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Abstract:

The concept of differential flatness has been widely used for nonlinear controller

design. In this contribution, it is shown that flatness may also be a very useful

property for parameter identification. An identification method based on flat

inputs is introduced. The treatment of noisy measurements and the extension

of the method to delay differential equations are discussed. The method is illus-

trated by two case studies: the well-known FitzHugh-Nagumo equations and a

virus replication model with delays.
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1 Introduction

Virtually all mathematical models of chemical or biochemical processes contain

unknown parameters that have to be identified from experimental data. Param-

eter identification is therefore a central step during the development of mathe-

matical models and a prerequisite for model based process control and process

design.

In most cases, parameters are identified from experiments as shown in Figure

1
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1 (a), see e.g. [1]. A process model Σ̂ is set up to reproduce the experiments
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Figure 1: Alternative approaches for parameter identification: (a) by fitting a
simulated system output ŷ to the measurements y; (b) by fitting a reconstructed
input û to the true input u using an inverse process model.

in simulations, using the operation conditions or inputs u as in reality and an

estimate θ̂ of the unknown model parameters θ. In most cases, this requires

a numerical solution of the differential equations of the model. The simulated

process output or measurement ŷ is then compared to the true output y. If

there are deviations, the estimate of the parameters is refined iteratively in an

optimization step. Nowadays, the numerical solution of differential or differential

algebraic systems is usually not very challenging, but it may become tricky when

the guesses of the parameter values or of unknown initial conditions are poor

and far away from the true values. Problems arise especially, when the system

equations contain delay terms, because then initial functions over a delay inter-

val before the experiment’s starting time have to be estimated and because the

numerical solution of delay differential equations in general is more difficult. Fur-

ther, numerical integration underlying an optimization procedure may be quite

expensive and consume the biggest share of the spent computation time. Finally,

the dependence of the system outputs on the model parameters is often strongly

nonlinear, resulting in non-convex cost functions with local minima for parame-

ter identification. The mentioned difficulties motivate the search for alternative

approaches for parameter identification.
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One possibility, which is shown in Figure 1 (b), is to look at an inverse system

model Σ̂−1. Instead of computing simulated system outputs ŷ from given inputs

u, one could use the inverse model to compute estimated system inputs û from

given outputs y and to use the difference between u and û for parameter fitting.

This approach is rarely used and only makes sense if it is much easier to solve

the inverse model Σ̂−1 than the usual model Σ̂. But actually, there is a large

class of systems, so-called differentially flat systems, with exactly this property.

The concept of differential flatness was initially introduced by Fliess et al. [2].

It has received a lot of interest in control theory over the last two decades [3, 4],

with the majority of applications lying in the area of tracking control of a wide

range of technical systems [5, 6, 7, 8, 9, 10, 11]. Differentially flat systems

have the property that the states and inputs can be expressed directly in terms

of the flat outputs and a finite number of their derivatives [12]. A more formal

definition is given in Section 2.1. Flatness is an attractive property for parameter

identification based on the inverse model, because computing the inputs of a flat

system does not require any numerical integration, but in the worst case the

numerical solution of a set of algebraic equations. The topic of this paper is to

study the use of flat inputs for parameter identification. Flat inputs mean input

variables that turn given outputs to flat outputs and hence enable a differential

parametrization of the model [13].

Vassilev et al. [14] exploited flatness properties of a precipitation reaction model

in order to identify a single physical model parameter, which is hardly accessible

to direct measurements. They made use of the fact that in their case the unknown

parameter happens to be a flat input of the system and obtained convincing

estimation results for that parameter. The drawback of the method by Vassilev

et al. is that it requires a very special model structure and that it requires as
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many measurement variables as there are unknown parameters, whereas the flat

input method presented here is applicable to a much larger class of systems.

A related identification method was introduced by Fliess et al. [15] for systems,

whose parameters can be expressed by algebraic equations depending on the

inputs, the outputs and time derivatives of both. The charm of this method is

that it does not require any numerical optimization, but only the solution of an

algebraic set of equations, and hence is very fast. As a disadvantage, it may

require a high number of derivatives of inputs and outputs, if the number of

unknown parameters is large compared to the number of inputs and outputs.

The flat input method has similarities to methods of functional data analysis and

principal differential analysis (PDA). Early publications in that field [16, 17] as-

sume all model states to be measurable. The states are approximated by splines

or similar functions and fitted to the measurements, introducing “nuisance” pa-

rameters in addition to the model parameters. The residuals resulting from in-

serting the state approximations into the differential equations of the model are

minimized in order to obtain estimates of the model parameters. Over the years,

the method has been more and more refined in order to cope with measure-

ment imperfections and increase accuracy [18, 19, 20, 21, 22, 23, 24] . Powerful

techniques of iterated and cascaded parameter estimation approaches have been

developed in this context, which also prove to be useful for the flat input ap-

proach. The main difference, however, is that in PDA all states are parametrized

independently, resulting in a quite large number of nuisance parameters, and that

the technique is mainly used for systems that have hardly hidden unmeasured

states. In contrast, the flat input method only introduces nuisance parameters for

the measured outputs - internal system states and inputs are then automatically

parametrized, as well. This reduces the number of parameters to be identified
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especially for systems with many unmeasured states. Another difference between

PDA and the flat input method is that in this work system inputs are recon-

structed. The deviations of the reconstructed inputs from the true inputs are

taken as an indicator for the quality of the parameter estimate and enter the cost

function for optimization.

