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Abstract: The dynamic models used for biological and chemical process analysis and design
usually include a significant number of uncertain model parameters. Sensitivity analysis is
frequently applied to provide quantitative information regarding the influence of the parameters,
as well as their uncertainties, on the model output. Various techniques are available in
the literature to calculate parameter sensitivities based on local derivatives or changes in
dedicated statistical moments of the model output. However, these methods may lead to an
inevitable loss of information for a proper sensitivity analysis and are not directly available
for problems with correlated model parameters. In this work, we demonstrate the use of a
moment-independent sensitivity analysis concept in the presence and absence of parameter
correlations and investigate the correlation effect in more detail. Moment-independent sensitivity
analysis calculates parameter sensitivities based on changes in the entire probability density
distribution of the model output and is formulated independently of whether the parameters
are correlated or not. Technically, a single-loop Monte Carlo simulation method in combination
with polynomial chaos expansion is implemented to reduce the computational cost significantly.
A sampling procedure derived from Gaussian copula formalism is used to generate sample points
for arbitrarily correlated uncertain parameters. The proposed concept is demonstrated with a
case study of an enzyme-catalyzed reaction network. We observe evident differences in the
parameter sensitivities for cases with independent and correlated model parameters.

Keywords: moment-independent, sensitivity analysis, parameter correlations, Gaussian copula,
polynomial chaos expansion, enzyme-catalyzed reactions

1. INTRODUCTION

Increasing competition in the process engineering industry,
stringent safety requirements and regulations for reliable
operations necessitate model-based design and control for
biological and chemical processes (Biegler, 2010). However,
mathematical models that attempt to mimic the dynamic
processes contain many uncertain model parameters. The
parameter uncertainties may result from either inaccurate
experiment measurements or the inherent randomness of
dynamic systems. Sensitivity analysis aims at quantifying
the intensity of the influence of uncertain parameters on
the model output and has also been used for model-
based experiment design (Telen et al., 2014). The existence
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of parameter correlations, however, might increase the
difficulty of properly quantifying parameter sensitivities.
The goal of this paper is to present a reliable method for
quantifying the sensitivities of correlated parameters for
dynamic systems focusing on efficient implementation.

Based on the considered amount of parameter information,
the methods for sensitivity analysis can be categorized
into two groups: 1) Local sensitivity analysis explores the
parameter sensitivity close to a given parameter reference
point (e.g., differential-based or derivative-based methods)
and 2) global sensitivity analysis methods cover the entire
parameter space (e.g., non-parametric or variance-based
approaches). For more details, the interested reader is
referred to the work of Borgonovo and Plischke (2016)
and references therein. However, most sensitivity analysis
methods are inappropriate for complex dynamic systems
with correlated model parameters. To address also rel-
evant parameter correlations, we present the moment-
independent sensitivity analysis (MISA) method (Bor-



gonovo, 2007). Moreover, MISA evaluates the entire prob-
ability density function of the simulation result instead of
a limited number of statistical moments providing more
informative insights.

Although MISA has been applied in various studies (Bor-
gonovo and Tarantola, 2008; Rajabi et al., 2015), its ef-
ficient numerical calculation is still challenging. In this
paper, we present a single-loop Monte Carlo simulation
framework (Wei et al., 2013) which renders the original
nested problem of two Monte Carlos simulation loops in
a more explicit form. Moreover, polynomial chaos expan-
sion (PCE; Xiu and Karniadakis (2002)) is used to lower
the computational cost. In detail, we present a sampling
procedure to generate parameter samples from arbitrarily
correlated uncertain model parameters.

We demonstrate the proposed concept with an enzyme-
catalyzed reaction network for the synthesis of 2-hydroxy
ketones which is of interest in the pharmaceutical and
chemical industries (Demir et al., 2001). The remainder
of the paper is organized as follows. In Sections 2 and 3,
the general sensitivity analysis problem is defined, and the
methods for MISA are presented. We discuss the results
in Section 4 and end with conclusions in Section 5.

