
Sensitivity Analysis and Robust Design of
Pharmaceutical Manufacturing Processes

Von der Fakultät für Maschinenbau

der Technischen Universität Carolo-Wilhelmina zu Braunschweig

zur Erlangung der Würde

eines Doktor-Ingenieurs (Dr.-Ing.)

genehmigte Dissertation

von: M.Sc. Xiangzhong Xie

geboren in: Nanchang, Jiangxi, China

eingereicht am: 14.10.2019
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Abstract

The existence of parameter uncertainties limits model-based process design techniques. It also

hinders the modernization of pharmaceutical manufacturing processes, which is necessitated for

intensified market competition and Quality by Design (QbD) principles. Thus, in this thesis,

proper approaches are proposed for efficient and effective sensitivity analysis and robust design

of pharmaceutical processes. Moreover, the point estimate method (PEM) and polynomial chaos

expansion (PCE) are further implemented for uncertainty propagation and quantification (UQ)

in the proposed approaches.

Global sensitivity analysis (GSA) provides quantitative measures on the influence of parameter

uncertainties on process outputs over the entire parameter domain. Different global sensitivity

analysis techniques are presented in detail. The PCE is utilized for efficient computation of

these sensitivity measures. The results from case studies show that GSA is able to quantify the

heterogeneity of the information in parameter uncertainties and model structure. The significant

impact of parameter dependencies on GSA ranking and the variation in simulation results are

also revealed.

Comprehensive frameworks for robust process design are introduced to alleviate the adverse

effect of parameter uncertainties on process performance. The first robust design framework is

developed based on the generalized PEM. The proposed approach is able to increase the process

robustness at a low computational expense. Here, the negative influence of process constraints as

well as the necessity of considering parameter dependencies in robust design are also addressed.

Then, the framework is extended to parameter uncertainties with non-Gaussian distributions. A

novel approach, in which the Gaussian mixture distribution (GMD) concept is combined with

PEM, is proposed to handle this issue. The resulting GMD-PEM concept provides a better

trade-off between process efficiency and an acceptable limit of constraint violations than other

approaches. The second robust design framework proposed in this work is based on the iterative

back-off strategy and PCE. It provides designs with the desired robustness, while the associated

computational expense depends no longer on the formulation of the optimization problem. The

decoupling of optimization and uncertainty quantification provides the possibility of implement-

ing robust process design to more complex pharmaceutical manufacturing processes with large

number of uncertain parameters.

In this thesis, the case studies include unit operations for (bio)chemical synthesis, separation

(crystallization) and formulation (freeze-drying), which cover the complete production chain of

pharmaceutical manufacturing. Results from the case studies reveal the significant impact of

parameter uncertainties on process design. Also they show the efficiency and effectiveness of the

proposed frameworks regarding process performance and robustness in the context of QbD.

xii



Kurzfassung

Die pharmazeutische Industrie muss sowohl den gestiegenen Wettbewerbsdruck standhalten als

auch die von Regulierungsbehörden geforderte QbD-Initiative (Quality by Design) umsetzen.

Neben Erfahrungswerten und Expertenwissen können insbesondere modellgestützte Verfahren

einen signifikanten Beitrag leisten, um auch zukünftig kostengünstige Arzneimittelwirkstoffe unter

QbD herzustellen. Parameterunsicherheiten (PU) erschweren jedoch eine zuverlässige modellgestützte

Prozessauslegung. Das Ziel dieser Arbeit ist daher die Erforschung von effizienten Approaches

zur Unsicherheiten- und Sensitivitätsanalyse für ein robustes Prozessdesign der pharmazeutische

Industrie. Methoden, Point Estimate Method (PEM) und Polynomial Chaos Expansion (PCE),

wurde implementiert, um effizient Unsicherheitenquantifizierung (UQ) zu erlauben.

Der globalen Sensitivitätsanalyse (GSA) ist eine systematische Quantifizierung von Parame-

terschwankungen auf die Simulationsergebnisse. Verschiedene GSA Techniken werden im De-

tail vorgestellt, Schwierigkeiten bei der effizienten Berechnung unter Parameterkorrelationen

aufgezeigt und Lösungsstrategien an Beispielen demonstriert. Die Ergebnisse zeigen sowohl den

Mehrwert der GSA im Kontext des robusten Prozessdesigns als auch die Relevanz zur korrekten

Berücksichtigung von Parameterkorrelationen bei der Sensitivitätsanalyse im Allgemeinen.

