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a b s t r a c t 

Robust model-based process design in continuous pharmaceutical manufacturing aims to implement 

quality by design principles under uncertainty. Notably, various studies have discussed the back-off con- 

cept to solve the underlying robust optimization problem; however, for the concept to have practical 

value, its efficiency and convergence must be improved. In this work, we introduce a novel, highly effi- 

cient stochastic back-off strategy. Instead of using statistical moments of limited validity, we incorporate 

the full statistical information of the constraints to solve the robust process design problem. To ensure 

manageable computational costs, we make use of polynomial chaos expansion for uncertainty quantifi- 

cation and propagation. The proposed concept is demonstrated with the design of a tubular crystallizer 

for ibuprofen crystallization. The results show that the novel stochastic back-off strategy is considerably 

faster compared with the standard back-off concept and provides more reliable quality by design results 

in general. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

With the aim of efficiently and sustainably producing active

pharmaceutical ingredients (APIs), concepts of quality by design

(QbD) have been advocated by regulatory agencies in pharmaceu-

tical manufacturing ( ICH, 2005 ). In particular, continuous phar-

maceutical manufacturing (CPM) has received keen interest in

academia and industry over the last decade ( Adamo et al., 2016;

Mascia et al., 2013; Vervaet and Remon, 2005 ). Process analyt-

ical technology (PAT), which aims to design, analysis, and con-

trol the process, has been extensively explored and implemented

in CPM to ensure consistent drug quality and safe operations

( Simon et al., 2015; Zhang et al., 2014 ). Besides novel sensor con-

cepts and measurement devices, mathematical models are con-

sidered as an essential tool for holistic PAT strategies to analyze

critical quantities, to predict the process behavior, and to make

decisions model-based results ( Benyahia et al., 2012; Boukouvala

et al., 2012; Cervera-Padrell et al., 2012; Gernaey et al., 2012; Ger-

naey and Gani, 2010; Jolliffe and Gerogiorgis, 2015; 2016; Lak-

erveld et al., 2013 ). However, the reliability of model-based results

may suffer from uncertain model parameters that are typically de-

rived from parameter identification routines processing noisy data
∗ Corresponding author at: TU Braunschweig, Franz-Liszt-Straße 35, 38106, 
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 Maußner and Freund, 2018; Schenkendorf et al., 2018b ). If these

ncertainties are ignored, the model-based process design might

ead to suboptimal performances and unexpected operation fail-

res ( Montes et al., 2018; Rooney and Biegler, 2003; Xie et al.,

018a; 2017 ). Therefore, it is necessary to include information

bout parameter uncertainties in the model-based design of phar-

aceutical processes in general. 

The robust design of pharmaceutical processes aims to max-

mize process performance while satisfying critical process con-

traints under the condition of uncertainty. A commonly used ap-

roach for robust optimization is the scenario-based method, in

hich simulation studies seek the worst-case scenario for which

he process is optimized ( Nagy and Braatz, 20 03; 20 04 ). How-

ver, the scenario-based method has two critical drawbacks: i) It

eads to a complicated and intractable bilevel-optimization prob-

em; ii) the worst-case scenario might rarely occur in reality, and

hus, the derived robust solution is always too conservative. Alter-

atively, probability-based concepts provide less conservative ro-

ust process designs compared with the scenario-based method

ut increase the computational demand due to the inherent uncer-

ainty propagation problem ( Nagy and Braatz, 20 07; Nagy, 20 09;

elen et al., 2015; Xie et al., 2018a ). Back-off terms, which are de-

ermined by the specified level of process robustness, are intro-

uced to the inequality constraints to reduce their violation prob-

bility. For instance, Nagy and Braatz (2007) determined back-off

erms with power series and polynomial chaos expansions in an

https://doi.org/10.1016/j.compchemeng.2019.02.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
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nalytical form with student’s t -test distribution. Telen et al.

2015) calculated back-off terms with Cantelli’s inequality and the

nscented transform ( Julier and Uhlmann, 2004 ). In both works,

he back-off terms were updated in each iteration of the optimiza-

ion. Although efficient methods were used to calculate the back-

ff terms, the computational cost might be prohibitive for prob-

ems with non-adequate optimization formulations, such as poor

nitial guesses. 

There are at least two alternatives for applying the back-

ff concept to complex problems. To alleviate the computa- 

ional burden for calculating back-off terms, a surrogate model

ould be used to replace the original process model as illus-

rated by Rafiei and Ricardez-Sandoval (2018) ; Rafiei-Shishavan

t al. (2017) ; Schenkendorf et al. (2018a) ; Shen and Braatz (2016) ;

ie et al. (2017) . The accuracy of the surrogate model, how-

ver, a crucial problem with this approach, especially for a

arge-scale optimization problem ( Xie et al., 2017 ). Alternatively,

rinivasan et al. (2003) introduced an iterative strategy for cal-

ulating the back-off terms with superimposed optimization, so

hat robust optimization does not include additional complex-

ty from calculating the back-off terms and has the same com-

utational cost as solving the nominal optimization problem.

ecause of the computational efficiency, this approach has been

urther investigated and implemented in model-predictive control

 Aydin et al., 2018 ), optimal experimental design ( Galvanin et al.,

010 ), and robust process design ( Emenike et al., 2019; Maußner

nd Freund, 2018; Shi et al., 2016 ). 

In this work, we first summarize the structure of the conven-

ional iterative back-off strategy briefly and improve the proce-

ure by introducing a quantitative update rule for the back-off

actor η that controls the conservativeness of a robust process

esign. Thus, the iterative back-off strategy can converge to the

esired robustness for the given constraints without an intuitively

elected η factor and its trial-and-error updating procedure, even

or non-normal distributions. However, the two nested loops for

etermining back-off terms and the η factor introduce additional

ifficulties in the convergence of the conventional iterative back-

ff strategy. Moreover, the validation and calculation of the η fac-

or limit the strategy’s overall efficiency. Therefore, the main con-

ribution of this work is to introduce a novel stochastic back-off

trategy with a simpler structure. The key idea is that the back-

ff terms are derived by the entire probability distribution rather

han the standard deviations of the constraints. Moreover, the effi-

iency of the stochastic back-off strategy is improved considerably

y using polynomial chaos expansion to replace the CPU-intensive

rocess model and to calculate the probability distributions of the

onstraints ( Marelli and Sudret, 2015; Xiu and Karniadakis, 2002 ). 