2. PROBLEM FORMULATION

Consider a non-linear dynamic model described by ordi-
nary differential equations (ODEs):

ẋ(t,θ) = f(x(t,θ),u(t),θ), x(0) = x0, (1)

where t ∈ [0, tf ] denotes the time, x(t,θ) ∈ Rnx represents
the system states with the initial conditions x(0) = x0, u ∈
Rnu represents the system inputs, and θ = (θ1, · · · , θnθ ) ∈
Rnθ represents the time-invariant parameters. The non-
linear function f : Rnx × Rnu × Rnθ −→ Rnx represents the
vector field of the dynamic system.

In what follows, we assume that the uncertainties of the
model parameters can be described probabilistically. The
probability space (Ω,F , P ) consists of the sample space
Ω, the σ-algebra F , and the probability measure P . The
uncertain parameters θ(ω) are functions of ω ∈ Ω on
the probability space and are associated with probability
density functions (PDFs) p(θ) = [p1(θ1), . . . , pnθ (θnθ )].
The parameter uncertainties p(θ) are propagated through
the dynamic model (1), and in turn, the system states
x(t,θ) are vectors of random variables.

The resulting variation in the system states x induced by
individual model parameters and parameter combinations
is different. The relations between the parameters and the
states cannot be directly observed due to the complexity
of the dynamic system and are counterintuitive in some
cases. This paper aims at quantifying the influence of the
model parameters on the system states by including the
full parameter information to ensure credible parameter
sensitivity studies. In the literature, various techniques
are available for sensitivity analysis. Our focus is on a pa-
rameter sensitivity concept with the following features: 1)
has a quantitative measure of parameter sensitivities, 2) is
global for the entire parameter space, 3) is independent of
the model structure, 4) is moment-independent, and 5) is
available for independent and correlated model parameters
which might be of vital importance (Rajabi et al., 2015).

Based on this, the problem of global sensitivity analysis
can be stated as below.

Problem 1 Measure the influence of correlated model
parameters θ(ω) on the variation of the model states
x(t,θ) in which we are interested.

3. METHOD

MISA gives the solution to Problem 1, at the same time
it fulfills all the desired features 1) to 5) of sensitivity
analysis. The key issue in performing MISA is the effi-
cient computation of the sensitivity indicators. In what
follows, we introduce the single-loop Monte Carlo simula-
tion method to reduce the computational cost. The com-
putational demand is further decreased by substituting
the original CPU-intensive model with a fast PCE model.
Moreover, we include a sophisticated sampling strategy
to generate samples for correlated model parameters of
arbitrary distributions.

3.1 Moment-Independent Sensitivity Analysis

MISA expresses the influence of parameter uncertainties
on the entire PDF of the model output (Borgonovo, 2007).
Consider the dynamic model in (1). The model output
of interest y = h(x(t,θ)) is a function of state variables
x. The uncertainties of the parameters propagate through
the dynamic model and function h, and lead to proba-
bilistically distributed output y with PDF py(y). MISA
compares the difference between probability distribution
py(y) and conditional probability distributions py|θi(y)(i =
1 · · ·nθ) of the model output y to calculate the parameter
sensitivities (Borgonovo, 2007), which is mathematically
expressed as

s(θi) =

∫
Iy
|py(y)− py|θi(y)|dy, (2)

where Iy is the support domain of y and s(θi) is called
the shift function. The average of the shift function on the
entire distribution of θi is then given by

Eθi [s(θi)] =

∫
Iθi

[∫
Iy
|py(y)− py|θi(y)|dy

]
pi(θi)dθi, (3)

where pi(θi) is the marginal PDF of parameter θi. Based
on (3), a sensitivity indicator for MISA was introduced by
Borgonovo (2007) as

δi =
1

2
Eθi [s(θi)]. (4)

The indicator can also be directly extended to a group of
parameters equal to

Eθu [s(θu)] =

∫
Iθu

[∫
Iy
|py(y)− py|θu(y)|dy

]
pθu(θu)dθu,

(5)

δu =
1

2
Eθu [s(θu)], (6)

in which θu = (θi1, · · · , θir) is the subgroup of θ with di-
mension r, and fθu(θu) is the joint probability distribution
of the subgroup.