The flat input method for parameter identification also bears some similarity to

the method of differential elimination [25, 26, 27, 28, 29]. Differential elimina-

tion uses the theory of Gröbner bases to eliminate unobserved variables from

systems of differential equations that can be expressed as differential polynomi-

als. It has been applied successfully to the estimation of parameters [25, 26] as

well as to determine global identifiability of model parameters [27, 29]. Differen-

tial elimination requires reaction kinetics with certain structures (polynomial or

fractional expressions), because the model equations are solved analytically for

the unobserved variables. This is a difference to the flat input method that only

requires implicit algebraic equations for the states and system inputs and hence

is applicable to a wider class of systems.

Section 2 of this paper presents the method of flat inputs for parameter identifi-

cation of differential equations with or without delays. Section 3 illustrates the

properties of the method by two case studies.

2 Method

The next section gives a brief introduction to differentially flat systems and to

the proposed identification method. Section 2.2 addresses the problem of how to

find (potentially fictitious) inputs that turn a system into a flat system. Section

2.3 contains the treatment of noisy measurements in the context of the new
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identification method. The extension of the method to systems with delay is

discussed in Section 2.4.

2.1 Differentially Flat Systems and Parameter Identifica-

tion

This work mainly concerns input-affine systems of the following type:

ẋ(t) = f (x(t), t, θ) +

m
∑

i=1

γ i(x(t), θ) ui(t); x ∈ R
n (1)

where x(t) is the state vector, u(t) = (u1, . . . , um)
T is the input vector, and θ is a

vector of constant model parameters. A system of type (1) is called a differentially

flat system, if the following conditions hold [2, 12, 5]:

1. There is a so-called flat output y(t) = (y1(t), . . . , ym(t)
T that can be cal-

culated from the state x(t), the input u(t), and time derivatives of u(t),

i.e.

yi(t) = hi(x(t),u(t), u̇(t), . . . ,u
(η)); i = 1, . . . , m (2)

2. All state variables x(t) and all input variables u(t) can be calculated from

y(t) and a finite number of their time derivatives, i.e. there are relations

x(t) = Ψx

(

y(t), ẏ(t), . . . ,y(n−1)(t), θ
)

(3)

u(t) = Ψu

(

y(t), ẏ(t), . . . ,y(n)(t), θ
)

(4)

The second equation is an input output representation of the system, which

has the special property that time derivatives of u(t) do not occur explicitly.
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3. There does not exist any relation

Q
(

y(t), ẏ(t), . . . ,y(q)(t)
)

= 0,

i.e. the components of y(t) are differentially independent.

The third property is always fulfilled, if the number of inputs matches the number

of outputs [5].

The representation (3,4) allows to determine x(t) and u(t) from y(t) in a very

efficient way, without having to solve a differential equation. In this sense, the

solution of the inverse system model (calculation of x(t) and u(t) from given y(t))

is easier than the solution of the original model (calculation of x(t) and y(t) from

given u(t))

The flatness property has been used frequently for controller design. In that case,

the physical actuators are usually given, i.e. the functions γi(.) are determined

by the physical problem. Then the question comes up, what output functions

hi(.) could be used such that the resulting output y(t) is a flat output and flatness

based control methods are applicable. The constructed flat outputs need not be

identical to physical measurements, but may be fictitious quantities.

In order to exploit differential flatness for parameter identification, an opposite

problem has to be solved. Now, the physical measurement variables are taken as

outputs. The output equations are no longer chosen freely, but are taken from

the sensor model as

yi(t) = hi(x(t), θ); i = 1, . . . , m (5)
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Then, the question is, what actuators, i.e. what input functions γi(.) are required

to turn the physical outputs y(t) into flat outputs that enable the differential

parametrization of the model. The input signals ui(t) that belong to these actua-

tors are called flat inputs [13]. The flat inputs and corresponding actuators need

not exist in the physical reality. For parameter identification, they may be purely

fictitious quantities, whose nominal values in physical reality are of course iden-

tical to zero. It should be noted that the flatness property of the system needs

not be fulfilled with respect to the physical control inputs available in reality.

Actually, the physical control inputs are irrelevant for the parameter identifica-

tion strategy presented in the following. As long as the physical control inputs

do not coincide with fictitious flat inputs, they may be considered as known time

dependent functions that are included in the function f (x(t), t, θ).

If one assumes for the moment perfect noise-free measurements, one can recon-

struct the flat system inputs from (4) as

û(t, θ̂) = Ψu

(

y(t), ẏ(t), . . . ,y(n)(t), θ̂
)

(6)

where θ̂ is an estimate of the parameter vector. Note that due to (3) the dif-

ferential equations for all states of the system are always fulfilled exactly for

arbitrary choices of y and θ̂. Wrong parameter estimates only become visible in

an deviation of the reconstructed flat inputs from their nominal value. There-

fore, the reconstructed inputs may be used for parameter identification. Instead

of minimizing the conventional least squares cost function

Jy(θ̂) =

T
∫

0

∥

∥

∥
y(t)− ŷ(t, θ̂)

∥

∥

∥

2

dt, (7)
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where T is the duration of the experiment, one could define a new cost function

Ju(θ̂) =

T
∫

0

∥

∥

∥
u(t)− û(t, θ̂)

∥

∥

∥

2

dt, (8)

which also assumes a global minimum for θ̂ = θ. The nominal values of the flat

inputs u(t) are identical to zero in most cases, with the only exception when

a fictitious flat input happens to coincide with a physical control input. The

expressions (6), (8) require some modifications, if noisy measurement data are

used. This case will be discussed in Section 2.3.

