

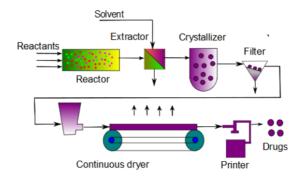
# Flatness-Based Model Selection of Benzaldehyde Lyase Catalysed Biochemical Reaction Network

trum für maverfahrenstechni

Moritz Schulze, René Schenkendorf, 26. May 2017

# **Center of Pharmaceutical Engineering (PVZ)**



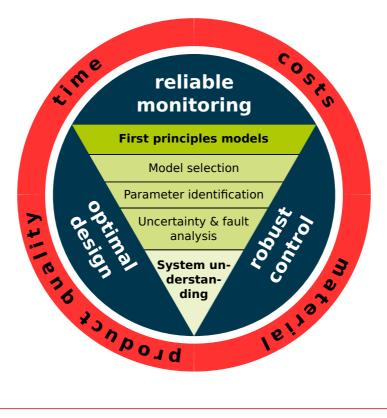

- TU Braunschweig
- founded in 2012
- 19 institutes, ca. 100 scientists
- 1500 m<sup>2</sup> labs & 42 m<sup>2</sup> pilot plant area



# **Center of Pharmaceutical Engineering (PVZ)**



- TU Braunschweig
- founded in 2012
- 19 institutes, ca. 100 scientists
- 1500 m<sup>2</sup> labs & 42 m<sup>2</sup> pilot plant area
- interdisciplinary collaboration
- Iow-cost and effective APIs
- personalised therapy with individualised drug products






26. May 2017 | Moritz Schulze, René Schenkendorf | Page 2

# **PSE group of InES**

#### Pharmaceutical Systems Engineering group





# Agenda

- Motivation
- Concept of flatness
- Results and challenges



#### **Motivation**

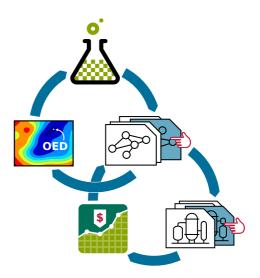
- Declining profit margins in pharmaceutical industry
  - Increasing R&D costs and time
  - Strengthened competition (generic drugs)



26. May 2017 | Moritz Schulze, René Schenkendorf | Page 5 Flatness-Based Model Selection of Benzaldehyde Lyase Catalysed Biochemical Reaction Network

### **Motivation**

- Declining profit margins in pharmaceutical industry
  - Increasing R&D costs and time
  - Strengthened competition (generic drugs)
- High product quality requirements
  - Good system understanding
  - Design depends critically on the used model
  - Set of candidates (reactants?, mechanistics?, kinetics?)




26. May 2017 | Moritz Schulze, René Schenkendorf | Page 5 Flatness-Based Model Selection of Benzaldehyde Lyase Catalysed Biochemical Reaction Network

### **Motivation**

- Declining profit margins in pharmaceutical industry
  - Increasing R&D costs and time
  - Strengthened competition (generic drugs)
- High product quality requirements
  - Good system understanding
  - Design depends critically on the used model
  - Set of candidates (reactants?, mechanistics?, kinetics?)

#### → Careful model selection and optimal design of experiments





26. May 2017 | Moritz Schulze, René Schenkendorf | Page 5

Flatness-Based Model Selection of Benzaldehyde Lyase Catalysed Biochemical Reaction Network

# **Model discrimination state-of-the-art**

- OED of dynamic systems requires optimisation of (in general time dependent) control variables
- $\rightarrow$  optimal control problem



# Model discrimination state-of-the-art

- OED of dynamic systems requires optimisation of (in general time dependent) control variables
- $\rightarrow$  optimal control problem
  - Approximation of control inputs by e.g. orthogonal collocation or CVP techniques
  - $\rightarrow$  Large problems, high computational effort and efficient solvers required



New for model selection (widely applied in control problems)

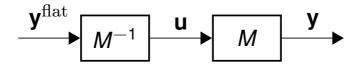


- New for model selection (widely applied in control problems)
- Experimental conditions are derived analytically



- New for model selection (widely applied in control problems)
- Experimental conditions are derived analytically
- Feedforward control