Um den schädlichen Einfluss von PU auf die modellgestützte Prozessauslegung zusätzlich zu

minimieren, wurden weitere Konzepte aus der robusten Optimierung und Unsicherheitenbeschrei-

bung untersucht. Zunächst wurde das erste Kozept basierend auf einer generalisierten PEM-

Strategie entwickelt. Hier konnte gezeigt werden, dass die Zuverlässigkeit des robuste Prozess-

design bei einem deutlich reduzierte Rechenaufwand gesteigert werden kann. Parameterkorre-

lationen und Nebenbedinungen haben sich bei der robusten Prozessauslegung als relevante Ein-

flussgrößen bestätigt und wurden entsprechend in den Simulationen berücksichtigt. In einem

zweiten Schritt wurde das Konzept auf nicht normalverteilte PU erweitert. Ein neuer Ansatz,

der die Gaußsche Mischverteilung mit der PEM kombiniert, wurde hierzu vorgeschlagen und er-

folgreich implementiert. Weiterhin wurde eine iterative Back-off-Strategie erforscht, die durch

eine vollständige Berücksichtigung der Unsicherheiteninformation zu besseren Resultaten bei der

robusten Prozessauslegung führt. Durch die Entkoppelung von Unsicherheitenquantifizierung

und Optimierung können wesentlich komplexere pharmazeutische Herstellungsprozesse mit einer

hohen Anzahl an unsicheren Parametern implementiert werden.

Die in dieser Arbeit untersuchten Beispiele beinhalten verfahrenstechnische Grundoperationen

und decken somit einen Großteil der gesamten Produktionskette der pharmazeutischen Herstel-

lung ab. Die Ergebnisse der verschiedenen Robustifizierungskonzepte zeigen deutlich den Einfluss

von PU und -korrelationen auf das modellgestützte Prozessdesign auf. Mithilfe der vorgeschlage-

nen Approaches können die Unsicherheiten effektiv und effizient bei einer optimalen Balance von

Rechenaufwand und der geforderten Zuverlässigkeit ganz im QbD-Sinne berücksichtigt werden.
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of dynamical systems with correlated random variables using the point estimate

xv



Preface

method. In 9th Vienna International Conference on Mathematical Modelling (MATH-

MOD), Vienna, Austria, 21 - 23 February, 2018
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Chapter 1

Introduction
1

1.1 Research Motivation

Manufacturing processes in pharmaceutical industries persuade higher efficient and re-

liability to be prepared for the stringent competition in global market. Mathematical

models, as the key element in the industrial digitalization, are implemented to predict-

ing and forecasting the process status and behavior, which provides the potential for

further improve the process performance with low investment costs [20, 21, 22]. The

respective physio-chemical phenomena in pharmaceutical processes are described with

continuity equations and associated model parameters, which construct in turn the math-

ematical models (first-principle) [23, 24, 25]. However, the model parameters estimated

numerically are uncertain as a consequence of measurement noise and model assump-

tions(simplifications) [26, 6]. As illustrated in Fig. 1.1, on the account of measurement

noises and model simplifications, a perfect agreement between model predictions and

experiment measurements could not be achieved no matter how the parameter values

are manipulated [27]. In other words, finding a unique value for parameters which lead

to zero deviations between model predictions and experimental measurements is not

possible in case of using real data. Therefore, the measurement data are accounted as

random variables instead of deterministic quantities [27]. And the parameter values are

estimated also as random variables, as shown in Fig. 1.1 in which the 99% confidence

intervals (CI) indicates the region that includes most of the possible parameter values.

The model predictions are also not deterministic as the parameters are uncertain, and

vary in a certain range, i.e., 99%CI, in which almost all possible model predictions with

different parameter values are included. Indeed, the bandwidth of 99% CI of model pre-

diction indicates the credibility of the model, i.e., a more credible model has a narrower

1Part of this chapter has been published in (Xie et al., Reliab. Eng. Syst. Safe., 2018 [9]), (Xie et al.,
Processes, 6(10), 183, 2018 [2]), (Xie et al., Chem. Eng. Sci., 207, 805-819, 2019 [10]) and (Xie et
al., Comput. Chem. Eng., 124, 80-92, 2019 [11])
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Figure 1.1: Illustration of the imprecision in parameter estimation. Step 1: Compari-
son between experiment measurements and model predictions. The existing
deviation between them could, e.g., come from model simplification and mea-
surement noise. Step 2: The 99% confidence interval (CI) of the estimated
parameter values. Step 3: Model predictions with the associated 99% CI.

bandwidth for CI of predictions at different operation conditions. Optimal experimental

design (OED) has been proposed and used to increase the model credibility by reducing

the uncertainties in the estimated parameter values with informative experiments [27, 6].