The sensitivity indicator δ for MISA has five properties
(Borgonovo, 2007): 1) δi (δu) varies in the range [0,1],



Algorithm 1 Single-Loop Monte Carlo Simulation
Method

1: Generate a sample setA=
{
θ1, . . . ,θj , . . . ,θN

}
from

joint PDF pθ(θ) of the uncertain parameters
2: Evaluate dynamic model (1) and y(θ) = h(x(t,θ)) for

the samples and obtain a vector of the model output

Y =
[
y1 · · · yN

]T
3: Estimate PDF py(y) of model output with Y using a

kernel density estimator
4: for i = 1 to nθ
5: Estimate joint PDF py,θi(y, θi) with Y and the ith

column of sample matrix A using a kernel density
estimator

6: Calculate the interpolated values of the PDFs
py(y), pi(θi), py,θi(y, θi) at points [θji , y

j ], j = 1, · · ·N
6: Compute δi = 1

2N

∑N
j=1

∣∣∣py(yj)pi(θji )
py,θi (y

j ,θj
i
)
− 1
∣∣∣

7: end for

and 2) model output y is independent of parameter θi
(subgroup θu) if δi(δu) = 0, 3) the indicator for all
uncertain parameters (δ1,2,...,n) equals unity, 4) δij for
input i and j is bounded as δi ≤ δij ≤ δi + δi|j , in which
δi|j denotes δi conditioned on θj , and 5) δj = 0 ⇐⇒
δij = δi, i.e., the model output is independent of θj . For
further descriptions and proofs, we refer to Borgonovo
(2007). MISA can be directly used for dynamic models
with correlated model parameters because independent
parameters are not required for its definition (Borgonovo,
2007).

3.2 Single-Loop Monte Carlo Simulation Method

The key problem in performing MISA is to calculate the
sensitivity indicator δ with (3) and (4). Two numerical
methods, single-loop and double-loop Monte Carlo simu-
lations, were introduced by Wei et al. (2013). The double-
loop Monte Carlo simulation approach is straightforward
in implementation but requires sampling from conditional
distributions that leads to a high total sampling number
which might be prohibitive for many practical applications
(Wei et al., 2013). In contrast, the single-loop Monte Carlo
simulation method is more efficient but requires some
modifications of (3) and (4) as described below.

In a first step, we obtain a new expression for the sensi-
tivity indicator δ as

δi =
1

2

∫
Iθi

[∫
Iy
|py(y)− py|θi(y)|dy

]
pi(θi)dθi

=
1

2

∫
Iθi

∫
Iy
|py(y)pi(θi)− py|θi(y)pi(θi)|dydθi

=
1

2

∫
Iθi

∫
Iy
|py(y)pi(θi)− py,θi(y, θi)|dydθi

=
1

2

∫
Iθi

∫
Iy

∣∣∣∣py(y)pi(θi)

py,θi(y, θi)
− 1

∣∣∣∣ py,θi(y, θi)dydθi,
(7)

where py,θi(y, θi) = py|θi(y)pi(θi) is the joint PDF of y and
θi. With the expression in (7), Monte Carlo simulations
can be directly used to solve the integral term over the
domain of y and θi with the joint PDF py,θi(y, θi) as

summarized in Algorithm 1. Note that only one for-
loop is required in the algorithm. In the algorithm, the
unknown PDFs py(y) and py,θi(y, θi) are estimated with
the multivariate kernel density estimator toolbox (Botev
et al., 2010). Equation (7) and Algorithm 1 can be directly
extended to δu since the kernel density estimator can also
compute joint PDF of higher dimensions py,θu(y,θu).

