using the same amount of data.
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1. INTRODUCTION

The importance of mathematical modeling in process de-
velopment and refinement entails the demand for efficient
and reliable system identification and parameter estima-
tion methods, respectively. In many engineering fields,
the time behavior of complex technical systems, includ-
ing (bio)chemical and pharmaceutical manufacturing pro-
cesses, can be described by a system of ordinary differential
equations (ODEs). The ODEs’ parameters, however, are
typically unknown and have to be estimated using experi-
mental data (Bhonsale et al., 2020; Villaverde et al., 2021;
Wieland et al., 2021).

Within the last decades, intense research has led to a
variety of concepts regarding parameter estimation. A
standard approach minimizes the sum of squared errors
(SSE) between a model prediction and measurement data,
where the prediction is calculated by solving the ODE
system numerically. The parameters are then adapted until
a given minimization criterion is reached (Walter et al.,
1997).
Besides collocation methods for solving ODE-based pa-
rameter identification problems (Wang et al., 2018), al-

gebraic parameter identification techniques avoid the re-
peated numerical solution by transforming the ODE prob-
lem into a more straightforward algebraic optimization
problem. The iteratively refined principal differential anal-
ysis (iPDA) approach, for instance, involves the fitting of
B-splines to the measured data (Poyton et al., 2006), from
which the time derivative information can be obtained and
substituted into the model equations. Another example is
the differential flatness concept, first introduced by Fliess
et al. (1995). In a differential flat system, state and input
variables can be expressed as functions of so-called flat
outputs and a finite number of their derivatives, also
leading to a simplification of the optimization problem.
Instead of applying optimal experimental design concepts,
i.e., improving the data quantity and quality with new
optimized experiments (Abt et al., 2018; Krausch et al.,
2019; Nimmegeers et al., 2020), the flatness concepts might
result in improved parameter sensitivities and more precise
parameter estimates, respectively, without the need for
new data (Schenkendorf and Mangold, 2014). This, of
course, depends on the quality of the empirical process
model. However, other concepts, like e.g. physics-informed
neural networks (Raissi et al., 2019), demonstrate the
possibility of combining data-driven methods with prior
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cesses, can be described by a system of ordinary differential
equations (ODEs). The ODEs’ parameters, however, are
typically unknown and have to be estimated using experi-
mental data (Bhonsale et al., 2020; Villaverde et al., 2021;
Wieland et al., 2021).

Within the last decades, intense research has led to a
variety of concepts regarding parameter estimation. A
standard approach minimizes the sum of squared errors
(SSE) between a model prediction and measurement data,
where the prediction is calculated by solving the ODE
system numerically. The parameters are then adapted until
a given minimization criterion is reached (Walter et al.,
1997).
Besides collocation methods for solving ODE-based pa-
rameter identification problems (Wang et al., 2018), al-

gebraic parameter identification techniques avoid the re-
peated numerical solution by transforming the ODE prob-
lem into a more straightforward algebraic optimization
problem. The iteratively refined principal differential anal-
ysis (iPDA) approach, for instance, involves the fitting of
B-splines to the measured data (Poyton et al., 2006), from
which the time derivative information can be obtained and
substituted into the model equations. Another example is
the differential flatness concept, first introduced by Fliess
et al. (1995). In a differential flat system, state and input
variables can be expressed as functions of so-called flat
outputs and a finite number of their derivatives, also
leading to a simplification of the optimization problem.
Instead of applying optimal experimental design concepts,
i.e., improving the data quantity and quality with new
optimized experiments (Abt et al., 2018; Krausch et al.,
2019; Nimmegeers et al., 2020), the flatness concepts might
result in improved parameter sensitivities and more precise
parameter estimates, respectively, without the need for
new data (Schenkendorf and Mangold, 2014). This, of
course, depends on the quality of the empirical process
model. However, other concepts, like e.g. physics-informed
neural networks (Raissi et al., 2019), demonstrate the
possibility of combining data-driven methods with prior
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process knowledge.
The algebraic parameter identification techniques deci-
sively rely on suitable methods for data fitting, to obtain
the required information on the model states and their
time derivatives. While there are well investigated proce-
dures, like B-splines, in both iPDA and differential flatness
(Poyton et al., 2006; Schenkendorf and Mangold, 2014; Liu
et al., 2016), we here explore the application of neural or-
dinary differential equations, a recently introduced family
of deep neural network models (Chen et al., 2018).