However, as also pointed out in [27], the parameter uncertainty could be alleviated but

not eliminated, and as such the vagueness in model predictions always exists. There-

fore, model-based design of pharmaceutical process with single realization of parameter

values and the corresponding individual trajectory of model predictions might result in

a design solution with sub-optimal performance and high-risk potential [28, 29, 30].

The effect of parameter uncertainty on the design of pharmaceutical processes is fur-

ther illustrated in Fig. 1.2. The traditional pattern of pharmaceutical processes is

batch-wise and still widely implemented in pharmaceutical industries. The continuous

pharmaceutical manufacturing process (CPM), shown in Fig. 1.2, is the pattern of future

pharmaceutical process and has been advocated vigorously in the last decade [31]. It

is suggested as the technology to modernize the pharmaceutical manufacturing accord-

ing to the quality-by design concept which will be further explained in the subsequent

section. More detailed discussions about how to transfer from traditional batch pattern

to CPM and which process system engineering methods could be used to facilitate the

transfer are referred to [32, 33]. Regardless of which pattern is used, the pharmaceutical

processes consist of three main functional blocks which are synthesis, separation and

formulation, as labeled in Fig. 1.2. The synthesis block contains different types of reac-

tors for the synthesis of intermediate compounds and the desired active pharmaceutical

ingredients (APIs) via chemical routines. The separation block includes extractor, crys-
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tallizer and other type of separators to extract the APIs and remove impurities. These

two blocks are referred as upstream and downstream process and normally overlapped to

product APIs with desired purity [34]. The formulation block, i.e., downstream process,

contains extrusion, granulation, drying and compaction processes to produce final drugs

for better preservation and convenient dosage. The design of these three function blocks

leads ultimately to the pharmaceutical manufacturing process with high product yield

and good drug quality. Research about mathematical modeling and model-based analy-

sis and design of individual function block [35, 36, 37] or even entire production process

[25] could be found in the literature. However, the influence of parameter uncertainties

is neglected in most of the works, albeit the common existence of them. As explained

in Fig. 1.1, the real process behavior could be different from the model predictions

with deterministic parameter values. Hence, the performance of the real process with

deterministic design could be far away from the desired level which would lead to quality

failure in the drug product. And more importantly, the process constraints could also be

violated and lead to operation failure, as shown in Fig. 1.2. In short, the performance

of process design solutions with deterministic parameter values is not reliable. In order

to achieve more reliable model-based results, parameter uncertainties have to be taken

into account in the design of pharmaceutical manufacturing processes.

In this work, the generic framework of model-based pharmaceutical manufacturing

process development is categorized into three crucial stages, as illustrated in Fig. 1.3.

Stage 1 is focused on the plant scale design. In this stage, the overall configuration of the

production plant is designed. The mass and energy flow between synthesis, separation,

formulation and heat integration compartments are optimized to achieve the desired

product quality and yield [38]. In Stage 2, the production plant is divided into individ-

ual unit operations. Here, first-principle models are constructed for the unit operations

with detailed mechanisms derived from the physio-chemical phenomena. The operation

conditions for each unit operation are then designed based on the first-principle model,

and the influence of parameter uncertainties is taken into account in Stage 3. In this

stage, sensitivity analysis is used to quantify the influence of parameter uncertainties

and screen out the ones with appreciable sensitivities. Moreover, robust process design

provides the solutions, with which the best trade-offs between performance and robust-

ness for both critical quality attributes and process constraints of the unit operations are

achieved. The major focus of this thesis is to introduce and develop the methods needed

for stages 3, i.e, sensitivity analysis and robust process design, to alleviate the influence

of parameter uncertainties and ensure credible design of pharmaceutical processes.
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Figure 1.2: Impact of parameter uncertainty on the design of pharmaceutical manufac-
turing processes.
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In the next sections, the history of development of pharmaceutical manufacturing is

retrospected and its recent innovation is presented. Afterwards, the major focus of this

work, i.e, sensitivity analysis and robust process design, is presented in more detail.