Example I. Consider the simple linear autonomous system

d

dt







x1

x2






=







−1 1

θ 0













x1

x2






(9)

with an unknown parameter θ to be estimated from a measured output

y = x1. (10)

For the identification, we use the simulation model

d

dt







x̂1

x̂2






=







−1 1

θ̂ 0













x̂1

x̂2






(11)

ŷ = x̂1 (12)
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The simulation model can be turned into a flat system with flat output ŷ by

adding an input matrix B = (0, 1)T and a corresponding fictitious input û:

d

dt







x̂1

x̂2






=







−1 1

θ̂ 0













x̂1

x̂2






+







0

1






û (13)

ŷ = x̂1 (14)

From (13), (14) one obtains

x̂1 = ŷ (15)

x̂2 = ŷ + ˙̂y (16)

û = ¨̂y + ˙̂y − θ̂
(

ŷ + ˙̂y
)

, (17)

which confirms differential flatness. Eq. (17) can now be used to test if the

estimated parameter value θ̂ agrees with the true parameter value θ, when instead

of the simulated measurement ŷ the true measurement value is inserted into (17),

i.e. (17) is replaced by

û = ÿ + ẏ − θ̂ (y + ẏ) (18)

The cost function used for parameter identification is

Ju(θ̂) =

T
∫

0

û(t)2dt. (19)

In order to see that this cost function has a global minimum at θ̂ = θ, note that

one always has

u = ÿ + ẏ − θ (y + ẏ) ≡ 0, (20)
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because the flat input does not exist in reality, Therefore (18) may also be written

as

û =
(

θ − θ̂
)

(y + ẏ) (21)

and (19) becomes

Ju(θ̂) =
(

θ − θ̂
)2

T
∫

0

(ẏ(t) + y(t))2 dt (22)

Obviously, Ju(θ̂) = 0 for θ̂ = θ, and Ju(θ̂) > 0 for θ̂ 6= θ and y(t) 6≡ 0.

The parameter identification based on the use of flat inputs may offer a number

of advantages, some of which it has in common with PDA methods:

1. The flat input approach may facilitate the parameter identification, if the

sensitivity of an input u with respect to this parameter for a given output

y is larger than the sensitivity of an output y with respect to the same

parameter for a given input u.

Example II. Consider the static SISO system

y = f(u, θ)

with

∂y

∂θ

∣

∣

∣

∣

u=const.
=

∂f

∂θ

and

∂u

∂θ

∣

∣

∣

∣

y=const.
= −

(

∂f

∂u

)

−1
∂f

∂θ
.

Parameter identification based on the inverse approach may be beneficial,

if |(∂f/∂u)−1| ≫ 1, because then the input u is more sensitive towards the
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parameter θ than the output y.

2. The flat input approach may lead to more nicely shaped cost functions for

the parameter identification and thus may avoid the optimization to get

stuck in a local minimum. This will be illustrated by one of the case stud-

ies in the last section of this article and by a very simple, purely academic

example below.

Example III. Consider the static test system

y = f(θ, u) := − (θ − p0(u))
(

(θ − p0(u))
2 + p1(u)

)

+ p2(u)

with

p0(u) = u

p1(u) = −3 (1− |u|)

p2(u) = 3u.

A graph of the system is given in Figure 2. Assume that θ is to be identified

from a measurement value ymeas = 10 for u = 0, which corresponds to a

parameter value θ ≈ −2.7. The conventional least squares approach results

in a cost function

Jy(θ̂) = (ymeas − ŷ)2 =
(

10− f(θ̂, 0)
)2

=
(

10− θ̂3 − 3θ̂
)2

,

which has a local minimum at θ̂ = 1, as depicted in Figure 3 (a). In
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contrast, the inverse model approach uses the cost function

Ju(θ̂) =
(

u− û(θ̂)
)2

=
(

f−1(ymeas, θ̂)
)2

.

From Figure 2 it can be seen that û grows monotonically with θ̂ for y =

ymeas. Therefore Ju has a single global minimum at θ̂ = θ. Furthermore,

Figure 3 (b) shows that Ju is a convex function and hence well suited for

numerical optimization.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−15

−10

−5

0

5

10

15

y = ymeas

θ

y

u

u = 0

Figure 2: Visualization of the system considered in Example 2; the thick lines
marks the case y = f(θ, 0), the thin lines show y = f(θ, u) for u 6= 0.

3. Computing flat inputs from the outputs is much cheaper than computing

the outputs from given inputs. In the first case, there are often analytical

expressions for the flat inputs or the flat inputs can be computed numeri-

cally from low order algebraic equations, while in the latter case a numer-

ical integration is needed. When using the flat input method, it is also

not necessary to determine or estimate initial conditions explicitly, which
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(a)
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J
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(b)
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θ̂

J
u
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Figure 3: Objective functions for Example 2, if (a) the conventional least squares
approach is used for parameter identification and (b) if the parameter θ is iden-
tified from the inverse model.
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is advantageous in cases where initial conditions are not known.

4. Especially for dynamical systems with delays, whose numerical solution

still is not trivial, it is much easier to use the inverse model for parameter

identification and to exploit the flatness property.

2.2 Determination of Flat Inputs

When trying to exploit flatness properties for parameter identification, a crucial

point is to determine suitable flat inputs. Sufficient and necessary conditions for

the existence of flat inputs are not known in the general MIMO case [30]. How-

ever, Waldherr and Zeitz [13, 30] developed an elegant and easy-to-use method

for the construction of flat inputs for the large class of observable systems, which

is summarized in the following. The method makes use of the concept of observ-

ability co-distribution and observability indices, as defined below.