Given the challenges of parameter estimation, this study
investigates a beneficial cost function definition for the
optimization process. We compare the parameter estima-
tion results for an ODE model derived by three different
approaches: (i) minimization of the SSE between model
prediction and data, referred to as ordinary least squares
(OLS), (ii) rearrangement of the model equations to solve
for the inputs, where these equations contain the model’s
flat outputs and their derivatives with respect to time.
These terms are derived from a neural ODE that was
trained on a given data set, followed by minimization of
the SSE between prediction and inputs. This approach
is referred to as input least squares (ILS). With (iii) a
combination of the two is applied, similar to the concept
described by Liu et al. (2016) and referred to as total least
squares (TLS).

2. METHODS

This section introduces the different formulations of the
parameter identification problem, the differential flatness
concept for model inversion, and the notations used for
OLS, ILS, and TLS. Then we summarize the basic idea of
neural ODEs and how we can use them to back-calculate
the control inputs for model inversion in the case of ILS
and TLS.

2.1 Parameter identification problem

In this work, the dynamic process models read as:

ẋ(t) = f(x(t),u(t),p), (1a)

x(t0) = x0, (1b)

where t ∈ [t0, t0 + tend] is the time, with t0 as the initial
time and tend as the time duration of the simulation,
u ∈ Rnu is the vector of the control variables, p ∈ Rnp is
the vector of the time-invariant parameters, and xd ∈ Rnx

are the differential states. The initial conditions for the
differential states are given by x0. Eq. (1a) is the model
equation with f : Rnx×nu×np → Rnx .

Within the OLS approach, the actual parameter identifi-
cation problem reads as:

p̂OLS = argmin
p

K∑
k=1

||ydata(tk)− y(tk,p)||22, (2)

where || · ||2 denotes the Euclidean norm, and the model
output equation is defined as:

y(tk,p) = h(x(tk,p)), (3)

with h : Rnx → Rny , and y ∈ Rny is the vector of the
model output.

Using a model inversion concept, back-calculating model
inputs, the ILS-based parameter identification is defined
as:

p̂ILS = argmin
p

K∑
k=1

||udata(tk)− u(tk,p)||22, (4)

Evaluating model inputs and outputs alike, the TLS-based
parameter identification problem is given as:

p̂TLS = argmin
p

K∑
k=1

||zdata(tk)− z(tk,p)||22, (5)

with zdata(tk) = [ydata(tk),u
data(tk)] and z(tk,p) =

[y(tk,p),u(tk,p)].

In Eqs. (4) and (5), the control inputs, u(tk,p), are back-
calculated using the differential flatness concept. A process
model (Eq. (1)) is termed differentially flat if the following
output vector exists:

yflat = hflat(x,u, u̇, . . . ,u(s),p), (6)

with a finite value s ∈ N and the smooth mapping function
yflat : Rnx × (Rnu)s+1 ×Rnp −→ Rny ; also referred to as
a flat output.

In detail, the reconstructed system states and control
inputs read as:

x = Ψx(y
flat, ẏflat, . . . ,yflat(r) ,p), (7)

u = Ψu(y
flat, ẏflat, . . . ,yflat(r+1)

,p), (8)

with the mapping functions Ψx : (Rny )r+1 ×Rnp −→ Rnx

and Ψu : (Rny )r+2 × Rnp −→ Rnu , and assuming a
quadratic system:

dimyflat = dimu. (9)

When applying the flatness concept, it was shown that
parameter sensitivities and the reliability of parameter
estimates could be improved in the case of ILS (Schenk-
endorf and Mangold, 2014) and TLS (Liu et al., 2016),
respectively. Note that the flatness concept has also proven
beneficial for system identification and model selection
problems (Schulze and Schenkendorf, 2020), which is out
of the scope of this work.