To demonstrate the performance of the stochastic back-off strat-

gy, it is applied to continuous crystallization of ibuprofen. Ibupro-

en is one of the most commonly used medicines for treating

ain, fever, and inflammatory diseases. Continuous manufacturing

f ibuprofen was investigated in Jolliffe and Gerogiorgis (2015) ;

ontes et al. (2018) , and the economic evaluation of this process

as also provided in Jolliffe and Gerogiorgis (2016) . Crystalliza-

ion is the essential process in pharmaceutical manufacturing to

xtract APIs ( Kwon et al., 2013; Montes et al., 2018; Nagy, 2009 ).

n particular, the crystallization of ibuprofen was presented in

arunanithi et al. (2006) ; Nayhouse et al. (2015) , in which the ki-

etic Monte Carlo method or group contribution method are used

o predict the growth kinetic or solubility of ibuprofen in differ-

nt solvent systems. Rashid (2011) identified the mechanisms and

inetics of the crystallization of ibuprofen in ethanol, e.g., the nu-

leation and growth rates, and estimated the associated kinetic pa-

ameters with experiments at various conditions. In our case study,

he kinetics from Rashid (2011) are used to design a continuous

ubular crystallizer for ibuprofen. The stochastic back-off strategy
s implemented to ensure the solution supersaturation stays be-

ow the primary nucleation threshold to avoid unstable primary

ucleation. Moreover, this strategy is compared with other itera-

ive back-off strategies to highlight the superiority of the proposed

oncept in terms of efficiency. 

The remainder of the paper is organized as follows. In Section 2 ,

he basics of the traditional back-off strategy are presented. Next,

ur novel stochastic back-off strategy is introduced in Section 3 .

 case study involving the continuous crystallization of ibuprofen

s detailed in Section 4 . Results and discussions are provided in

ection 5 . Conclusions are given in Section 6 . 

. Basics of the standard back-off strategy 

Assume we have an inequality constraint for the process design

 (x, θ ) ≤ 0 , (1) 

here function h : R 

n x ×n θ → R 

n h , x is the vector of the state vari-

bles, and θ is the vector of the uncertain parameters with the

oint probability density function (PDF) f ( θ ). Technically, to en-

ure the robustness of the inequality constraint, Eq. (1) must be

atisfied for all possible parameter realizations of PDF f ( θ ), but

traightforward implementation of the equation results in a semi-

nfinite optimization problem that might be NP-hard. Thus, for soft

nequality constraints Eq. (1) , which might be violated with ac-

eptable probability, we can introduce a back-off term b to en-

ure the reliability of the inequality constraint under uncertainty

ie et al. (2018a) : 

 (x, θn ) + b ≤ 0 , (2)

here θn represents the vector of the nominal parameter values.

ere, Eq. (2) has the same complexity as the inequality constraint

or the nominal design, and the back-off term b , which could be a

onstant or time-varying variable, moves the inequality constraint

t the nominal condition away from its boundary to ensure a suf-

cient safe distance for the parameter uncertainties. 

Perkins et al. ’s 1990 pioneering work on the back-off concept

as been advanced to select control structures for different chemi-

al processes, in which linearized models are used to calculate the

ack-off terms ( Kookos and Perkins, 2016; Narraway and Perkins,

993 ). The original back-off strategy has also been used to guar-

ntee the dynamic feasibility of joint process design and control

ptimization problems ( Bahri et al., 1995; 1996; Figueroa et al.,

996 ). Visser et al. (20 0 0) and Diehl et al. (2006) approximated

ack-off terms with constraint derivatives for robust optimiza-

ion of a fed-batch fermentation process and a batch distillation

rocess, respectively. However, the back-off terms used were de-

ermined by linearization of the model and the constraints, and

hus, are not reliable for the robust design of highly non-linear

harmaceutical processes and might lead to robustification that is

oo conservative or has excessive constraint violations. Moreover,

rinivasan et al. (2003) proposed the idea of an iterative calcula-

ion of back-off terms; i.e., in addition to the optimization loop, an

uter back-off validation loop is used based on Monte Carlo simu-

ations. This iterative back-off concept was also implemented and

efined by Shi et al. (2016) for robust optimization of a polymer-

zation process, in which Monte Carlo simulations were used to

ropagate the parameter uncertainties through the original process

odel and to approximate the resulting mean and variance val-

es of the constraints for the back-off calculation as summarized

n Eqs. (3) to (5) : 

 = η
√ 

V ar(h (x, θ )) , (3) 

 ar(h (x, θ )) = 

∫ 
I θ

(h (x, θ ) − E (h (x, θ ))) 2 f (θ ) dθ (4) 
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Fig. 1. Flow diagram for the double-loop back-off strategy for robust process design. 
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≈
n MC ∑ 

i =1 

1 

n MC 

(h (x, θMC 
i ) − E (h (x, θ ))) 2 , 

E (h (x, θ )) = 

∫ 
I θ

h (x, θ ) f (θ ) dθ ≈
n MC ∑ 

i =1 

1 

n MC 

h (x, θMC 
i ) , (5)

where n MC is the number of Monte Carlo simulation samples,

E (h (x, θ )) and Var ( h ( x, θ )) indicate the mean and the variance

of the constraint function h , and η is the factor that controls

the conservativeness of the robust optimization using back-off

terms. Shi et al. (2016) also demonstrated that we could improve

the back-off terms with an iterative update based on Eqs. (3) to

(5) . The optimal design from the last iteration is used, and

the results from the back-off strategy are equivalent to those

from multi-scenario optimization once the back-off terms con-

verge. To reliably approximate the mean and variance values with

Eqs. (4) and (5) , n MC has to be large, which might be prohibitive

especially for large-scale systems and complex process models.