3.3 Sampling strategy for Correlated Model Parameters
with Arbitrary Distributions

Although the marginal PDFs p(θ) and the correlation
matrix Σ of the uncertain model parameters can be derived
from experimental data, the joint PDF pθ(θ) to generate
sample set A is still missing (Step 1 in Algorithm 1). For
independent uncertain parameters, the joint PDF is simply
given by the product of the marginal distributions as

pθ(θ) =

nθ∏
i=1

pi(θi). (8)

In the case of model parameter correlations, this simpli-
fying assumption of (8) no longer holds. Alternatively, a
Gaussian copula-based approach (Nelsen, 2007) is used to
calculate the joint PDF as follows

pθ(θ) =
∂nθFnθ [F

−1(µ1), · · · , F−1(µnθ ); Σ]

∂θ1 · · · θnθ
, (9)

where F−1 denotes the inverse cumulative distribution
function (CDF) of the standard Gaussian distribution,
and Fnθ denotes the joint CDF of multivariate standard
Gaussian distributions with the correlation matrix Σ. The
CDF of θ, which is [µ1, · · · , µnθ ] = [F1(θ1), . . . , Fnθ (θnθ )],
can be arbitrary.

Practically, it is non-trivial to directly calculate pθ(θ)
from (9) for parameter sampling. Therefore, we present a
sampling procedure according to (9) in combination with
the inverse Nataf transformation (Nelsen, 2007) as sum-
marized in Algorithm 2. Within Algorithm 2, sample set
A is derived from the sampling of a multivariate standard
normal distribution which can be directly generated from
the randn function in MATLAB R©.

Algorithm 2 Sampling for correlated random variables,
adapted from Lataniotis et al. (2015)

1: Generate samples G = [ξ1, · · · , ξN ] from ξ ∼ N (0, I)
2: Perform Cholesky decomposition for the correlation

matrix Σ = LLT , where L is a lower triangular
matrix;

3: Add correlations to the samples G, V = LG;
4: Transform V into samples of the Gaussian copula,

W = [F (V1), · · · , F (Vθ)];
5: Transform W into samples of uncertain parameters

θ, A = [F−11 (W1), · · · , F−1θ (Wθ)].

3.4 Polynomial Chaos Expansion

The main computational burden for solving (7) is the
repeated evaluation of the dynamic system (1) as indicated
in Step 2 of Algorithm 1. The single-loop Monte Carlo
simulation approach has reduced the required sample
number significantly compare to the double-loop approach,



but at least 10,000 Monte Carlo simulations are required
to approximate the integral term in (7) accurately which
might be still prohibitive in the case of computationally
expensive model evaluations. To confront this problem, an
easy-to-evaluate PCE model is derived first.

Consider y(θ) as a random variable of finite variance,
which can be represented as (Sudret, 2008)

y(θ) =

∞∑
k=0

αkΨk(θ), (10)

where {Ψk(θ)}∞k=0 and {ak}∞k=0 are multidimensional or-
thogonal polynomials and polynomial coefficients, respec-
tively. Assuming independent model parameters, the mul-
tivariate polynomials Ψk(θ) can be constructed as a prod-
uct of univariate polynomials (Xiu and Karniadakis, 2002)
according to