However, the parameterization of the flat output yflat

for evaluating Eq. (8) and Eqs. (4), (5), respectively, is
still challenging. Standard concepts are based on empirical
models using a B-Spline setting with its drawback of cali-
bration and proper use to represent the derivatives of the
system states (Eq. (1)) (Poyton et al., 2006; Varziri et al.,
2008). Alternatively, so-called neural ordinary differential
equations can be used to derive an empirical dynamical
system and to define yflat and its derivatives. Note that
neural ODEs are tailored to represent dynamic processes
based on discrete measurement data and straightforward
to train due to backpropagation and the augmented ad-
joint state vector, including time and the neural network’s
meta-parameters (Chen et al., 2018; Rackauckas et al.,
2020; Kim et al., 2021). Recently, neural ODEs are finding
their way into the process systems engineering commu-
nity to solve simulation-based process analysis and control
problems (De Jaegher et al., 2021; Francis-Xavier et al.,
2021; Arnold and King, 2021).
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process knowledge.
The algebraic parameter identification techniques deci-
sively rely on suitable methods for data fitting, to obtain
the required information on the model states and their
time derivatives. While there are well investigated proce-
dures, like B-splines, in both iPDA and differential flatness
(Poyton et al., 2006; Schenkendorf and Mangold, 2014; Liu
et al., 2016), we here explore the application of neural or-
dinary differential equations, a recently introduced family
of deep neural network models (Chen et al., 2018).

Given the challenges of parameter estimation, this study
investigates a beneficial cost function definition for the
optimization process. We compare the parameter estima-
tion results for an ODE model derived by three different
approaches: (i) minimization of the SSE between model
prediction and data, referred to as ordinary least squares
(OLS), (ii) rearrangement of the model equations to solve
for the inputs, where these equations contain the model’s
flat outputs and their derivatives with respect to time.
These terms are derived from a neural ODE that was
trained on a given data set, followed by minimization of
the SSE between prediction and inputs. This approach
is referred to as input least squares (ILS). With (iii) a
combination of the two is applied, similar to the concept
described by Liu et al. (2016) and referred to as total least
squares (TLS).

2. METHODS

This section introduces the different formulations of the
parameter identification problem, the differential flatness
concept for model inversion, and the notations used for
OLS, ILS, and TLS. Then we summarize the basic idea of
neural ODEs and how we can use them to back-calculate
the control inputs for model inversion in the case of ILS
and TLS.

2.1 Parameter identification problem

In this work, the dynamic process models read as:

ẋ(t) = f(x(t),u(t),p), (1a)

x(t0) = x0, (1b)

where t ∈ [t0, t0 + tend] is the time, with t0 as the initial
time and tend as the time duration of the simulation,
u ∈ Rnu is the vector of the control variables, p ∈ Rnp is
the vector of the time-invariant parameters, and xd ∈ Rnx

are the differential states. The initial conditions for the
differential states are given by x0. Eq. (1a) is the model
equation with f : Rnx×nu×np → Rnx .

Within the OLS approach, the actual parameter identifi-
cation problem reads as:

p̂OLS = argmin
p

K∑
k=1

||ydata(tk)− y(tk,p)||22, (2)

where || · ||2 denotes the Euclidean norm, and the model
output equation is defined as:

y(tk,p) = h(x(tk,p)), (3)

with h : Rnx → Rny , and y ∈ Rny is the vector of the
model output.

Using a model inversion concept, back-calculating model
inputs, the ILS-based parameter identification is defined
as:

p̂ILS = argmin
p

K∑
k=1

||udata(tk)− u(tk,p)||22, (4)

Evaluating model inputs and outputs alike, the TLS-based
parameter identification problem is given as:

p̂TLS = argmin
p

K∑
k=1

||zdata(tk)− z(tk,p)||22, (5)

with zdata(tk) = [ydata(tk),u
data(tk)] and z(tk,p) =

[y(tk,p),u(tk,p)].