Emenike et al. (2019) came up with the idea of calculating back-

off terms with the point estimate method (PEM) as a more ef-

ficient alternative to conventional Monte Carlo simulations and

based on their simulation study, demonstrated a dramatic reduc-

tion in computational costs. In addition, Koller et al. (2018) inves-

tigated the impact of different η values on the performance of a

back-off strategy by applying it to a simultaneous design, control,

and scheduling problem of multi-product systems. Maußner and

Freund (2018) introduced an additional iteration loop to update the

η value to ensure that the number of constraint violations is below

an acceptable level. This particular double-loop back-off strategy is

summarized in the workflow diagram in Fig. 1 . 
The double-loop back-off strategy given in Fig. 1 has an in-

ernal loop (A) for the convergence of the back-off terms and

n external loop (B) for updating the value of the η factor.

ore details about the double-loop back-off strategy presented in

menike et al. (2019) are summarized below. 

tep 1 (External loop (B) start) ] Specify the initial η value. We

take the quantile of the standard normal distribution with

the desired probability. For example, we set the quantile

equal to 2.33 to ensure that 99% of the inequality con-

straints are satisfied. 

tep 2 Initialize the internal loop (A). 

tep 3 (Internal loop (A) start) Optimize with the inequality

constraints; i.e., h (x, θ ) + b 0 ≤ 0 , where b 0 is the back-off

term. Note that the optimization in the first iteration with

b 0 = 0 is equivalent to nominal optimization and has the

same computational complexity as the nominal optimiza-

tion problem in general. 

tep 4 Quantify the impact of the parameter uncertainties on the

constraints. The PEM is used to estimate the mean and vari-

ance of the constraints as given in Eqs. (6) and (7) based on

the optimal design result from Step 3: 

E (h (x, θ )) ≈
2 n 2 

θ
+1 ∑ 

i =1 

w i h (x, θ PEM 

i ) , (6)

V ar(h (x, θ )) ≈
2 n 2 

θ
+1 ∑ 

i =1 

w i (h (x, θ PEM 

i ) − E (h (x, θ ))) 2 , (7)

where n θ is the number of uncertain parameters, and w i 

and θPEM 

i 
are the weight factors and the deterministic pa-

rameter samples, respectively. ( Xie et al., 2018a ). 
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tep 5 Calculate the back-off terms with η and the variance calcu-

lated in Step 4 by using Eq. (3) . We use the time-varying

back-off terms b ( t ) as it provides more flexibility and opti-

mal results ( Shi et al., 2016 ). 

tep 6 (Internal loop (A) end) Check if the back-off terms con-

verge; if not, we replace b 0 with the new back-off term b

and repeat steps 3 to 6 until it converges. 

tep 7 (External loop (B) end) With the converged back-off terms,

we validate the optimal design with Monte Carlo simula-

tions. To this end, we evaluate 10,0 0 0 realizations gener-

ated from the distribution of the parameter uncertainty and

calculate the probability of a constraint violation. If the vio-

lation probability is smaller than 1%, we export the optimal

solution. If not, we have to select a new value for η and

repeat the whole algorithm. Note that any other violation

probability might be feasible but affects the initial η value

selection procedure in Step 1. 

As we can see, the two loops are essential to fulfilling the

robability of the given constraint violation limits. Note that the

nternal loop with the initial guess of η from the quantile of a

tandard normal distribution might be sufficient but only if the

robability distribution of the constraint function follows a nor-

al distribution. However, models for pharmaceutical processes

re complex and highly nonlinear, and thus, the distribution of the

onstraint function is typically non-normal ( Rossner et al., 2010 ).

außner and Freund (2018) provided candidate values for η based

n expert guessing to update the η factor. In this work, we propose

 more systematic and problem-specific procedure for updating η
ccording to: 

i = ηi −1 

norminv (99%) 

norminv (1 − e c ) 
, (8) 
ig. 2. Calculation of the back-off term, b, for the cases where the probability density f

istributed. h n = h (x, θn ) and h 99% indicate the values of constraint function at the nomin
here norminv means the inverse cumulative density function of

 standard normal distribution, and e c is the probability of a con-

traint violation calculated in Step 7. This results in fewer η values

eeded to be tested, and thus, the overall efficiency of the double-

oop back-off concept can be improved. 

With the additional external loop, the double-loop back-off

trategy is capable of handling constraints with non-normal distri-

utions. However, the high computational costs and the redundant

tructure might be critical for many practical problems in robust

rocess design. Although the PEM is used to reduce the cost of

he internal loop considerably, the external loop still needs a vast

umber of Monte Carlo simulations to validate the probability of

 constraint violation. For this reason, the computational efficiency

f the double-loop back-off strategy deteriorates dramatically if the

xternal loop converges slowly. To circumvent the redundant struc-

ure and the heavy computational burden for updating η, we pro-

ose a novel, highly effective stochastic back-off strategy. 

. The stochastic back-off strategy 

Before we outline our novel approach, as a motivation, we ex-

lain why Eq. (3) is not an appropriate formulation for calculat-

ng the back-off terms first. In Fig. 2 , we illustrate the calcula-

ion of back-off terms assuming a normal distribution (A) and a

on-normal distribution (B). In particular, the back-off term b is

etermined with the distance between the nominal value of the

nequality constraint and its 99% quantile. In the case of a nor-

ally distributed inequality constraint, the mean value is equal

o the nominal value, and the back-off term b is equal to the

onfidence interval; i.e., b = η99% 

√ 

V ar(h (x, θ )) . However, in the

ase of a non-normal distribution, these two aspects do not hold,

nd thus, we have an external loop in the double-loop back-off
unction (PDF) of the constraint function h ( x, θ ) is normal (A) and non-normal (B) 

al point and the point with a cumulative density equal to 99%. 
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Fig. 3. Workflow of the stochastic (single-loop) back-off strategy for robust process 

design. 
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a  
strategy to approximate the real value of the back-off terms by

adapting the value of η iteratively; see Eq. (8) . As mentioned, the

iterative update of η is inefficient and might increase the compu-

tational cost dramatically. Alternatively, we suggest calculating the

back-off term directly with the distance between its normal value

and the empirical quantile at 99% without assuming a normal dis-

tribution. This key aspect is explained in more detail below. 

In Fig. 3 , we illustrate the workflow diagram of our novel

stochastic back-off strategy. The structure of the stochastic back-off

strategy is similar to the internal loop of the double-loops back-off

strategy in Fig. 1 but has significant differences for the uncertainty

quantification and the approximation of the back-off terms: 

Step 1 (Loop start) Initialize of the stochastic back-off strategy. 

Step 2 Optimize under inequality constraints; i.e., h (x, θ ) + b 0 ≤
0 . Note that the optimization in the first iteration with b 0 = 0 is ac-

tually equivalent to nominal optimization, and thus, has the same

computational complexity as nominal optimization. 