Definition[30, 31] The system (1) with output equation (5) is said to have

observability indices κ = (κ1, . . . , κm) at x0 ∈ R
n, if

∑m
i=1 κi = n, κi ≥ 0, i =

1, . . . , m, and there exists a neighborhood X of x0 such that the observability

co-distribution

dOκ = span
{

dLj
fhi, 1 ≤ i ≤ m, 0 ≤ j ≤ κi − 1

}

is of constant dimension equal to n in X .

In the above definition, Lfh denotes the Lie derivative, which is defined as

Lfh(x) =
∂h

∂x
f(x) =

n
∑

i=1

∂h

∂xi
fi(x),
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dLfh denotes the gradient ∂Lfh/∂x, and span{.} stands for the space spanned

by these gradient vectors.

In order to construct flat inputs for a system with observability indices κ, Wald-

herr and Zeitz [30] suggest to define m vector fields τk(x), k = 1, . . . , m as solu-

tions of the mn equations

LτkL
r
fhi(x) = 0 for 0 ≤ r ≤ κi − 2

LτkL
κi−1
f hi(x) = δik

(23)

for i = 1, . . . , m, with the Kronecker symbol δik, which is equal to one for i = k

and otherwise zero; Lr
fhi(x) means that the Lie derivative operator is applied r

times. Flat input vector fields γj can then be chosen as

γj(x) =

m
∑

k=1

αkj(x)τk(x), j = 1, . . . , m (24)

with arbitrary scalar functions αkj(x) such that the matrix

A(x) =













α11(x) · · · α1m(x)

...
. . .

...

αm1(x) · · · αmm(x)













(25)

is non-singular [30].

Example IV. The construction of flat inputs is illustrated by a model for virus

replication similar to Möhler et al. [32], which will be studied in more detail

in Section 3.2. Uninfected Madin-Darby canine kidney (MDCK) cells Uc(t) are

infected by active viruses Vi(t). Infected MDCK cells Ic(t) release active and

inactive virus particles Vi(t) and Vd(t), respectively. The active virus particles

either infect the remaining uninfected cells or are degraded to inactive virions.

16



It is assumed that the concentrations of active and inactive virus particles are

measurable. The preliminary model equations, which will be extended by delay

terms in Section 3.2, read:

U̇c(t) = θ6
Cmax − (Uc(t) + Ic(t))

Cmax
Uc(t)− θ1Uc(t)Vi(t)

İc(t) = θ1Uc(t)Vi(t)− θ2Ic(t)

V̇i(t) = θ3Ic(t)− θ4Vi(t)− θ1Uc(t)Vi(t)

V̇d(t) = θ5Ic(t) + θ4Vi(t)

(26)

y1(t) = h1(Uc, IC , Vi, Vd) = Vi(t)

y2(t) = h2(Uc, IC , Vi, Vd) = Vd(t)
(27)

It is easily verified that the observability matrix has full rank if the observability

indices are chosen as κ1 = 2, κ2 = 2. Evaluation of condition (23) gives a set of

linear equations for τ 1:

Lτ1h1 = 0 ⇒ τ1,3 = 0

Lτ1Lfh1 = 1 ⇒ −θ1 Vi τ1,1 + θ3τ1,2 − (θ4 + θ1 Uc) τ1,3 = 1

Lτ1h2 = 0 ⇒ τ1,4 = 0

Lτ1Lfh2 = 0 ⇒ θ5 τ1,2 + θ4τ1,3 = 0

(28)

and for τ 2:

Lτ2h1 = 0 ⇒ τ2,3 = 0

Lτ2Lfh1 = 0 ⇒ −θ1 Vi τ2,1 + θ3τ2,2 − (θ4 + θ1 Uc) τ2,3 = 0

Lτ2h2 = 0 ⇒ τ2,4 = 0

Lτ2Lfh2 = 1 ⇒ θ5 τ2,2 + θ4τ2,3 = 1.

(29)
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The solutions of these equations read τ 1 = (−1/(θ1 Vi), 0, 0, 0)
T and

τ 2 = (−θ3/(θ5 θ1 Vi), θ3/θ5, 0, 0)
T . One possible choice of flat input vector fields

is now

γ1 = (−θ1 Vi)τ 1 = (1, 0, 0, 0)T

γ2 = θ3 τ 1 +
θ5
θ3

τ 2 = (0, 1, 0, 0)T ,
(30)

but of course there are many degrees of freedom in this choice and hence many

other possibilities. Once again, it should be noted that these inputs are purely

virtual. There is no need and usually no possibility to implement them in reality.

They are only needed to indicate deviations of the simulation model from the

true process caused by poor parameter estimates.

As an alternative approach to the construction method by Waldherr and Zeitz,

one can try to guess flat inputs from the directed graph of the system, with

n nodes vi for the states and edges ei,j from node vi to vj indicating that the

right-hand side of the ODE for state j depends on state i. The directed graph

of the virus replication system is shown in Figure 4. As an heuristic rule of

thumb, the flat inputs should act on those nodes that are most distant from the

outputs. In the virus replication example, those are the states Ic and Uc, which is

in agreement with the result of the systematic flat input construction discussed

above.

Uc

Ic

Vi

Vd

y1

y2

u1

u2

Figure 4: Directed graph of virus replication model from Example IV with nodes
for states, inputs, and outputs.
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2.3 Treatment of Measurement Noise

In most applications, the assumption of continuous noise-free measurements is

unrealistic. Usually, measurement data are only available at discrete time points

tk and corrupted by measurement noise. The interpolation and differentiation of

noisy data is a very challenging task. A large amount of literature deals with this

problem and many different approaches have been proposed, see e.g. [33, 34] and

references therein. In principle, most of the existing methods could be combined

with the flat input method for parameter identification. In this work, a classical

interpolation approach is applied, as it is computationally less demanding and

has been found efficient for many applications [34]. This approach replaces the

true measurements y in (6) by surrogate output functions ŷ and computes û from

û(t) = Ψu

(

ŷ(t), ˙̂y(t), . . . , ŷ(n)(t), θ̂
)

(31)

The concept of functional data analysis [19, 20, 23] provides methods for deter-

mining appropriate surrogate output functions of the form

ŷ(t) = cT Φ(t). (32)

The time dependent functions Φ(t) are a set of known basis functions chosen

before-hand. B-splines [19] are most commonly used for this purpose, but also

other approaches like neural networks or wavelet concepts may be applicable.