In Eqs. (4) and (5), the control inputs, u(tk,p), are back-
calculated using the differential flatness concept. A process
model (Eq. (1)) is termed differentially flat if the following
output vector exists:

yflat = hflat(x,u, u̇, . . . ,u(s),p), (6)

with a finite value s ∈ N and the smooth mapping function
yflat : Rnx × (Rnu)s+1 ×Rnp −→ Rny ; also referred to as
a flat output.

In detail, the reconstructed system states and control
inputs read as:

x = Ψx(y
flat, ẏflat, . . . ,yflat(r) ,p), (7)

u = Ψu(y
flat, ẏflat, . . . ,yflat(r+1)

,p), (8)

with the mapping functions Ψx : (Rny )r+1 ×Rnp −→ Rnx

and Ψu : (Rny )r+2 × Rnp −→ Rnu , and assuming a
quadratic system:

dimyflat = dimu. (9)

When applying the flatness concept, it was shown that
parameter sensitivities and the reliability of parameter
estimates could be improved in the case of ILS (Schenk-
endorf and Mangold, 2014) and TLS (Liu et al., 2016),
respectively. Note that the flatness concept has also proven
beneficial for system identification and model selection
problems (Schulze and Schenkendorf, 2020), which is out
of the scope of this work.

However, the parameterization of the flat output yflat

for evaluating Eq. (8) and Eqs. (4), (5), respectively, is
still challenging. Standard concepts are based on empirical
models using a B-Spline setting with its drawback of cali-
bration and proper use to represent the derivatives of the
system states (Eq. (1)) (Poyton et al., 2006; Varziri et al.,
2008). Alternatively, so-called neural ordinary differential
equations can be used to derive an empirical dynamical
system and to define yflat and its derivatives. Note that
neural ODEs are tailored to represent dynamic processes
based on discrete measurement data and straightforward
to train due to backpropagation and the augmented ad-
joint state vector, including time and the neural network’s
meta-parameters (Chen et al., 2018; Rackauckas et al.,
2020; Kim et al., 2021). Recently, neural ODEs are finding
their way into the process systems engineering commu-
nity to solve simulation-based process analysis and control
problems (De Jaegher et al., 2021; Francis-Xavier et al.,
2021; Arnold and King, 2021).

2.2 Neural ordinary differential equations

In data science, neural networks (e.g., feed-forward neural
networks, multilayer perceptron, and recurrent neural net-
works) are frequently used to build data-driven empirical
models. Basically, the ith neural network layer, NNLi(x) :
Rdi−1 → Rdi , contains Ni neurons. Here, NNLi(x) is
specified with the weight matrix, Wi ∈ Rdi×di−1 , and
the bias vector, bi ∈ Rdi . And thus, for instance, a feed-
forward neural network reads as:

NNL0(x) = x ∈ Rd0 , (10a)

NNLj(x) = σ(WjNNLj−1(x) + bj) ∈ Rdj ;

∀1 ≤ j ≤ I − 1, (10b)

NNLI(x) = WINNLI−1(x) + bI ∈ RdI , (10c)

with the input layer NNL0, the hidden layer NNLj , and
the output layer NNLI . Frequently, sigmoid or tangent
functions are used for the activation function σ(·) (Bishop,
2006).

When it comes to the so-called neural ordinary differential
equations, the governing equations read as:

ẋ(t) = NN(x(t),u(t),p), (11a)

x(t0) = x0, (11b)

Note that the neural ODE system (Eq. (10)) can be
used to represent data records exclusively or to include
process knowledge (i.e., first-principles elements) within
a hybrid model framework alike. Moreover, neural ODEs
have been successfully used for system identification under
sparse and noisy data (Brunton et al., 2016; Vortmeyer-
Kley et al., 2021). Furthermore, the neural network’s ar-
chitecture, e.g., the number of hidden layers, activation
functions, etc., was not optimized. Such optimization could
be added and complemented with optimal experimental
design methods for a better representation of the experi-
mental data based on the neural ODEs, which is beyond
the scope of this work.