Ultimately, the research scope and the structure of the thesis is presented at the end of

this chapter.

1.2 Pharmaceutical Manufacturing

Pharmaceutical manufacturing plays a pivotal role in protecting health and saving many

lives in the last centuries [39]. It develops and delivers life-saving drugs to patients for

rescuing them from suffering of diseases [40]. From the last century until now, the in-

dustrialized production processes provide the capacity of pharmaceutical manufacturing

to meet the requirements from patients all over the world [40]. However, at the early

stage of last century, public health and even their lives were exposed to and threaten by

the medicine quality failures from unaware contamination or improper manufacturing

operations [41, 40]. In order to circumvent such critical situation, the Food and Drugs

Administration (FDA) and the European Medicines Agency (EMA) were founded, which

play the role of regular agencies and strictly supervise the manufacturing process to de-

liver qualified pharmaceutical products [39].

The initial focus of the regulatory agencies was on the toxicological analysis of new

drug submissions to prevent the recurrence of historical incident in 1932 [40]. Later until

1941, in which the sulfathiazole disaster happened [41], the regulatory agencies realized

the manufacturing processes had also to be supervised to deliver drug products with

expected qualities. For this reason, procedural-based quality controls, which are also

named as Good Manufacturing Practices (GMPs), and the associated guidance docu-

ments, which were released in the form of Internal Council on Harmonization (ICH)

guidelines, were enacted for the inspection of pharmaceutical manufacturing [39]. Over

the decades that followed, the pharmaceutical manufacturers were dedicated to ensure

the compliance with GMPs, which hindered the technology development in pharmaceu-

tical manufacturing [39].

With the laggard manufacturing technology and rigorous regulations, the expendi-

tures on drug manufacture amount to more than twice of the research and development

investment [42]. Regulatory agencies also sensed the urges on innovation of the current

state of pharmaceutical manufacturing, and launched Quality by Design (QbD) [43] and

Process Analytical Technology (PAT) initiatives [44] for Current Good Manufacturing

Practices (cGMPs) for the 21st Century.
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Figure 1.3: Design stages for model-based pharmaceutical manufacturing process devel-
opment.
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Traditionally or even nowadays, in most pharmaceutical manufacturing, the drug qual-

ity is still assessed by end-product testing [45]. However, such assessment cannot be

relied on to ensure the product quality in the massive production environment [45].

Moreover, it is also not economic and sustainable to discard ”non-compliance” product

based on the unreliable assessment [42]. Thereby, the QbD initiative advocates that

the quality should be built in rather than tested in the drug products [44]. It suggests

the pharmaceutical manufacturers to adopt risk- and science- based approaches to phar-

maceutical development and manufacturing to ensure a consistent and reliable quality

of drug products with less regulatory oversight [42]. The PAT initiative recommends

the pharmaceutical company to have in-depth understanding of the manufacturing pro-

cesses and promotes the implementation of the technologies for designing, analyzing and

controlling of manufacturing processes [44, 46].

After the two initiatives, the regulatory agencies introduced further concepts, such as

Critical Quality Attributes (CQA), Critical Process Parameters (CPP), Design Space

and Risk Assessment, as well as the associated tools to assist the implementation of

QbD and PAT in pharmaceutical industries in the form of ICH guidelines [47, 48, 49,

50, 42]. Mathematical models and model-based technologies were encouraged by the

regulatory agencies in the ICH guidelines [42]. They also emphasized the importance of

incorporating model uncertainties and disturbances in the product and process design,

which necessitates the development of stage 3 in Fig. 1.3, for a risk-based product and

process design [50].

1.3 Process Analysis and Design with Uncertainties

In this section, the major focus of the thesis, sensitivity analysis and robust process

design, are explained in more details.

1.3.1 Sensitivity Analysis

Sensitivity analysis (SA) provides quantitative measures for ranking the importance of

parameters on model outputs, with which problem dimension could be reduced signifi-

cantly by only taking into account the relevant parameters [51]. However, concept and

implementation of SA are misinterpreted in many engineer fields, and as a consequence

rarely applied, in practice, over there, which is also true for pharmaceutical manufactur-

ing [52].
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SA provides a in-depth understanding about the relevance of model parameters and

model outputs, which plays an importance role in mathematical modeling [53, 54, 55].