Step 3 Propagate and quantify the constraint uncertainties with

the optimal design from Step 2 Instead of the variance, the exact

shape of the probability distribution of the constraints is approx-

imated with the kernel density estimator (KDE) and polynomial

chaos expansion. The KDE is a non-parametric method for esti-

mating the probability density function of random variables with

an arbitrary probability distribution ( Epanechnikov, 1969 ) accord-

ing to: 

ˆ f (h ) = 

1 

n �

n ∑ 

i =1 

K 

(
h − h i 

�

)
, (9)

where n is the number of samples, K is the kernel function, and �

is the bandwidth. h i is the constraint evaluation at sample i . 

To avoid a repetitive evaluation of the original CPU-intensive

model, we propose the polynomial chaos expansion (PCE) approach

as an alternative concept. Thus, the original process model is re-

placed by a surrogate model that can be evaluated with low com-
utational costs ( Isukapalli et al., 1998; Kim and Braatz, 2013; Kim

t al., 2013; Nagy and Braatz, 2007; Xie et al., 2017 ). When the PCE

pproach is used, the original process model is approximated with

n empirical polynomial model: 

 (x (t) , θ) = 

∑ 

k =0 , 1 , 2 , ... 

αk (t)�k ( θ) , (10)

here �k ( θ) and αk ( t ) are the polynomial basis and corre-

ponding time-varying coefficients, respectively. Blatman and Su-

ret (2011) presented the detailed procedure for efficiently con-

tructing the polynomial basis and estimating the coefficients of

he PCE model. A small number of samples, which are generated

rom the probability distribution of the uncertain model parame-

ers, are evaluated with the original model. Based on these model

valuations, the corresponding values of the constraints are cal-

ulated and used as references to identify the coefficients for the

CE model. Note that all samples in this work are generated with

 quasi-random low discrepancy sequence, also known as Sobol’

equence. Moreover, the PCE model specifications, e.g., the max-

mum order of the polynomial basis, type of truncation, etc., are

elected a prior according to Marelli and Sudret ’s 2015 guidance.

he basis functions are derived from the Wiener–Askey scheme

 Xiu and Karniadakis, 2002 ) for the parameters of specific distribu-

ions or with the Stieltjes procedure ( Gautschi, 2004 ) for the pa-

ameters with empirical distributions. Then, the coefficients a k ( t )

re estimated by fitting the collected evaluation values with the

CE model in Eq. (10) via the least angle regression method ( Efron

t al., 2004; Xie et al., 2017 ). The number of samples for esti-

ating the PCE model depends on the complexity of the model

nd the number of uncertain parameters but is typically negligible

ompared to the number of samples needed for approximating the

robability distribution. For models with a large number of uncer-

ain parameters, global sensitivity analysis techniques can be im-

lemented to quantitatively determine the importance of parame-

er uncertainties on model outputs, e.g., state variables and their

onstraints ( Saltelli et al., 2005; Xie et al., 2018b ). Based on the

ensitivity analysis, parameter uncertainties with considerable in-

uence are taken into account, while the rest are neglected to im-

rove the efficiency of the uncertainty propagation further. More-

ver, process noise, which accounts for model uncertainties and

odel-plant mismatch, could also be incorporated within the ro-

ustification framework ( Mandur and Budman, 2014; Paulson and

esbah, 2017; Savin and Faverjon, 2017 ). 

Note that Monte Carlo simulations as a traditional sample-

ased method could also be used here for the uncertainty quantifi-

ation step. However, the deficiency of Monte Carlo simulations, as

as addressed in the double-loop approach ( Emenike et al., 2019 ),

ight be prohibitive for the stochastic approach. 

Step 4 Calculate of the back-off terms with the probability dis-

ribution of the constraints. As shown in Fig. 4 , the sample evalua-

ions from the PCE model are processed to approximate the prob-

bility distribution of the constraint function making use of the

DE. The resulting probability distribution is subsequently used to

alculate the back-off term. As illustrated in Fig. 2 , it is more ap-

ropriate to calculate the back-off terms with the empirical quan-

ile distance than just the standard deviation. Therefore, the back-

ff terms for robust design with a probability of a constraint viola-

ion of ≤ 1% are determined by: 

 = D (h n , h 99% ) = 

ˆ F −1 
h 

(99%) − h n , (11)

here D ( ·) means the distance function, and 

ˆ F −1 
h 

(·) is the in-

erse cumulative density function of the constraints adapted from

q. (9) . 

Note that the probability distribution of model outputs could

lso be approximated with statistical moments, which can be an-

lytically determined with the coefficients of the PCE. However,
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Fig. 4. Calculation of the back-off term, b , for the stochastic back-off strategy. D ( h n , h 99% ) is the distance function that calculates the difference between h n and h 99% . h n and 

h 99% indicate the values of the constraint function at the nominal point and the point with a cumulative density equal to 99%, respectively. 
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nly the first two statistical moments, i.e., the mean and the vari-

nce, have the analytical form while higher-order statistical mo-

ents might fail ( Savin and Faverjon, 2017 ). Moreover, non-normal

istribution cannot be characterized with only the first two statis-

ical moments. Therefore, KDE in combination with PCE is a proper

hoice in this case. 

Step 5 (Loop end) Check if the back-off terms converge. If not,

e replace b 0 with the new back-off b and repeat steps 2 to 5 until

he procedure converges. 

To conclude, the novel concept of a stochastic back-off imple-

entation has a simpler structure in comparison to the double-

oop back-off strategy while PCE ensures low computational costs

t the same time. More details about the performance of the novel

tochastic back-off concept are described in the following case

tudy. 

. Case study: a continuous tubular crystallizer for ibuprofen 

The case study aims to design a continuous tubular crystal-

izer for the API ibuprofen. The tubular crystallizer has the advan-

age of higher efficiency and narrower crystal distributions com-

ared with the commonly used mixed suspension mixed product

emoval crystallizer (MSMPRC) and has been used to crystallize

arious APIs ( Eder et al., 2010; Su et al., 2015 ). The focus of this

ork is to optimize the steady-state operation of the tubular crys-

allizer and to maximize the mass-based mean crystal size ( d 43 )

nder the condition of uncertainty. 