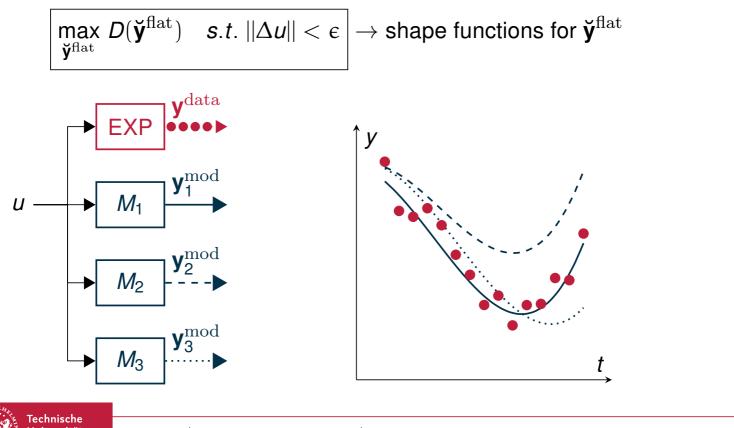

- New for model selection (widely applied in control problems)
- Experimental conditions are derived analytically
- Feedforward control
- Analysis tool



#### **Concept of flatness**

**x** : state variables, **u** : inputs, **y** : outputs

 $\underbrace{ \begin{array}{c} \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}) \\ \mathbf{y} = \mathbf{h}(\mathbf{x}, \mathbf{u}) \\ \text{model } M \end{array}}_{\text{model } M} \underbrace{ \begin{array}{c} \mathbf{x} = \mathbf{f}_{x}(\mathbf{y}^{\text{flat}}, \dot{\mathbf{y}}^{\text{flat}}, \ldots) \\ \mathbf{u} = \mathbf{f}_{u}(\mathbf{y}^{\text{flat}}, \dot{\mathbf{y}}^{\text{flat}}, \ldots) \\ \text{inverse model } M^{-1} \end{array} }_{\text{inverse model } M^{-1}}$ 




 $\mathbf{y}^{\mathrm{flat}} = \mathbf{f}^{\mathrm{flat}}(\mathbf{x},\mathbf{u},\dot{\mathbf{u}},...)$  and its derivatives fully describe dynamic behaviour of the system.



26. May 2017 | Moritz Schulze, René Schenkendorf | Page 8

## **Model discrimination**





## **Case study 1: Academic example**

Discrimination criterion ("T-optimal design")

$$D = \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} |u_i(y^{\text{flat}}) - u_j(y^{\text{flat}})|^2$$

m model candidates M<sub>i</sub>:

 $M_1: \dot{x} = -0.1x + u$ 

$$M_2: \dot{x} = -0.2x + u$$

 $M_3: \dot{x} = -0.01x^2 + u$ 



## **Case study 1: Academic example**

Discrimination criterion ("T-optimal design")

$$D = \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} |u_i(y^{\text{flat}}) - u_j(y^{\text{flat}})|^2$$

*m* model candidates *M<sub>i</sub>*:

 $M_1: \dot{x} = -0.1x + u$ 

$$M_2: x = -0.2x + u$$

$$M_3: \dot{x} = -0.01x^2 + u$$

#### Flat output

$$y^{\text{flat}} = x$$



## **Case study 1: Academic example**

Discrimination criterion ("T-optimal design")

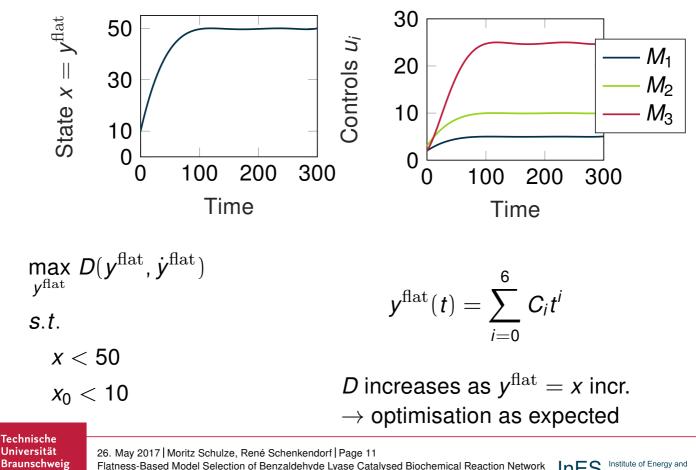
$$D = \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} |u_i(y^{\text{flat}}) - u_j(y^{\text{flat}})|^2$$