Time derivatives of ŷ(t), which are required to evaluate (31), are easily obtained

by deriving (32) with respect to time. In case of B-splines, this can be done

analytically.

The coefficients c in (32) are chosen in order to fit the basis functions to the
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measurements in an optimal way. To make the surrogate function robust against

measurement noise, a penalty term for the surrogate output’s curvature is often

added to the cost function of the optimization problem [18, 19, 20]:

arg min
c

Jŷ(c) = λ
K
∑

k=1

‖y(tk)− ŷ(tk)‖
2 + (1− λ)

T
∫

0

∥

∥

∥

∥

d2ŷ(t)

dt2

∥

∥

∥

∥

2

dt (33)

The weighting factor λ ∈ [0, 1] has to be adapted in dependence of the analyzed

data y(tk) and is usually determined by hand. This is a quite critical step, as the

parameter λ may influence the outcome of the surrogate function ŷ(t) strongly.

Example V. For the purpose of illustration, measurement data are generated by a

sine function which is corrupted by additive Gaussian noise, y(tk) = sin(tk) + vk.

Figure 5 shows that only with a deliberately chosen weighting factor (λ = 0.8)

the original sine function can be approximated adequately.

0 2 4 6 8 10 12 14 16 18

−2

0

2

t

y
(t

k
),

ŷ
(t

)

sin(t)

y(tk)

ŷ(λ = 1.0)

ŷ(λ = 0.0)

ŷ(λ = 0.8)

Figure 5: Influence of the additive penalty term (1− λ)
T
∫

0

‖d2ŷ(t)/dt2‖2dt on the

surrogate function ŷ(t). In the presence of discrete noisy data, y(tk) = sin(tk) +
vk; tk+1 − tk = 0.25; vk ∼ N (0, 0.2), an appropriate function ŷ(t) can be derived
using a proper λ value (λ = 0.8).

To avoid the tedious work of tuning λ manually, one can incorporate the choice of

λ into the framework of parameter identification. The weighting factor λ is then

considered as another optimization variable in addition to the unknowns of the
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surrogate functions c and the model parameters θ̂ when evaluating the cost func-

tion (8). The resulting new minimization problem for parameter identification

reads

arg min
c,λ,θ̂

Ju(c, λ, θ̂) =

T
∫

0

∥

∥

∥
û(ŷ(c, λ, t), θ̂)− u(t)

∥

∥

∥

2

dt, (34)

where u(t) ≡ 0 for an autonomous system. Although solving (34) requires the

underlying solution of the minimization problem (33), this approach seems fea-

sible, because both optimizations are not very costly. If e.g. splines are used as

basis functions, very efficient solutions are available for the fitting problem (33).

The solution of (34) is also quite cheap, as no differential equations have to be

solved to obtain û.

In cases of strongly fluctuating process dynamics, a penalty term minimizing

the curvature might be inappropriate. As an alternative, one can replace the

penalty term in (33) by a term that explicitly incorporates the deviation of the

reconstructed inputs û from their nominal values:

arg min
c,θ̂

Ju(c, θ̂) = λ

K
∑

k=1

‖ŷ(tk, c)− y(tk)‖
2 + (1− λ)

T
∫

0

‖û(t, θ̂)− u(t)‖2dt (35)

In this approach, the inverse model acts as a model based filter that minimizes the

influence of measurement noise when determining ŷ(t). The cost function (35)

has some similarity to the objective functions used for iteratively refined principal

differential analysis [18, 20]. The coefficient λ in (35) is a design parameter with

values between 0 and 1. A value close to 1 means that only small differences

between surrogate output and true measurements are tolerated, while accepting

a larger deviation of the reconstructed input from its nominal value. Such a

choice may make sense, if the measurements are considered as highly reliable,
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but the process model is seen only as a crude approximation of reality. On the

other hand, if one has trust in the accuracy of the model, but measurements are

corrupted by a large amount of noise, a value close to 0 should be chosen for λ.

By varying λ between 0 and 1 a Pareto front of optimal solutions is obtained.

2.4 Treatment of Systems with Delay

The proposed parameter identification method is easily applicable to systems

with delay, if these systems belong to the class of so-called δ-flat systems as

introduced by Mounier and Rudolph [35]. The inputs and states of δ-flat systems

can be expressed as algebraic functions of the outputs and their time derivatives,

similar to Equation (3) and (4). The only difference is that the outputs are not

only evaluated at the current time t, but also at times shifted towards the past

or the future by multiples of the delay times, i.e. at time points t+ q τi, where q

is an integer value and τi are delay times appearing in the set of delay differential

equations (DDE). As a consequence, the inputs û may not be available during

the whole time span of the experiment t ∈ (0, T ), and hence the time intervals,

where û is undefined, have to be excluded from the integrals in (8), (34), or (35).

The inverse model approach for parameter identification of DDE systems has

the big advantage that the quite challenging numerical solution of DDEs is not

required. Especially, there is no need to choose reasonable initial functions of

the system states for times before t = 0, as would be necessary when using the

conventional method of parameter identification. An example will be given in

Section 3.2.