.1. Mathematical model 

The scheme of a continuous tubular crystallizer is illustrated in

ig. 5 . The model for the tubular crystallizer consists of the pop-

lation balance equation ( Eq. (12) ) that describes the evolution of

he crystal size distribution (CSD) and the mass balance equation

 Eq. (13) ) that describes the mass balance in the liquid and solid

hases. Note that we assume no dissolution, agglomeration, and

reakage happen for the crystallization of ibuprofen as discussed

n Rashid (2011) . We also assume that no mixing effect exists in

he tubular crystallizer, dispersions of the crystal density and the

PI concentration exist only in the axis direction, and the flow ve-

ocity is constant across all the cross-sections perpendicular to the

xis of the pipe (e.g., plug flow condition). The governing equations
ig. 5. Scheme of the continuous tubular crystallizer for ibuprofen. The temperature 

rystallizer. 
or the steady-state tubular crystallizer model are: 

 = 

∂(v n ) 

∂z 
+ 

∂(Gn ) 

∂L 
, (12) 

iquid: 0 = 

∂v C 
∂z 

+ k v ρs 

( 

BL 3 0 + 3 

∞ ∫ 
0 

GL 2 ndL 

) 

, (13)

here z is the axis coordinate of tubular crystallizer, m; L is the

haracteristic crystal size, m; n is the population density of crystals

er kilogram of slurry, #/kg/m; B is the nucleation rate, #/kg/s; G

s the crystal growth rate, m/s; C is the mass of solute per kilogram

lurry, kg/kg; k v and ρs are the shape factor and the density of the

rystals, kg/m 

3 , respectively, and v is the superficial velocity of the

lurry along the tubular crystallizer, m/s. The mass of the solution

nd the solids is considered, and we assume that the formation

f the solids does not change the volume of the slurry. Therefore,

he superficial velocity v is considered as constant for the entire

ubular crystallizer. Note that the mass equation for the solid phase

s already implicitly included in Eq. (12) . The boundary conditions

t z = 0 and L = L 0 , where L 0 is the size of the nuclei, m, of the

odel are: 

 (0 , L ) = n f eed (L ) , (14) 

 (z, L 0 ) = 

B 

G 

, (15) 

(0) = C f eed , (16) 

here n feed and C feed are the CSD of seeds and the concentration of

olute in the feed. Note that seeded feed is only used at the start-

p of the crystallization process ( Su et al., 2015 ). For the steady

tate that we are interested in this work, only the unseeded solu-

ion is fed to the crystallizer, and the secondary nucleation then

appens with existing crystals. 

As we can see, the steady-state tubular crystallizer model con-

ists of partial differential equations (PDEs) and has to be dis-

retized or modified to be solved by a common ordinary differ-

ntial equation (ODE) solver. The classical method of moments

MOM) can be used to transfer the PDEs into several ODEs because

he growth rates G are size independent ( Rashid, 2011; Su et al.,

015 ). For the classical MOM, size density n is multiplied with the

 

th order of crystal size L and subsequently integrated over the en-

ire crystal size domain to compute its k th moment, i.e, μk . Typ-

cally, the first sixth moments, k = 0 , . . . , 5 , are used to represent
controlling segments are used to realize an optimal temperature profile for the 
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Table 1 

Nominal values and units of the parameters for ibuprofen crystal- 

lization and the tubular crystallizer. 

Parameters Unit Nominal value 

k b 0 #/kg/s/(kg solute/kg ethanol) 1.73 × 10 8 

k g 0 m/s/(kg solute/kg ethanol) 5.3 

T g °C 42 

n b - 1 

n g - 1 

k v - π /6 

ρs kg/m 

3 1100 

v m/s 0.007 

z f m 20.16 
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the key information included in size density n : 

μk = 

∞ ∫ 
0 

L k ndL, k = 0 , . . . , 5 . (17)

The resulting ODE system and initial conditions read as: 

dμ0 

dz 
= 

B 

v 
, (18)

dμk 

dz 
= 

BL k 0 

v 
+ 

kGμk −1 

v 
k = 1 , . . . , 5 , (19)

Liquid: 
∂C 

∂z 
= −k v ρs 

v 
(BL 3 0 + 3 Gμ2 ) , (20)

μk (0) = 

∞ ∫ 
0 

L k n f eed dL, k = 0 , . . . , 5 , (21)

where μk (0) , k = 0 , . . . , 5 are the initial conditions for the mo-

ment equations. Alternatively, to calculate the probability density

of the crystal number, a high-resolution scheme based on the

finite-volume method (FVM) is used to solve the PDEs with the

discretization of the characteristic crystal length L . The resulting

ODEs are given in Eq. (22) that could be solved directly with

Eq. (13) with standard ODE solvers to calculate the probability den-

sity of the crystal number. The cell-face fluxes n L i ±1 / 2 
are computed

with a robust upwind discretization method ( Qamar et al., 2006 ):

∂(n i ) 

∂z 
+ 

G 

v �L 
(n L i +1 / 2 

− n L i −1 / 2 
) = 0 , i = 1 , . . . , N. (22)

The classical MOM generates less complex ODE systems ( = 7 ), and

therefore, is more suitable for the optimal (robust) crystallizer de-

sign regarding the computational costs. In contrast, the FVM needs

a fine mesh ( ≥ 100) for the characteristic crystal length and is too

redundant to be embedded in the optimization algorithm. There-

fore, we use the FVM only to generate the reference probabil-

ity density of the crystal number for illustration and validation in

what follows. 