*m* model candidates *M<sub>i</sub>*:

 $M_1: \dot{x} = -0.1x + u$  $M_2: \dot{x} = -0.2x + u$ 

 $M_3: \dot{x} = -0.01x^2 + u$ 

$$\max_{y^{\text{flat}}} D(y^{\text{flat}}, \dot{y}^{\text{flat}})$$
  
s.t.  
$$x < 50$$
  
$$x_0 < 10$$


Flat output

$$y^{\text{flat}} = x$$



26. May 2017 | Moritz Schulze, René Schenkendorf | Page 10





#### **Case study 2: BAL catalysed reaction network**

| Symbol | Derivative    |
|--------|---------------|
| BA     | benzaldehyde  |
| ALD    | acetaldehyde  |
| BZ     | benzoin       |
| HPP    | hydroxy-      |
|        | phenyl-propan |

| BA                   | ALD                    | HPP      |            |
|----------------------|------------------------|----------|------------|
| <sup>2</sup>         | + 2 0<br>BAL<br>step 4 | 2 C OH   |            |
| step 2 BAL<br>step 1 | BZ ALD                 | HPP<br>° | BA         |
| ОН ОН                | + official step 3      |          | $\bigcirc$ |

Reaction network [1]

**Dynamic system** 

BA:  $\dot{x}_1 = -2v_{\text{step}1} + v_{\text{step}3}$ 

ALD:  $\dot{x}_2 = -v_{\text{step}3} + u_2$ 

HPP:  $\dot{x}_4 = v_{\text{step3}}$ 

BZ:  $\dot{x}_3 = v_{\text{step1}} - v_{\text{step3}}$ 

 $+ U_1$ 

#### **Mechanistics**

# $2 \text{ BA} \xrightarrow[\text{step1}]{\text{BAL}} 1 \text{ BZ}$ $1 \text{ BZ} + 1 \text{ ALD} \xrightarrow[\text{step3]{BAL}} 1 \text{ HPP} + 1 \text{ BA}$

Falk Hildebrand et al. en. In: Biotechnology and Bioengineering 96.5 (Apr. [1] 2007), pp. 835–843.

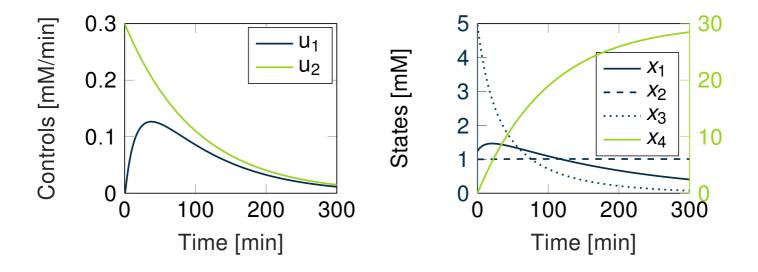


26. May 2017 | Moritz Schulze, René Schenkendorf | Page 12

## **Case study 2: Model candidates**

#### **Candidates (kinetics)**

- $M_1$ : Michaelis-Menten with inhibition
- $M_2$ : Michaelis-Menten (set  $K_{\mathrm{I},2} = \infty$ )
- M<sub>3</sub>: Power law