22



3 Case studies

Two case studies will illustrate the properties of the proposed identification

method. The first one will demonstrate advantages of the proposed inverse model

method compared to the standard approach for nonlinear systems. Further, the

example will be used to discuss the treatment of measurement noise. The second

example will show the benefits of the proposed method for systems with delay.

3.1 FitzHugh-Nagumo Equations

The well-known FitzHugh-Nagumo equations [36] give a simple description of the

electro-physiology of a nerve axon. The system was also used by Ramsay et al.

[21] as a test example for their generalized smoothing approach for parameter

identification. The model equations read

V̇ = c

(

V −
V 3

3
+R

)

Ṙ = −
1

c
(V − a + bR),

(36)

where V andR represent the voltage and the recovery of the membrane. Through-

out this case study, the parameters a and b have to be identified from measure-

ments, whereas c = 3 is assumed to be known from literature. For the purpose

of parameter identification, in-silico measurement data of the membrane voltage

are provided as

y(tk) = V (tk) (37)

The FitzHugh-Nagumo equations are an autonomous ODE system without a

physical input. As one quantity is measured, one fictitious input has to be deter-

mined in order to obtain a flat system. It is easily seen that the flat input should
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act on the equation for R(t). So the system used for parameter identification is

the following:

V̇ (t) = c

(

V (t)−
V 3(t)

3
+R(t)

)

Ṙ(t) = −
1

c
(V (t)− a+ bR(t)) + u(t)

y(t) = V (t)

(38)

Again, u(t) is a fictitious input whose nominal value is always zero.

From (38) one can derive expressions for V (t), R(t), u(t):

V (t) = y(t) (39)

R(t) =
1

c
ẏ(t)−

3y(t) + y(t)3

3
(40)

u(t) =
1

c
ÿ(t)− ẏ(t)

(

1− y(t)2
)

−
1

c
(y(t)− a+ bR(t)) . (41)

Because the fictitious input u(t) vanishes at all times, the cost function Ju for

flat input based parameter identification reads in this case:

Ju(â, b̂) =

T
∫

0

(û(t)− u(t))2 dt =

T
∫

0

û2(t) dt

=

T
∫

0

(

1

c
ÿ(t)− ẏ(t)

(

1− y(t)2
)

−
1

c

(

y(t)− â+ b̂ R(t)
)

)2

dt

(42)

In a first step, the conventional cost function Jy from Eq. (7) and the cost function

Ju of the new approach given by Eq. (42) are evaluated for different parameter

estimates θ̂ = (â, b̂)T in the range of −1 ≤ â, b̂ ≤ 1.5. The nominal parameter

values and initial conditions are taken as a = b = 0.2, V (0) = −1, R(0) = 1. The

parameter ranges of â and b̂ are discretized in 251 intervals, which leads to an
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overall number of 63001 evaluations of Eq. (42) and Eq. (7), respectively. On

a PC, this requires 5707 s of CPU time for Eq. (7), but only 15 s for Eq. (8),

which illustrates nicely the computational efficiency of the flat input method.

Another advantage of the new identification method for this example becomes

visible when looking at the contour plots of Ju and Jy (cf. Figure 6). The

shape of Jy is quite complicated with several local minima that make parameter

identification difficult [21]. In contrast, Ju has a nice convex shape well suited for

numerical optimization. It is proven in the appendix that Ju is globally convex

with ellipse-shaped contour lines of Ju, which is an improvement compared to

the result of Ramsay et al. [21] where only a local smoothing of the objective

function could be achieved.

−1 0 1
−1

0

1

â

Jy

b̂

−1 0 1
−1

0

1

â

Ju

b̂

Figure 6: Contour plots of cost functions of the FitzHugh-Nagumo equations
for reference parameter values a = b = 0.2. Left diagram: cost function Jy with
several local minima resulting from the standard approach; right diagram: convex
cost function Ju resulting from the inverse model approach.

In the following, the influence of measurement noise is analyzed. Artificial mea-

surement data are taken from a simulation of the autonomous system (u(t) ≡ 0)

as shown in Figure 7. The simulated measurement data for the membrane volt-
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age V (t) are discretized with a sampling rate of ∆t = 0.05 and corrupted by

additive normal distributed noise ǫ ∼ N (0, 0.04), which corresponds to a stan-

dard deviation of at least 10 % of the generated data. Initial guesses for the

0 2 4 6 8 10 12 14 16 18 20

−2

0

2

t

Figure 7: Simulation results of the autonomous FitzHugh-Nagumo equations;
solid lines represent the membrane recovery R, dashed lines the voltage V , and
circles illustrate discrete noisy measurement data of V .

unknown parameters are chosen randomly in the range of 0 ≤ â, b̂ ≤ 10. In

this way, 1000 optimization problems are generated. They are solved first by the

conventional approach, i.e. by minimizing Jy in Eq. (7). The Matlab built in

Levenberg-Marquardt algorithm lsqnonlin in its standard configuration is used

for optimization. The left-hand side diagram in Figure 8 shows that the opti-

mization results depend strongly on the initial guess of the unknown parameters.

For poor initial guesses the optimizer gets stuck in a local minimum of Jy.

For the inverse model approach, the measurement data are approximated by

a surrogate output function ŷ(t) based on B-splines. The objective function

Ju(c, λ, â, b̂) as defined in Eq. (34) is used for optimization. As expected due to

the convexity of the objective function, the parameter estimates are now much

less sensitive to the initial guesses (see right-hand side diagram in Figure 8). All

estimates are grouped nicely around the nominal values of a and b.