Ψk(θ) = Φ1
k1(θ1)Φ2

k2(θ2) · · ·Φnθknθ (θnθ ), (11)

where Φiki(θi) denotes the univariate polynomial of order
ki for model parameter θi. The univariate polynomial type
is chosen based on the PDF of parameter θi. Algorithms
for constructing orthogonal univariate polynomials for
standard and arbitrary PDFs can be found in Xiu and
Karniadakis (2002) and Oladyshkin and Nowak (2012).
For practical reasons, the infinite expansion in (10) is
truncated and substituted by

y(θ) =

P−1∑
k=0

αkΨk(θ), (12)

where P is the number of the retained polynomials and
determined by the expansion order and the hyperbolic
index (Marelli and Sudret, 2014). The coefficients αk in
(12) can be estimated by using a non-intrusive simulation-
based approach. More details about the truncation strat-
egy and coefficient estimation are referred to Blatman and
Sudret (2011). Note that the PCE model is determined by
ignoring the parameter correlations first. Only the sample
set A used to calculate the parameter sensitivities reflects
the parameter correlation subsequently.

4. CASE STUDY: ENZYME-CATALYZED REACTION
NETWORK

Typically, enzymatic-catalyzed processes operate under
mild conditions while at the same time they ensure a high
selectivity (Stillger et al., 2006; Nakamura et al., 2003). In
this work, we are interested in the synthesis of enantiopure
hydroxy ketones catalyzed by benzaldehyde lyase from
Pseudomonas fluorescens (Pf BAL), which are important
building blocks in the chemical and pharmaceutical indus-
tries (Demir et al., 2001). The biochemical reaction net-
work shown in Fig. 1 includes the substrates benzaldehyde
(B) and propanal (A), the side product (R)-benzoin (BB),
and the desired product (R)-2-hydroxy-1-phenylbutan-1-
one (BA). The five reaction steps are determined by 10
kinetic parameters θi, i = 1, · · · , 10.

Model-based process optimization tools might be applied
to obtain a higher selectivity and yield of the target
product BA (Ploch, 2014). However, the kinetic param-
eters estimated from experiments are uncertain and cor-
related. These parameter imperfections might affect the
performance of the model-based design negatively; i.e.,

Fig. 1. Reaction network of the synthesis of desired prod-
uct (R)-2-hydroxy-1-phenylbutan-1-one (BA) and
side product (R)-benzoin (BB) from benzaldehyde
(B) and propanal (A) catalyzed by Pf BAL (E)
(Ploch, 2014)

the derived operating condition is sub-optimal or biased .
Therefore, we investigate the effect of parameter variation
and parameter correlation on the simulation results.

4.1 Mathematical Model

A batch reactor model is assumed for the sensitivity
analysis (Ploch, 2014). Based on mass conservation, the
governing equations read as

dcA
dt

=−NBA
D

cE , (13)

dcB
dt

=−2NBB +NBA
D

cE , (14)

dcBA
dt

=−NBA
D

cE , (15)

dcBB
dt

=−NBB
D

cE , (16)

dcE
dt

= (−θ11 · cA − θ12 · cB − θ13)cE , (17)

where ci denotes the concentration of the i-th substrate;
θ11, θ12, and θ13 are kinetic parameters that describe
the deactivation in the enzymes; and NBA, NBB , and D
are abbreviations for the nominators and denominators of
the rate equations, which consist of the kinetic parame-
ters of the reaction steps in Fig. 1 and concentration of
components. For more details, we refer to Ploch (2014).
Equations (13) to (16) describe the concentrations of the
reactants and products, while (17) describes the concen-
tration of the enzyme that remains active in the reactor.
Uncertainties of all the kinetic parameters are described by
a multivariate normal distribution with θi ∼ N (mi,mi ×
10%), ∀i = 1, · · · , 13 and the correlation matrix Σ as
given in Fig. 2. The correlation matrix and parameter
values are obtained from experimental data (Ohs et al.,
2017). The mean values (mi) of the kinetic parameters are
summarized in Table 1.