In what follows, all implementations were coded in Julia
(Bezanson et al., 2017). For the studied NN and the neural
ODEs, the Flux.jl (Innes et al., 2018; Innes, 2018) and the
DiffEqFlux.jl (Rackauckas et al., 2019) Julia library were
utilized, respectively. The Adam (Kingma and Ba, 2017)
first-order gradient-based optimization algorithm was used
with the L2-norm (sum of squared errors) to train the NN
and the neural ODEs. We ran all simulations on a standard
desktop machine.

3. CASE STUDY

The underlying model of this study describes an enzymatic
reaction from the substrate benzaldehyde to benzoin under
consideration of the intermediate substrate-enzyme com-
plex. To this end, we adapt the process model given in
Schulze and Schenkendorf (2020) accordingly. Based on
Table 1, the reaction scheme includes benzaldehyde as
substrate S1, benzoin as product P, the intermediate C1,
and the enzyme E. The enzyme reaction chain might be
subject to a loss reaction with an irreversible inhibition
due to the second substrate S2 leading to the loss product
C2. The kinetic constants are k1, k2, and k3.

Table 1. Reaction scheme of the process model.

Model M

2 S1 + E
k1

C1
k2

P + E

S2 + E
k3

C2

The governing equations of the related ODE systems read
as:

M =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ṡ1 = −2k1S1
2E + u1

Ċ1 = k1S1
2E− k2C1 + u2

Ė = −k1S1
2E + k2C1 − k3[S2]E + u3

Ṗ = k2C1 + u4

, (12)

In model M, please note that the differential equations of
the second substrate S2, which is assumed to be constant,
as well as the loss product C2 are not given, as information
about their time response would not affect the other
differential equations and is consequently not relevant to
the problem at hand.

Note that the theoretical control vector dimension is 4,
however, only u1 and u3 are active. Thus, u1 and u4 remain
zero for the considered scenario. The dimension of the flat
output vector, in turn, must be 4 according to Eq. (9).

We infer the flat outputs by a heuristic method to 1) find a
flat output candidate in accordance with Equation (6) and
2), use graph theory to prove that the candidate fulfills the
differential flatness conditions given Equations (7)–(9).

To illustrate the information flow and connectivity, the
corresponding adjacency matrices with x = {S1,C1,E,P}
are:

Au =

⎛
⎜⎜⎝

u1 u2 u3 u4

x1 1 0 0 0

x2 0 1 0 0

x3 0 0 1 0

x4 0 0 0 1

⎞
⎟⎟⎠, (13)

Ax =

⎛
⎜⎜⎝

x1 x2 x3 x4

x1 1 0 1 0

x2 1 1 1 0

x3 1 1 1 0

x4 0 1 0 0

⎞
⎟⎟⎠, (14)

Ay =

⎛
⎜⎜⎝

x1 x2 x3 x4

y1 1 0 0 0

y2 0 1 0 0

y3 0 0 1 0

y4 0 0 0 1

⎞
⎟⎟⎠, (15)

and the resulting digraph is shown in Fig. 1. The di-
graph is composed of 12 vertices, V = {u1, u2, u3, u4} ∪
{x1, x2, x3, x4} ∪ {y1, y2, y3, y4}, and 17 edges correspond-
ing to the non-zero entries in the adjacency matrices Au,
Ax, and Ay. The self-loops of {x1, x2, x3} ∈ V are related
to the non-zero diagonal elements of Ax.

The resulting digraph (see Fig. 1) shows the trivial solution
for a proper flat output selection
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Fig. 1. Digraph for model M to study the differential
flatness property

yflat =

⎛
⎜⎝
γ1
γ2
γ3
γ4

⎞
⎟⎠ =

⎛
⎜⎝
S1
C1

E
P

⎞
⎟⎠ (16)

that satisfies Eq. (6).