Table 1 gives a more detailed view on the estimation results as well as on the
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Figure 8: Estimated parameters â and b̂ from 1000 parameter identifications;
initial parameter guesses are varied randomly in the range of 0 ≤ â, b̂ ≤ 10 and
measurement data are corrupted by normal-distributed noise; nominal parameter
values are a = b = 0.2 left-hand side figure: result of conventional approach based
on objective function Jy; right-hand side figure: result of alternative approach
based on objective function Ju.

computational effort. It turns out that the flat input method is not only more

accurate but also considerably faster. The new approach achieves a speed-up

by a factor of 30. This is mainly because the evaluation of Ju is much cheaper.

The computational time for the optimization itself is also reduced, but not that

strongly. Here, the advantages of the nicer shape of Ju are partly compensated

by the larger number of optimization variables (c and λ in addition to â and b̂).

µâ σâ µb̂ σb̂ tcpu(PI)/s tcpu(Jy/u)/s calls(Jy/u)

PI(Jy) 0.825 1.355 1.765 2.952 24394.1 24004.8 70503
PI(Ju) 0.190 0.058 0.327 0.168 661.4 551.4 47000

Table 1: Parameter identification (PI) of the FitzHugh-Nagumo equations by us-
ing the conventional cost function Jy or the alternative cost function Ju; Contents
of the columns: µâ/b̂ and standard deviations σâ/b̂ of the estimated parameters for
nominal values a = b = 0.2, consumed CPU time for total parameter identifica-
tion as well as for evaluation of objective functions, number of objective function
calls.
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3.2 Virus Replication Model

The second case study continues the investigation of the virus replication model

started in Example IV. Now the model is extended in order to take into account

that the infected MDCK cells Ic do not release active and inactive virus particles

immediately, but after some delay τ , which is an additional unknown model

parameter to be identified. As in Example IV, it is assumed that active and

inactive virus particle concentrations are measurable. Further, the same fictitious

inputs u1 and u2 as before are added to the model. The modified equations with

fictitious inputs read:

U̇c(t) = θ6
Cmax − (Uc(t) + Ic(t))

Cmax
Uc(t)− θ1Uc(t)Vi(t) + u1

İc(t) = θ1Uc(t)Vi(t)− θ2Ic(t) + u2

V̇i(t) = θ3Ic(t− τ)− θ4Vi(t)− θ1Uc(t)Vi(t)

V̇d(t) = θ5Ic(t− τ) + θ4Vi(t)

y1 = Vi

y2 = Vd

(43)

System (43) is a δ-flat system, because all states and inputs may be expressed by

y1, y2 and their time derivatives in the following way:
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Vi(t) = y1(t)

Vd(t) = y2(t)

Ic(t) = 1
θ5

(ẏ2(t + τ)− θ4y1(t+ τ))

Uc(t) =
θ3Ic(t− τ)− θ4y1(t)− ẏ1(t)

θ1y1(t)

u2(t) = 1
θ5

(ÿ2(t + τ)− θ4ẏ1(t+ τ))− θ1Uc(t)y1(t) + θ2Ic(t)

u1(t) = θ6
Cmax − (Uc(t+ τ) + Ic(t+ τ))

Cmax
Uc(t+ τ)

+θ1Uc(t+ τ)y1(t + τ)−
θ4ẏ1(t+ τ)− ÿ1(t + τ)

θ1y1(t+ τ)

−
θ3 (θ1Uc(t)y1(t)− θ2Ic(t) + u2(t))

θ1y1(t+ τ)
−

Uc(t+ τ)ẏ1(t+ τ)
y1(t+ τ)

(44)

In a first step, the unknown parameters θ1, . . . , θ6 and τ are identified by the

conventional approach, i.e. the delay differential equations are solved numeri-

cally and the resulting difference between measurements y and estimates ŷ is

minimized. It turns out that this strategy leads to serious numerical problems.

It is only successful when it is done in a two-step procedure: In an outer loop,

an estimate of the delay τ̂ is varied over a certain interval; in an inner loop, the

parameter vector θ̂ is determined by minimizing Jy from Eq. (7) for a fixed value

of τ̂ ; the value of τ̂ that leads to the smallest value of Jy is finally assumed to be

the true delay τ . But even the two-step procedure works only, if the estimated

τ̂ values are in a small range around the true time delay. This can be seen from

the result of a simulation experiment displayed in Figure 9. The model param-

eters θ are estimated for 100 different delay parameter values equally spaced in

the range of 5 to 15 hours with the true delay being τ = 7.5 h. The numerical

optimization, which again uses lsqnonlin, is only successful if the guess of τ is

close to the reference value. For other τ -values the optimization routine diverges.
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Figure 9: Minimization of the standard cost function Jy for fixed estimated values
τ̂ of the time-delay parameter, the true value being τ = 7.5 h.

In a second step, the alternative cost function Ju given by Eq. (34) is minimized

instead of Jy. As the inputs are purely fictitious with u1(t) ≡ 0, u2(t) ≡ 0, the

cost function reads for this example

Ju(θ̂1, . . . , θ̂6, τ̂) =

T−2τ̂
∫

τ̂

(û1(t) + û2(t))
2 dt, (45)

where û1(t) and û2(t) are computed from (44) by substituting the true parameter

values θ1, . . . , θ6, τ with the estimates θ̂1, . . . , θ̂6, τ̂ . The limits of the integral in

Eq. (45) result from the condition that the arguments of all time dependent

functions the integrand depends on should lie between 0 and T . The approach

proves to be much more benign numerically. The optimized cost function Ju

becomes a smooth function of τ̂ with a clear minimum at the reference delay τ̂

(see Figure 10). This even works, if the initial guesses of the θ parameters are very

poor - an example is shown in Table 2, where initially all θ parameters are set to

values equal to 750 times the true value and nevertheless very accurate estimates

are obtained in the end. It should also be mentioned that the evaluation of Ju
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is very efficient and that the computation of the complete curve in Figure 10

requires less than 10 s on a PC, which is about 1% of the time needed for the

conventional approach.