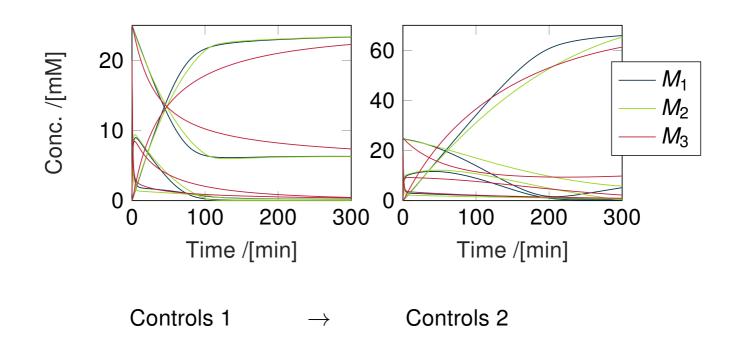

$$M_{1}, M_{2} \begin{cases} \nu_{\text{step1}} = [E] V_{\text{max},1} \left( \frac{x_{1}}{K_{\text{M,BA}}(1+x_{2}/K_{\text{I},2})+x_{1}} \right)^{2} \\ \nu_{\text{step3}} = [E] V_{\text{max},3} \frac{x_{3}}{K_{\text{M,BZ}}(1+x_{2}/K_{\text{I},2})+x_{3}} \end{cases}$$
$$M_{3} \begin{cases} \nu_{\text{step1}} = k_{1}x_{1}^{2} \\ \nu_{\text{step3}} = k_{3}x_{2}x_{3} \end{cases}$$



#### **Results: System trajectories**

Model 2: 
$$\mathbf{y}^{\text{flat}} = \begin{pmatrix} x_2 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 30(1 - \exp[-t/100]) \end{pmatrix}$$

 $\mathsf{Flat}\ \mathsf{outputs} \to \mathsf{controls} \to \mathsf{states}$ 

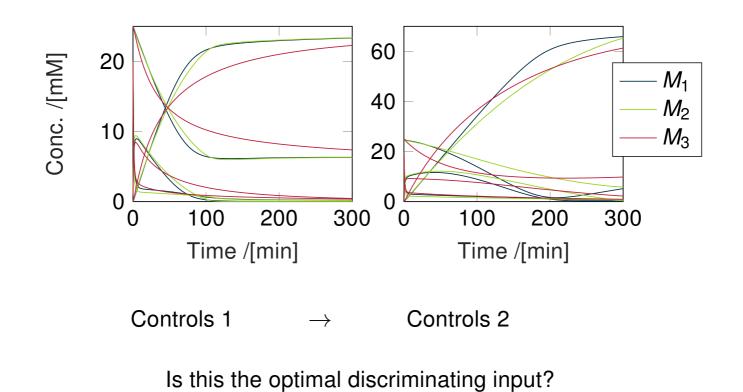





26. May 2017 | Moritz Schulze, René Schenkendorf | Page 14

Flatness-Based Model Selection of Benzaldehyde Lyase Catalysed Biochemical Reaction Network

## **Case study 2: Optimisation**






26. May 2017 | Moritz Schulze, René Schenkendorf | Page 15

Flatness-Based Model Selection of Benzaldehyde Lyase Catalysed Biochemical Reaction Network

## **Case study 2: Optimisation**



Technische Universität Braunschweig

26. May 2017 | Moritz Schulze, René Schenkendorf | Page 15

Flatness-Based Model Selection of Benzaldehyde Lyase Catalysed Biochemical Reaction Network

## **Case study 2: Results**

- Flatness as a model analysis tool
  - Complex regions
  - Singularities
  - $\rightarrow$  Constraints on feasible region



### **Case study 2: Results**

- Flatness as a model analysis tool
  - Complex regions
  - Singularities
  - $\rightarrow$  Constraints on feasible region
- Choice of shape functions (flat outputs)
  - Analytic, non-piecewise functions, e.g. polynomial, rational, exponential
  - Diverse local and global solvers (MATLAB, e.g. fminsearch, fmincon, particlesearch, patternsearch)
  - $\rightarrow$  No final optimal result in setting up the optimisation problem



### **Case study 2: Results**

- Flatness as a model analysis tool
  - Complex regions
  - Singularities
  - $\rightarrow$  Constraints on feasible region
- Choice of shape functions (flat outputs)
  - Analytic, non-piecewise functions, e.g. polynomial, rational, exponential
  - Diverse local and global solvers (MATLAB, e.g. fminsearch, fmincon, particlesearch, patternsearch)
  - $\rightarrow$  No final optimal result in setting up the optimisation problem

#### Outlook: Splines (increasing degrees of freedom)



# Thanks for your attention!