Independent and correlated parameter samples are gen-
erated with Algorithm 2 according to their marginal dis-
tributions with the identity matrix I and the correlation
matrix Σ, respectively. For the PCE setting, we use an
expansion order of 6 and hyperbolic index of 0.5 (Marelli
and Sudret, 2014). To calibrate the PCE model, 500 ref-
erence simulations were sufficient to guarantee a credible
approximation; i.e., a dramatic reduction of computational
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Fig. 2. Correlation values of all kinetic parameters

Table 1. Mean values of all kinetic parameters

θ1 6.0× 105 (mM ·min)−1 θ8 14 (min)−1

θ2 5.3× 105 (min)−1 θ9 5.7× 102 (min)−1

θ3 1.4× 105 (mM ·min)−1 θ10 5.7× 104 (mM ·min)−1

θ4 2.3× 104 (min)−1 θ11 2.4× 10−3 (mM ·min)−1

θ5 1.3× 106 (min)−1 θ12 1.7× 10−3 (mM ·min)−1

θ6 2.0× 106 (mM ·min)−1 θ13 1.1× 10−4 (min)−1

θ7 3.3× 103 (mM ·min)−1

costs compared to direct Monte Carlo simulations with
10,000 simulations. In parallel, Algorithm 1 is carried out
for the correlated samples to perform MISA in MATLAB R©

using the UQLAB toolbox (Marelli and Sudret, 2014).

4.2 Results

The effects of the 13 kinetic parameters on different
substrate concentrations are presented at time points 1.5,
40, 100 and 145 min. Results for enzyme E are displayed
in Fig. 3. As we can see, the sensitivities at different
time points have only slight differences, and θ11 always
dominates the uncertainty of cE . By comparing the results
for the independent and correlated cases, we observe a
significant increase in the sensitivities of θ5, θ12, and θ13
that is based on the strong correlations between them and
θ11. In Fig. 4, we show the results of the side product BB.
Here, cBB is dominated by the first six parameters at the
start of the reaction. The impact of θ9, θ10, θ11 increases
over time. Evident differences between the results for the
independent and correlated case are also observed in Fig.
4. In Fig. 5, we summarize the sensitivities for the desired
product BA. The impact of θ9 on cBA dominates at the
start of the reaction and becomes similar to θ7, θ10 and θ11
over time. The correlations among the parameters affect
the sensitivity results here as well.

In addition, the savage score correlation coefficient (SSCC;
Iman and Conover (1987)), which quantifies the agreement
between two rankings, is used to compare the sensitiv-
ity results between independent and correlated parameter
cases. It has a value between -1 and 1, where -1 and 1
indicate identical and opposite results, respectively. The
SSCC for each analysis is shown in the corresponding
figures, which also reveals a distinct effect of parameter
correlations on the sensitivity results. The effect of param-
eter correlations on the entire PDF of the model output,
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Fig. 3. MISA-based sensitivities of 13 parameters for
enzyme E in the absence and presence of correlations
at time points 1.5, 40, 100, and 145 min
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Fig. 5. MISA-based sensitivities of 13 parameters for sub-
strate BA in the absence and presence of correlations
at time points 1.5, 40, 100, and 145 min

in turn, is minor as shown in Fig. 6. Only for cBB and
cBA the PDFs in the presence and absence of parameter
correlations are slightly distinct.

5. CONCLUSIONS

This work reveals the potential of MISA and its efficient
computational implementation for analyzing realistic and
complex dynamic systems in the absence and presence of
parameter correlations. In detail, we demonstrated the use
of MISA for enzyme-catalyzed reactions with independent
and correlated model parameters, respectively. A single-
loop Monte Carlo simulation method combined with PCE
was used to compute the sensitivity indicator δ for all the
kinetic parameters at low computational cost. According
to the derived results, we observed that parameter corre-



(a)

(b)

(c)

Fig. 6. The time evolution of the probability density
function (PDF) of concentrations cE , cBB , and cBA,
determined with 10,000 Monte Carlo simulations

lations can strongly affect the sensitivity ranking and the
PDF of the model output. Therefore, it is necessary to con-
sider parameter correlations in process analysis and design.
In future work, we will transfer the proposed framework
to model-based optimal experimental design problems.
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