It provides useful information for model reduction [56] and control strategy design [34].

Local and global SA are the two groups normally used for categorizing the SA methods.

In local SA, the sensitivity measure is derived from the slope at the nominal value at

which the model is linearized. Or it could also be interpreted as the change in model out-

put if a comparatively small step change is added to the parameter at its nominal value.

The advantages of local SA are 1) straightforward implementation and interpretation,

2) simple derivation without cumbersome model evaluations. However, information at

single parameter point (nominal) and neglect of information from rest parameter space

as well as parameter interactions would lead to inevitable loss of information, and as

such inaccuracy and unreliable sensitivity measures [57]. On the other hand, global SA

(GSA) provides quantitative measures based on the information from the entire param-

eter space, which ends up with more rigorous definition and capability of describing

influence from parameter interactions [51, 55]. In literature, there are already plenty

of works, in which local SA is implemented for the manufacturing processes, such as

[58, 56, 34]. However, according to the work from [59] and [60], in which the sensitivity

measures from local and global SA for chemical processes are compared, GSA is more

preferable, especially for highly nonlinear systems, which turns out to be always true

for the manufacturing processes. Therefore, GSA should also be the right choice for

quantitative analysis of pharmaceutical manufacturing processes. Various measures for

GSA were proposed and widely used for analyzing processes based on the assumption

of independent parameters [61, 62, 37]. However, correlated parameters, which could

be resulted from the inherent dependency or parameter estimation step, appear to be

very common in manufacturing processes [59, 63, 64, 65]. And hence it might also be

necessary to take them into account at the process analysis stage.

The first purpose of this thesis is to introduce and implement GSA techniques for

quantitative analysis of the influence of parameter uncertainties on pharmaceutical man-

ufacturing processes and investigate the impact of parameter correlations. The derived

results from GSA can be used to facilitate the subsequent robust process design and also

provide the engineers better understanding of the processes.

1.3.2 Robust Process Design

The aim of robust process design is to optimize the process performance and at the same

time guarantee the critical constraints, which might be used to ensure process safety and
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product quality, under the condition of parameter uncertainties. [66] firstly proposed

the concept of robust process design and possible solution strategies, which has been, in

the last decades, applied in the design of bio(chemical) processes [69, 70, 67, 68]. The

most commonly used approach for robust process design is the so-called scenario-based

approach. In this approach, the process is optimized upon on the worst-case scenario,

which is derived by solving the robust counterpart [69, 71]. However, this approach

suffers from two deficiencies. 1) A bilevel-optimization problem is formulated, which

is not directly solvable with the traditional optimization methods. 2) the resulted ro-

bust solutions are normally too conservative with excessive scarification on the process

performance. Alternatively, the probability-based approach is proposed, in which the

uncertainties are described with probability distribution and the robustness from the

design is adaptable by changing the threshold for violation probability [30, 3]. It pro-

vides adjustable trade-off between process performance and robustness in contrast to

the scenario approach, and as such is a more flexible approach for robust process design

to prevent excessive loss in process performance.

Uncertainty quantification (UQ) is the key tool for probability-based approach. It

propagates the parameter uncertainties through the process model and the variation/prob-

ability distribution at model outputs are quantified subsequently. The statistical infor-

mation of model outputs is then used in the objective function and constraints for

process design. Traditional method for uncertainty quantification is the sample-based

approaches, i.e, Monte Carlo simulations (MCs), quasi-MCs and Latin Hypercube sam-

pling (LHS; [72]). Enormous amount of samples are drawn from the probability distri-

bution of parameter uncertainties, at which the original computational expensive model

is evaluated. The resulting model evaluation could then be used for quantifying the re-

quired statistical information of model outputs. This type of method is straightforward

for implementation but requires extremely high computational expense and therefore

might not be a good candidate to be embed into the robust process design approaches

[73]. Alternatively, the Point Estimate Method (PEM, [74, 2]) and Polynomial Chaos

Expansion (PCE, [75, 9]), which are more efficient methods for UQ, are presented as the

promising solutions for robust process design.