From the ODE system, after the system states substitu-
tions, we obtain the inverse model:

M−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1 = γ1

C1 = γ2

E = γ3

P = γ4

u1 = γ̇1 + 2k1γ
2
1γ3

u2 = γ̇2 + k2γ2 − k1γ
2
1γ3

u3 = γ̇3 + k1γ
2γ3 − k2γ2 + k3S2γ3

u4 = γ̇4 − k2γ2

(17)

To derive the flat outputs and its derivatives we implement
the neural ODE system according to:

γ̇ = NN(γ1, γ2, γ3, γ4) (18)

with γ̇ = [γ̇1, γ̇2, γ̇3, γ̇4]
T , and where NN(·) refers to a

multilayer perceptron (MLP) with two hidden layers, i.e.,
32 and 16 nodes per hidden layer, respectively. Input and
output layer with 4 nodes each (Eq. (10)), and Swish
as activation function (Ramachandran et al., 2017). For
the sake of simplicity, we use noise-free in silico data
obtained by a simulation of the model with predefined
kinetic parameters and a sampling rate of 0.1 s over a
time span of 5 s. All states were considered measurable
in units of mmol L−1. The data was calculated with
parameter values of 0.2 L2 mmol−2 min−1, 2.0 min−1 and
0.02 Lmmol−1 min−1 for k1, k2 and k3, respectively. This
data was also used to train the neural ODEs.

For the parameter estimation n = 1000 starting vectors

k̂ were generated by random realizations (i.e., Gaussian

distribution) of the parameters k1, k2, k3. Each vector
was then used to perform a parameter estimation based
on the three different cost functions for parameter identi-
fication (i.e., OLS, ILS, and TLS) given in Eqs. (2) to (5),
respectively. Please note that the neural network does not
have to be adapted for the iterative parameter estimation
procedure. The required information on the model states
and their time derivatives for ILS and TLS is obtained
from a single training data set. Within the evaluation
of our study we here focus on the distribution of the
parameter estimates regarding each approach. Therefore,
z-scores of the resulting parameter vectors were calculated
to allow a direct comparison, i.e., zero-mean parameter
estimates normalized to the standard variance related to
OLS are used.

4. RESULTS

In Fig. 2, we show z-score transformed parameter esti-
mates for k1, k2, and k3. For all parameter combinations,
the proposed TLS approach reveals the lowest rate of
scattering. The exclusive use of back-calculated inputs
within the ILS concept seems to be beneficial for k1 and
k2 compared to OLS; see Fig. 2a. However, in the case of
kinetic parameter k3, ILS leads to the highest scattering;
see Figs. 2b and 2c. Please also note that for all concepts
(i.e., OLS, ILS, and TLS) parameter correlations are low.

Moreover, when analyzing the individual parameter uncer-
tainties using kernel density estimators as in Fig. 3, first,
we see Gaussian-type probability density functions for all
kinetic parameters independently of the used parameters
identification concept. Based on this, we can conclude that
the underlying parameter identification problems are well-
posed for OLS, ILS, and TLS, and the kinetic parameters
are identifiable - at least locally. While the estimated
parameter values k1 and k2 are distributed quite similarly
in ILS and TLS (Figs. 3a, 3b), the ILS approach led to
the highest level of variation regarding the estimates for
parameter k3; see Fig. 3c. Obviously, OLS and ILS might
be beneficial for certain subsets of the kinetic parameters;
TLS combines the positive individual properties of OLS
and ILS, and thus, leads to the most accurate parameter
estimates globally. Please also note that ILS and TLS
depend critically on the quality of the back-calculated flat
outputs and their derivatives based on the used neural
ODE specifications. However, a systematic study analyz-
ing the effect of the neural ODE’s meta-parameters is out
of the scope of this contribution.