4.2. Crystallization kinetics of ibuprofen 

The kinetics for the crystallization of ibuprofen in absolute

ethanol are adapted from Rashid ’s 2011 work. The main driving

force for crystallization is the degree of supersaturation S, which

is defined with the difference between solution concentration C sol 

and solubility C ∗ as: 

S(z) = C sol (z) − C ∗(T (z)) . (23)

The solubility of ibuprofen in absolute ethanol is a function of the

temperature, and thus, can be used to design the crystallization

process: 

 

∗ = 0 . 495 + 0 . 001026 T 2 . (24)

All the quantities above have the same unit kilogram of solute per

kilogram of ethanol. The concentration of the solution can be de-

rived from the slurry mass solution C and the solid concentration

C s with the following relations: 

 sol = 

C 

1 − C − C s 
(25)

 s = k v ρs μ3 . (26)

Technically, the solubility of ibuprofen changes not only with the

temperature but also with the composition of the solution. Water

as an antisolvent can be added to decrease the solubility of ibupro-

fen as investigated by Rashid (2011) . However, ibuprofen induces

phase separation in the water-ethanol mixture especially at 40 °C
 Rashid, 2011 ). Moreover, the information about ibuprofen solubil-

ty in the water-ethanol mixture is not complete. Therefore, we

nly focus on the crystallization of ibuprofen in absolute ethanol.

he kinetics for crystallization, i.e., the nucleation rate and the

rowth rate, in absolute ethanol are given below, and the values for

he kinetic parameters in Eqs. (27) and (28) are listed in Table 1 : 

 = k b 0 S 
n b (27)

 = k g 0 exp 

(
T 

T g 

)
S n g . (28)

.3. Optimization problem 

In this section, the structure of the nominal optimization prob-

em of the tubular crystallizer is introduced in Eq. (29) . The ob-

ective function in Eq. (29a) is to maximize the critical quality

ttribute ( CQA ) of the crystallization process, i.e., the mass-based

ean crystal size d 43 at the outlet of the tubular crystallizer. The

OM implementation of the tubular crystallizer model and the ki-

etics of ibuprofen crystallization are used in Eq. (29b) to calcu-

ate the objective function and the constraints of the optimization

roblem. There are three inequality constraints and one equality

onstraint included in the optimization problem. The first inequal-

ty constraint, Eq. (29c) , ensures that supersaturation S is within

he metastable zone to avoid primary nucleation. This inequality

onstraint is important for two reasons: i) only the kinetics of sec-

ndary nucleation is provided by Rashid (2011) , and ii) the pri-

ary nucleation, which is a spontaneous process that happens in

he region above the primary nucleation threshold ( PNT ) in the

hase diagram as discussed by Rashid (2011) . Primary nucleation

s commonly avoided in industrial operations because it restrains

he growth of crystals by creating a huge number of fine crystals

nd is unstable. Moreover, the PNT measured by Rashid (2011) is

sed here. The second inequality constraint, Eq. (29d) , ensures the

ield of the crystallization process is above 95%. The third inequal-

ty constraint, Eq. (29e) , avoids temperature increase as we do not

nclude the kinetics for dissolution in the model. The equality con-

traint Eq. (29f) , in turn, calculates the value of d 43 as the objective

unction. The tubular crystallizer consists of 20 temperature con-

rolling segments, where each segment is almost 1 m long, and the

emperature of each segment is bounded within the range where

he solubility information is available, i.e., Eq. (29g) is fulfilled. 

in 

T (·) 
− d 43 (z f ) , (29a)

ubject to: 

athemical model: Eqs. (18) to (20) , (23) to (28) (29b)

nequality constraints: 
S(z) 

C ∗(T (z)) 
≤ P NT ∀ z ∈ [0 , z f ] (29c)
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Fig. 6. Results from the nominal design of the tubular crystallizer. A is the mass-based crystal size distribution (CSD) at the tubular crystallizer outlet. B, C , and D are the 

evolution profiles of the mass-based mean crystal size ( d 43 ), the mass concentration of solute ibuprofen ( C ), and the operation temperature along the tubular crystallizer 

axis, respectively. 
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Fig. 7. Profile of supersaturation (S) along the axis of the tubular crystallizer. PNT 

is the primary nucleation threshold. 
C(0) − C(z f ) 

C(0) − C ∗(10 

◦C) 
≥ 95% (29d) 

dT (z) 

dz 
≤ 0 ∀ z ∈ [0 , z f ] (29e) 

quality constraints: d 43 (z f ) = 

μ4 (z f ) 

μ3 (z f ) 
(29f) 

ounds: 10 

◦C ≤ T (z) ≤ 40 

◦C ∀ z ∈ [0 , z f ] (29g) 

The case study is coded in MATLAB 

®(Version 2017b, The Math-

orks Inc., Natick, Massachusetts, USA). The tubular crystallizer

odel and the optimization problem are solved by using the func-

ions ode 15 s and fmincon , respectively. For all optimization results,

e used a multi-start strategy to avoid local optima. The polyno-

ial chaos expansion model is built with UQLaB (Version 1.0, ETH

urich, Switzerland). 

. Results and discussion 

First, the results of the nominal design are discussed. Then,

he adverse effects of the parameter uncertainties on the nomi-

al process design are shown. To alleviate the influence of param-

ter uncertainties, the stochastic back-off strategy is then used for

he robust design of the tubular crystallizer. The double-loop back-

ff strategy and the stochastic back-off strategy using Monte Carlo

imulations are also implemented as references. Finally, the con-

ergence and computational demands of the different approaches

re compared. 

.1. Nominal design 

The saturated solution of ibuprofen in pure ethanol at 40 °C is

ed into the tubular crystallizer with a total length of z f = 20 . 16

. The optimal temperature profile for the tubular crystallizer,

hich includes 20 controlling segments, is derived by solving the

ominal optimization problem given in Eq. (29) . Results derived
rom the nominal design are depicted in Fig. 6 . On the left side

f Fig. 6 we show the complete mass-based CSD at the reactor

osition z f = 20 . 16 that was derived from Eq. (22) with N = 100 .

n the right side of Fig. 6 , we illustrate the evolution profiles of

 43 , solution concentration C , and temperature T along the axis of

he crystallizer. To gain a better understanding of the results from

he nominal design, we have to consider the supersaturation pro-

le given in Fig. 7 . The first part of the tubular crystallizer has a

elatively high reactor temperature and low supersaturation; i.e.,

ewer nuclei are generated, and the growth rate is maintained at a

omparatively high value as indicated by the slope of the curve in

ig. 6 B. Consequently, the consumption of ibuprofen in solution is

lso low, and solute concentration C does not decrease too much
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Table 2 

Uncertainties and feasible ranges of the kinetic pa- 

rameters based on Rashid (2011) . 