In this thesis, novel and comprehensive frameworks for robust process design are pro-

posed based on the PEM and PCE, respectively. The introduced frameworks are capable

to design the processes with uncertain parameters associated with either Gaussian or

non-Gaussian distribution at low computational cost. Additionally, the frameworks are

implemented on various unit operations which cover the entire process chain of pharma-

ceutical manufacturing.
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1.4 Scope and Structure of the Thesis

In general, the thesis aims to further fertilize the field of pharmaceutical manufacturing

with the knowledge from process system engineering. Especially, the focus is to intro-

duce the concept of global sensitivity analysis and robust process design for analysis and

design of the pharmaceutical processes in a more efficient and effective way. Moreover,

efficient and effective algorithms and solution strategies are introduced based on the

PEM and PCE to increase the practicability of the concepts to embed the parameter

uncertainty in the product and process development of pharmaceutical manufacturing.

The structure of the remaining chapters of the thesis is outlined as follows:

Chapter 2 - Uncertainty Propagation and Quantification

The mathematical basics and implementation details about the Point Estimate Method

(PEM) and Polynomial Chaos Expansion (PCE) are provided in this chapter. Moreover,

their associated merits and drawbacks are also discussed.

Chapter 3 - Efficient Global Sensitivity Analysis

The basics of two techniques, variance-based and moment-independent GSA are pre-

sented firstly under the assumption of parameter independence. However, parameter

correlations exist commonly within the uncertainties of model parameter, which are

estimated from experimental data. Thereby, the techniques are adapted further to in-

corporate the effect of parameter correlations. Moreover, efficient computation of all the

sensitivity measures are provided based on PCE introduced in Chapter 2. The tech-

niques are demonstrated with a continuous synthesis process that is used to produce

API-scaffold. The results manifest the significance of parameter correlations and the

relevance of GSA in process analysis and design.

Chapter 4 - Comprehensive and Efficient Framework for Robust Process De-

sign

A highly efficient framework for robust process design is proposed based on PEM. The

usage of information obtained from GSA is demonstrated as to reduce the problem di-

mension. Two moment-based methods are compared in the approximation of robust

inequality and equality constraints. Moreover, parameter correlations are also taken

into account and their influence on robust process design is presented. The proposed

framework is implemented in the chemical and biological synthesis steps of pharmaceu-

tical manufacturing. The results show that the proposed framework for robust process

design handles both independent and correlated parameter uncertainties adequately and

scales well with the number of uncertain parameters.

Chapter 5 - Robust Process Design with Non-Gaussian Parameter Uncer-
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tainties

In the previous chapter, transformation techniques were combined with the PEM to

address non-Gaussian and correlated parameter distributions efficiently. However, the

transformation step introduces additional nonlinearities and may increase approxima-

tion errors. Chapter 5 presents the idea of combining Gaussian mixture distributions

(GMD), which decompose the parameter distribution into a finite set of Gaussian dis-

tributions, with the PEM to ensures a proper and effective uncertainty quantification

for robust process design. The improved approach is applied to a freeze-drying process

(lyophilization), which is a part of the formulation block. Results suggest that the novel

GMD-PEM algorithm has the potential to outperform conventional approaches regard-

ing credibility and efficiency.

Chapter 6 - Stochastic Back-off Robust Process Design

Limitations of the traditional strategy for robust process design is addressed. For exam-

ple, even if the efficient algorithms are implemented, performing UQ at each optimiza-

tion iteration turns the traditional strategy into a computationally expensive process,

especially when poor initial guesses are provided for the optimization. In Chapter 6,

thus, a novel stochastic back-off strategy is proposed to handle the potential flaws of

the traditional strategy for robust process design. Moreover, the statistical information

needed for the stochastic back-off strategy is provided by PCE. The proposed approach

is demonstrated in the design of a plug-flow crystallizer which is a part of the separation

block. The results manifest the efficiency and practicability of the stochastic back-off

strategy for robust design of pharmaceutical processes.

Chapter 7 - Conclusions and Future Works

Chapter 7 provides a general summary of the work presented in this thesis, and also

discusses the existing challenges and perspectives that could be further investigated in

the future work.
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Chapter 2

Uncertainty Propagation and Quantification
2

In this chapter, two methods, which appear throughout this thesis for uncertainty propa-

gation and quantification (UQ), are introduced, i.e., the Point Estimate Method (PEM)

and the Polynomial Chaos Expansion (PCE). First, a brief introduction of different

UQ methods and the reasons why these two are selected are presented. Afterwards, the

mathematical basics and implementation details of these two methods are provided. Ad-

ditionally, the generalization of these methods to parameter uncertainties with arbitrary

probability distributions and dependencies is also presented.