5. CONCLUSIONS

The usefulness of digital twins and model-based concepts
in process systems engineering depends essentially on the
reliability and precision of the estimated kinetic model
parameters. In this work, we successfully demonstrated
that a parameter identification problem, which evaluates
total least squares (TLS) instead of ordinary least squares
(OLS), ensures more precise parameter estimates in terms
of parameter scattering. Here, our original contribution
is the proper combination of advanced systems theory
concepts (i.e., differentially flatness) and recent develop-
ments in data science with neural ordinary differential
equations. As a case study, a biotechnology process model
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the neural ODE system according to:
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with γ̇ = [γ̇1, γ̇2, γ̇3, γ̇4]
T , and where NN(·) refers to a

multilayer perceptron (MLP) with two hidden layers, i.e.,
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output layer with 4 nodes each (Eq. (10)), and Swish
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For the parameter estimation n = 1000 starting vectors

k̂ were generated by random realizations (i.e., Gaussian
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was then used to perform a parameter estimation based
on the three different cost functions for parameter identi-
fication (i.e., OLS, ILS, and TLS) given in Eqs. (2) to (5),
respectively. Please note that the neural network does not
have to be adapted for the iterative parameter estimation
procedure. The required information on the model states
and their time derivatives for ILS and TLS is obtained
from a single training data set. Within the evaluation
of our study we here focus on the distribution of the
parameter estimates regarding each approach. Therefore,
z-scores of the resulting parameter vectors were calculated
to allow a direct comparison, i.e., zero-mean parameter
estimates normalized to the standard variance related to
OLS are used.
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In Fig. 2, we show z-score transformed parameter esti-
mates for k1, k2, and k3. For all parameter combinations,
the proposed TLS approach reveals the lowest rate of
scattering. The exclusive use of back-calculated inputs
within the ILS concept seems to be beneficial for k1 and
k2 compared to OLS; see Fig. 2a. However, in the case of
kinetic parameter k3, ILS leads to the highest scattering;
see Figs. 2b and 2c. Please also note that for all concepts
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Moreover, when analyzing the individual parameter uncer-
tainties using kernel density estimators as in Fig. 3, first,
we see Gaussian-type probability density functions for all
kinetic parameters independently of the used parameters
identification concept. Based on this, we can conclude that
the underlying parameter identification problems are well-
posed for OLS, ILS, and TLS, and the kinetic parameters
are identifiable - at least locally. While the estimated
parameter values k1 and k2 are distributed quite similarly
in ILS and TLS (Figs. 3a, 3b), the ILS approach led to
the highest level of variation regarding the estimates for
parameter k3; see Fig. 3c. Obviously, OLS and ILS might
be beneficial for certain subsets of the kinetic parameters;
TLS combines the positive individual properties of OLS
and ILS, and thus, leads to the most accurate parameter
estimates globally. Please also note that ILS and TLS
depend critically on the quality of the back-calculated flat
outputs and their derivatives based on the used neural
ODE specifications. However, a systematic study analyz-
ing the effect of the neural ODE’s meta-parameters is out
of the scope of this contribution.

5. CONCLUSIONS

The usefulness of digital twins and model-based concepts
in process systems engineering depends essentially on the
reliability and precision of the estimated kinetic model
parameters. In this work, we successfully demonstrated
that a parameter identification problem, which evaluates
total least squares (TLS) instead of ordinary least squares
(OLS), ensures more precise parameter estimates in terms
of parameter scattering. Here, our original contribution
is the proper combination of advanced systems theory
concepts (i.e., differentially flatness) and recent develop-
ments in data science with neural ordinary differential
equations. As a case study, a biotechnology process model

Fig. 2. Scatter plots of z-sore transformed parameter
estimates for OLS, ILS and TLS obtained from n =
1000 optimizations.

was implemented, and related kinetic parameters were
identified. Moreover, the neural ODE concept ensured
an efficient parameterization of the flat output and its
derivatives - though, the neuronal ODEs have not been
systematically studied in terms of training and calibration.
The integrated consideration of first-principles parameters
and the meta-parameters of neuronal ODEs will be part
of future work, including the effect of sparse and noisy
experimental data.

Fig. 3. Marginal probability density plot of z-score trans-
formed parameter estimates for OLS, ILS and TLS
obtained from n = 1000 optimizations.
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