5 6 7 8 9 10 11 12 13 14 15
0

20

40

τ̂ /h

J
u
(c

,θ̂
,τ̂

)

Figure 10: Minimization of the alternative cost function Ju for fixed estimated
values τ̂ of the time-delay parameter, the true value being τ = 7.5 h.

θ1 θ2 θ3 θ4 θ5 θ6
θIni/θTrue 750 750 750 750 750 750
θOpt/θTrue 1.0032 1.0014 0.9974 1.000 0.9974 0.9976

Table 2: Result of the parameter identification of model (43) when minimizing
the cost function Ju given in Eq. (34); first row: scaled values of the initial
parameter guesses; second row: scaled results of optimization.

In Section 2 it was already mentioned that the fictitious inputs may be more

sensitive against certain model parameters than the measured outputs. In order

to demonstrate this for the virus replication example, first order Sobol’ sensi-

tivity indices [37] are computed for both approaches, using a numerical method

presented in a previous publication [38]. The results differ strongly for the conven-

tional approach and for the inverse model approach (see Figure 11). Parameter

θ4, which is least sensitive for the conventional method, becomes the most sensi-

tive one when the inverse model approach is applied. This is in agreement with
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Table 2, where θ4 is estimated with the highest accuracy. As a consequence of

the different sensitivities of y and u, the information content of the measurement

might be exploited in the best possible way, if the conventional identification ap-

proach based on Jy and the alternative identification approach Ju are combined

and each approach identifies those parameters it is most sensitive against.
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(b) alternative approach (Ju):
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Figure 11: Integral measures of Sobol’ indices normalized to the most sensitive
for the two different strategies of parameter identification.
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4 Conclusions

Exploiting the flatness property of dynamical systems for parameter identifica-

tion may be beneficial in cases, where the physical measured outputs are at the

same time flat outputs of the system. The most obvious advantage is that for

flat systems the states and inputs are either given as analytical functions of the

flat outputs and their time derivatives, or can be computed from the flat outputs

by solving algebraic equations. Therefore, there is no need to solve differential

equations numerically underlying the optimization problem of parameter identifi-

cation. This accelerates the identification process and it circumvents the problem

of determining possibly unknown initial conditions of the states. This is especially

appealing for delay differential equations, whose numerical solution and feasible

choice of initial functions is not trivial. Further, the flat input approach leads

to a very natural treatment of hidden (unmeasurable) states without the need

to introduce nuisance parameters. In the case of a completely measurable state

vector, the flat input method coincides with two-stage approaches as suggested

in [16, 17, 22].

Another advantage, which became visible in the example of the FitzHugh-Nagumo

equations, is that the cost function Ju describing the deviation of flat inputs from

their reference values may have a nicer shape with less local minima. This is

hardly a result that can be generalized to all classes of systems, and it may be

possible to construct counter-examples where the opposite holds. But still, it

seems quite typical for many systems that the flat inputs depend on the model

parameters in a “less severe” nonlinear way than the outputs. The coefficients of

linear systems, for example, appear as arguments of exponential functions in the

expressions of the system outputs, but as polynomial or rational functions in the
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expressions of flat inputs. So if one has to tackle a parameter identification prob-

lem with many local minima in the conventional approach it may be worthwhile

looking at the flat inputs instead.

The obstacle one has to overcome before making use of flatness is clearly that

suitable fictitious inputs must be found that turn the physical outputs into flat

outputs. The good news is that there is a method in literature [13, 30] that makes

this construction surprisingly simple for systems that are locally observable by

the measured outputs, and that the construction of flat inputs for given outputs

is much easier than the opposite problem of finding flat outputs one has to solve

for flatness based control. It should also be noted that the construction of flat

inputs and their application to parameter identification is not restricted to cer-

tain nonlinearities or certain types of kinetic expressions, which is another nice

property of the method.

The weak spot of the flat input method is the need to form derivatives of mea-

sured outputs. In this work, this problem could be solved satisfactorily by in-

troducing surrogate output functions based on B-splines or other approximation

techniques. The additional effort due to a larger number of optimization vari-

ables could be over-compensated by the very efficient solution of the ODE/DDE

model equations. But clearly, the accuracy of the method will suffer if higher

order derivatives of the outputs are required and the measurements are noisy or

the measurement sampling rates are low. In consequence, use of flat inputs for

parameter identification is most attractive for systems whose observability indices

are not too large, i.e. for systems where the number of states is not orders of

magnitude larger than the number of outputs.
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A Analysis of Ju in Section 3.1

From (41) one obtains

û− u = −
1

c

(

a− â+R (b̂− b)
)

and hence

Ju =
1

c2

T
∫

0

c2(û− u)2 dt

=
1

c2



(â− a)2 T − 2 (â− a)(b̂− b)

T
∫

0

Rdt+ (b̂− b)2
T
∫

0

R2 dt



 .

When introducing the abbreviations

R =
1

T

T
∫

0

Rdt

R2 =
1

T

T
∫

0

R2 dt

ã = â− a

b̃ =
√

R2(b̂− b),

Ju can be written as

Ju =
1

c2 T

(

ã2 − 2
R
√

R2
ã b̃+ b̃2

)

.

Because R/
√

R2 is always between -1 and 1, the above equation defines an ellipse

for constant values of Ju.
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