2.1 Preliminaries

Generally, first-principle models are used to describe physio-chemical mechanisms of

pharmaceutical processes mathematically. In the field of process system engineering,

first-principle models typically consist of nonlinear different algebraic equations (DAEs)

equal to:

ẋd(t) = gd(x(t),u(t),p), (2.1)

0 = ga(x(t),u(t),p), (2.2)

y = g(x(t),u(t),p), (2.3)

xd(0) = x0, (2.4)

where t ∈ [0, tf ] denotes the time, u ∈ Rnu the control input vector and p ∈ Rnp the

time-invariant parameter vector. x = [xd,xa] ∈ Rnx is the state vector, while xd ∈ Rnxd
and xa ∈ Rnxa are the differential and algebra states, respectively. y is the model output

vector. x0 is the vector of the initial conditions for the differential states. Furthermore,

2Part of this chapter has been published in (Xie et al., Reliab. Eng. Syst. Safe., 187, 159–173, 2019
[9]), (Xie et al., Processes, 6(10), 183, 2018 [2]), (Xie et al., IFAC-PapersOnline, 52(2), 427-432, 2018
[3])
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Chapter 2 Uncertainty Propagation and Quantification

two types of functions gd : R(nxd+nxa )×nu×np → Rnxd and ga : R(nxd+nxa )×nu×np → Rnxa

are given, which denote the differential vector field and algebraic expressions of the

process model.

Typically, the time-invariant parameters p and initial conditions x0 are not known

exactly. Measurement and process noise give rise to uncertainties in model parame-

ters, which are estimated through model fitting [76, 63, 27]. In addition, disturbances

from the environment and the accuracy of the measurement devices result in uncertain

initial conditions. As it is intended to use random variables to describe the uncer-

tainties in the parameters and the initial conditions, a probability space (Ω,F , P r)
is defined with the sample space Ω, σ-algebra F , and the probability measure Pr.

θ = [p(ω), x0(ω)] is the vector of random variables, which are functions of ω ∈ Ω on the

probability space and associated with continuous probability density functions (PDFs)

f(θ) = [f1(θ1), . . . , fnθ(θnθ)] and correlation matrix Σ. These uncertainties, in turn, lead

to variation in the system states x and outputs y, which could also be characterized

with probability distributions. However, quantifying the analytical representation of the

probability distribution of system states and outputs is actually challenging due to the

complex formulation of PDFs for parameter uncertainties and process models.

The importance of including uncertainty has been realized in many disciplines, e.g.,

civil engineering. Thereby, various methods were also introduced in the literatures to

quantify the probability distribution of model outputs numerically [77]. Sampling-based

methods, i.e., (quasi) Monte Carlo simulation (MCs), are the most commonly used ap-

proach for UQ. Samples of the uncertain parameters are randomly generated according

to their PDFs. The process model is evaluated at each sample and the collection of

solutions is used to approximate the statistical information of model outputs. Albeit

the MCs method is simple and straightforward for implementation, the approximated

statistical information converges slowly with increasing number of samples [78]. On that

account, a large number of samples is needed for an accurate approximation, which

could lead to excessive computational cost, as shown in Fig. 2.1. Fig. 2.1 provides an

illustration of computational demand for different methods for different numbers of un-

certain parameters and different system complexity. Gaussian quadrature (GQ), which

was developed for solving numerical integration problems [79], is a common approach for

computing the statistical moments of model outputs. It utilizes deterministic samples

and associated weights, which are derived from orthogonal polynomials, and approxi-

mates the statistical moments through weighted superposition of the sample solutions.

However, the need of tensor product formulas for multi-dimensional problems render an

exponential increase of computational demand on increased number of uncertain param-
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Figure 2.1: Computational demand (i.e., number of model evaluations) for different
methods for uncertainty quantification with increasing (a) number of uncer-
tain parameters and (b) system complexity to achieve similar approximation
accuracy.
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eters, as shown in Fig. 2.1. Lerner[80] suggested to truncate the expression of GQ at

the cost of reduced accuracy on approximating the system interaction and proposed the

Point Estimate Method as an alternative for efficient calculation of statistical moments.

As can be seen from Fig. 2.1, the increase of computational demand with increasing

number of uncertain parameters for PEM is negligible compare to the other methods.