Parameters Uncertainty Range 

k b 0 N (1 . 73 × 10 8 , 2 . 6 × 10 7 ) [0, ∞ ] 

k g 0 N (5 . 3 , 0 . 69) [0, ∞ ] 

T g N (42 , 12 . 6) [20,65] 
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at the beginning. However, to achieve the desired yield at the end

of the tubular crystallizer, the temperature decreases gradually at

higher amplitudes, and the supersaturation increases to its upper

limit. As a result, the consumption of ibuprofen in the solution

is increased. The predicted yield at the end of the tubular crys-

tallizer is 99.31%. With the nominal design, the final mass-based

mean crystal size is maximized while all given constraints are sat-

isfied. We also calculated another important CQA for the crystal-

lization process, i.e, the coefficient of variation ( CV ) of the crystal

size distribution according to Eq. (30) . The CV value for the tubular

crystallizer is equal to 0.21, which is much smaller than 0.5 for a

single-stage MSMPRC, and reveals another important benefit of the

tubular crystallizer. In principle, the CV could also be used directly

as an objective function, but that is beyond the scope of this work.

V = 

√ 

μ5 μ3 

μ2 
4 

− 1 (30)

5.2. Effect of parameter uncertainties on the nominal design 

According to Rashid ’s 2011 study, experimental data of the

crystallization process are considerably affected by measurement

noise and environmental conditions. The resulting data uncertain-

ties lead to strong deviations in the estimation of the kinetic pa-

rameters for the nucleation and growth rates. Based on the es-

timated kinetic parameters and their confidence intervals (CIs)

from Rashid (2011) , we summarized the parameter uncertainties

of k b 0 , k g 0 , and T g in Table 2 assuming normal density distribu-

tions. Samples of the kinetic parameters are generated based on

the assigned probability distributions, and simulations of the tubu-

lar crystallizer model with the generated samples and the nom-

inal optimal solution are conducted to analyze the influence of

the parameter uncertainties on the constraints. Note that only the

soft constraints, i.e., the inequality constraints in Eqs. (29c) and

(29d) , are affected by the parameter uncertainties as explained by

Rangavajhala et al. (2007) . In Fig. 8 a, we show the evolution profile
Fig. 8. (a) Profile of supersaturation (S) and its 99% confidence interval (CI) along the 

probability density function (PDF) of the yield. 
f the supersaturation and its 99% CI along with the tubular crys-

allizer axis. When considering parameter uncertainties, the super-

aturation exceeds the PNT with a comparatively high probability.

n other words, the inequality constraint in Eqs. (29c) might be

iolated, and thus, lead to undesired primary nucleation. Fig. 8 b

resents the probability distribution of the yield of the tubular

rystallizer. The value of the yield also varies due to the param-

ter uncertainties, but the corresponding inequality constraint is

till satisfied for all realizations. Thus, in this work, we focus on

esigning a tubular crystallizer under the condition of parameter

ncertainties, so that the supersaturation does not exceed the PNT .

.3. Robust design with the stochastic back-off strategy 

Robust optimization has the same structure as the nominal op-

imization in Eq. (29) , except that the back-off terms are added to

he inequality constraint in Eq. (29c) as: 

(z) + b(z) ≤ P NT × C ∗(T (z)) ∀ z ∈ [0 , z f ] , (31)

n which the value of back-off terms b ( z ) depends on the position

n the tubular crystallizer. In doing so, we ensure that the super-

aturation does not exceed the PNT in the presence of parameter

ncertainties. 

The stochastic back-off strategy introduced in Section 3 is then

sed to solve the robust optimization problem. The maximum it-

ration number m max is set to 10, the desired violation probabil-

ty of the inequality constraints is set to 1%, and the convergence

riterion ε to calculate back-off terms is set to 0.02. For the PCE

odel, the polynomial basis is constructed with the Stieltjes proce-

ure, as the boundaries on the parameter uncertainties change the

tructure of the distribution. The full set of the polynomial basis is

runcated to the maximum order of 7, and 100 samples are used

o estimate the PCE coefficients. For the KDE, a Gaussian kernel is

ssumed, an optimal bandwidth is determined ( Botev et al., 2010 ),

nd 10,0 0 0 samples are used, respectively. Note that these 10,0 0 0

amples are evaluated with the PCE model, and thus, the computa-

ional costs of the KDE are negligible. The optimized temperature

rofile is depicted and compared with the result from the nomi-

al design in Fig. 9 . As we can see, the temperature profile of the

obust design is lower than that from the nominal design for the

rst half of the tubular crystallizer and higher for the second half

f the tubular crystallizer to compensate the effect of the param-

ter uncertainties on the inequality constraint for supersaturation.

ote that the lower temperature induces also higher supersatura-

ion in the first half of the tubular crystallizer when implementing
axis of the tubular crystallizer. PNT is the primary nucleation threshold. (b) The 
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Fig. 9. The operation temperature profiles from the nominal and robust designs. 
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he robust design. From a practical point of view, this might cause

evere side effects, e.g., clogging effects in the crystallizer. Natu-

ally, additional constraints lowering the risk of malfunction and

igh maintenance costs could be included in the mathematical op-

imization problem ( Eq. 29(a–g) ) but is out of the scope of this

ork. 

In Fig. 10 , we further analyze the results of the inequality con-

traints from the robust design. By comparing the supersaturation

rofiles given in Fig. 10 a and 8 a, we can see that the mean value

f the supersaturation in the first half of the tubular crystallizer is

 bit higher than that from the nominal case. The robust design

ttempts to consume more ibuprofen solute and to generate more

uclei in the first half which lowers the supersaturation in the sec-

nd half of the crystallizer. By doing so, the 99% CI of the supersat-

ration from the robust design is perfectly below the PNT . More-

ver, the corresponding back-off terms are illustrated in Fig. 10 b.

he magnitude of the back-off terms varies considerably along the

ubular crystallizer axis. Thus, the “time-varying” back-off term 

s more preferable than the constant back-off term in this study

s the time-varying term provides more flexibility in the robust

esign. 
ig. 10. (a) Profile of supersaturation (S) and its 99% confidence interval (CI) and (b) p

rimary nucleation threshold. Results are from the robust design of the tubular crystallize
.4. Comparison of the different back-off strategies 

In what follows, three different back-off strategies are compared

n terms of their performance and efficiency. For the sake of read-

bility, the double-loop back-off strategy is labeled dlboPEM as the

EM is used to calculate the back-off terms. The proposed stochas-

ic back-off strategy is labeled sboPCE . The stochastic back-off strat-

gy, in turn, where Monte Carlo simulations are used for calculat-

ng the back-off terms is labeled sboMCs and serves as the refer-

nce. The general setting of the optimization problem has not been

hanged; i.e., m max , the desired violation probability, and the con-

ergence criteria are the same as in the previous section. 

First, the convergence results are depicted and compared in

ig. 11 . The convergence of the internal and external loops for dl-

oPEM is shown in Fig. 11 a. The back-off terms converge after the

rst external iteration, but the desired probability of the constraint

iolations is not satisfied. Thus a second external iteration is re-

uired. Within the second external iteration, Eq. (8) is used to

pdate the η value which leads to the specified performance of

he robust tubular crystallizer design. The proposed update con-

ept ( Eq. (8) ) ensures a target-oriented and systematic correction

f the η value, which is much more efficient than in those studies

here different values for η are tested heuristically ( Koller et al.,

018; Maußner and Freund, 2018 ). For stochastic back-off strate-

ies, there is only one iteration loop. The convergence results for

he single loop of sboMCs and sboPCE are shown in Fig. 11 b and c,

espectively. sboMCs and sboPCE converge with a similar trend as

hey differ only in the detail of uncertainty propagation, i.e., the

se of Monte Carlo simulations or the PCE. sboMCs requires more

teration steps than sboPCE , which might be due to the random-

ess of the samples. The convergence plots in Fig. 11 reveal that

ll three approaches can ultimately converge to a robust solution.

he operation temperature profiles obtained from the three back-

ff strategies are compared in Fig. 12 . The temperature profiles are

lmost identical. Thus, all three robustification concepts that make

se of the back-off strategy to converge to the same robust solu-

ion. Table 3 lists more details about the tubular crystallizer perfor-

ance, i.e., the E (d 43 ) , the violation probability, and the computa-

ional costs for the different back-off strategies. The same quanti-

ies for the nominal design are also listed for the sake of complete-

ess. Please note that the violation probability in Table 3 is only for

he inequality constraint in Eq. (29c) , and the computational costs
rofiles of the back-off terms along the axis of the tubular crystallizer. PNT is the 

r with the stochastic back-off strategy based on polynomial chaos expansion. 
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Fig. 11. The convergence rates of the back-off values for (a) dlboPEM , (b) sboMCs , and (c) sboPCE . 

Fig. 12. The operation temperature profiles from the nominal and robust designs. 

Table 3 

Results of the mean value of the mass-based mean crystal size ( E (d 43 ) ), the 

violation probability from 10,0 0 0 realizations, and computational costs with 

respect to the number of model evaluations. 

Approaches E (d 43 ) Violation probability Needed reference 

simulations 

Nominal 109.3 48% 0 

dlboPEM ( 1 st iter) 108.8 3% 10,190 

dlboPEM ( 2 nd iter) 108.6 1.1% 20,342 

sboMCs 108.7 1.2% 10 0 0 0 0 

sboPCE 108.7 0.9% 700 
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s  
reflect the model evaluation time of the original crystallizer model

to calculate the back-off terms. The data in Table 3 are derived

based on 10,0 0 0 realizations with the original tubular crystallizer

model. Results from the nominal design have the maximum E (d 43 )

value, but the violation probability, 48%, is much higher than the

given specification of 1%. In contrast, the results from the robust

designs have much lower violation probabilities, which are close

to the desired value of 1%, while there is only a slight performance

loss of E (d 43 ) . For the dlboPEM implementation, the violation prob-

ability is almost three times higher than the desired value after
he first external iteration and reduces to almost 1% after the sec-

nd external iteration. The violation probabilities from the robust

esign with sboMCs and sboPCE are close to 1% after the first ex-

ernal iteration. This proves that the simpler structure of the pro-

osed stochastic back-off strategy does not need additional CPU-

ntensive loop iterations to ensure the desired robustness in the

nequality constraints. Moreover, sboPCE has the highest efficiency,

hich is more than 20 times faster than dlboPEM and sboMCs . In

ummary, all three back-off strategies can guarantee the robustness

f the inequality constraints in the design of a tubular crystallizer

nder parameter uncertainties. However, the PCE-based stochas-

ic back-off strategy ( sboPCE ) has the best computational efficiency,

nd thus, it shows the perfect balance of process performance, ro-

ustness, and computational demand. 

. Conclusions 

To guarantee reliable results in model-based process design, ef-

ective robustification concepts must be applied. For instance, the

terative back-off strategy proposed by Srinivasan et al. (2003) has

eceived keen interests in academia and industry and has been im-

lemented in various studies in robust optimization. In this work,

e improved the original procedure and proposed a novel stochas-

ic back-off strategy with two key benefits: 1) a simpler structure

nd 2) higher efficiency. The stochastic back-off strategy calculates

ack-off terms with a distance function based on the probability

istribution of the constraints. The performance of the conven-

ional back-off approach and the stochastic back-off approach were

tudied for the crystallization of ibuprofen within a tubular crystal-

izer. To this end, we implemented the nominal process design and

hen analyzed the adverse effects of the parameter uncertainties. If

e ignore the parameter uncertainties in the design phase aiming

or the highest mass-based mean crystal size, an optimized tem-

erature profile was derived which, most likely, causes extreme su-

ersaturation and constraint violations. Alternatively, we success-

ully demonstrated that the stochastic back-off approach results in

 temperature profile that shows the perfect balance of process

erformance and robustness, i.e., a high mass-based mean crystal

ize and constraint violations within the given specification. Next,

 detailed analysis of the computational costs and practical imple-

entation aspects led to the following conclusions. As the novel

tochastic back-off concept takes the full information of the density
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unction into account, the optimization needs only a single itera-

ion to converge. Thus, the simpler structure of the stochastic back-

ff approach results in lower computational demands than the 

onventional back-off approach. Moreover, we also demonstrated

hat polynomial chaos expansion in combination with the kernel

ensity estimator is essential for deriving meaningful probability

ensity functions at low computational costs. Compared with stan-

ard Monte Carlo simulations, the overall need for CPU-intensive

eference simulations was reduced considerably, i.e., the stochastic

ack-off strategy is at least 20 times faster. In general, this strat-

gy also scales well with large-scale process design problems with

any uncertain model parameters based on the recent progress in

ighly efficient PCE routines, which we will analyze in more detail

n future work. 
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