But its accuracy is not guaranteed if the model is highly nonlinear. Spectral methods,

e.g., polynomial chaos expansion [81, 82], are one of the most widely used methods for

UQ. They represents the random model outputs with weighted superposition of orthog-

onal polynomials of uncertain parameters. PCE has moderate computational demand

but still suffers the issue of ”curse-of-dimensionality”. Nevertheless, a recently proposed

algorithm, in which the sparsity effect of PCE is used, provides the possibility of im-

plementing PCE on systems with a large number of uncertain parameters [61, 83]. In

the rest of this chapter, mathematical basics and implementation details about PEM

and PCE are presented, as they are more likely to be able to quantify the influence

of parameter uncertainty for both sensitivity analysis and robust process design with

affordable costs.

2.2 Point Estimate Method

The Point Estimate Method (PEM) is a sample-based and an efficient cubature rule for

approximating n-dimensional integrals [80, 74, 84]. It is analogous to the concept of

the so-called unscented transformation presented by [85], which describes the parameter

uncertainty with some deterministic sample points and approximates the statistics of

outputs with the corresponding model evaluations, but has different deterministic sample

points, associated weights and higher accuracy [80]. The PEM has been successfully

applied in the field of sensitivity analysis [86] and optimal experimental design [87, 88, 6]

to quantify the influence of measurement imperfections on system identification. A brief

introduction to the PEM is given in Section 2.2.1. The concept of extending the PEM to

problems with arbitrary and correlated parameter uncertainties is presented in Section

2.2.2.

2.2.1 Basics of the Point Estimate Method

The basic principle of the PEM is illustrated in Figure 2.2. Here, a nonlinear func-

tion k(·) with a two-dimensional parameter [ξ1, ξ2] and one model output y is used for

demonstration. It is assumed that the two parameters have a bivariate standard Gaus-
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sian distribution ξ ∼ N (0, I). The probability distribution of the parameters does not

have to be Gaussian and could be Uniform, Beta distribution or any other parametric

distributions; as long as it is symmetric and independent [6]. The reason why the prob-

ability distribution of parameters has to be symmetric and independent is provided in

[80] and also mentioned later. According to the PEM, nine deterministic sample points,

i.e., the cross, circle and star points in Figure 2.2, are generated and used for function

evaluations. Afterwards, the integral term is approximated by a weighted superposition

of these function evaluations equal to:

∫
Iξ

k(ξ)f(ξ)dξ ≈
np∑
i=1

wik(ξsi ), (2.5)

where ξsi denotes the i-th sample point; nξ and np denote the number of random inputs

and sample points, which are equal to two and nine in this example; wi is a scalar weight

factor; and f(ξ) is the PDF of the uncertain parameters.

Figure 2.2: Illustration of the point estimation method (PEM) for a nonlinear function
y = k(ξ) that has (A) two random inputs; (B) one model output y1; and
(C) the resulting approximations of statistical moments of y1.

This figure is originated from [2] and created by René Schenkendorf

The deterministic sample points from PEM are generated by the so-called generator

functions (GF) with the scaling value ϑ. The GF generates sample points in Rn by

permutation and the change of sign-combinations of the coordinate values [80]. For

instance, the first three GFs (GF[0], GF[±ϑ], GF[±ϑ,±ϑ]) for sampling in R2 is given

in Eqs. (2.6) to (2.8), which are corresponding to the samples marked with cross, circle

and star symbols in Fig. 2.2, respectively. The PEM, as defined in [80], only uses the

first three GFs to generate deterministic samples in Rnξ .

GF [0] = {(0, 0)}, (2.6)

GF [±ϑ] = {(ϑ, 0), (−ϑ, 0), (0, ϑ), (0,−ϑ)}, (2.7)
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GF [±ϑ,±ϑ] = {(ϑ, ϑ), (ϑ,−ϑ), (−ϑ, ϑ), (−ϑ,−ϑ)}, (2.8)

This leads to an overall number of np = 2n2
ξ + 1 sample points. Moreover, the weight

factors for the evaluations with the samples from the same GF are the same by definition.

Therefore, the formulation for the approximation of the integral term could be rewritten

in a more specific way as shown in Eq. (2.9).∫
Iξ

k(ξ)f(ξ)dξ ≈

w0k(GF [0]) + w1

∑
k(GF [±ϑ]) + w2

∑
k(GF [±ϑ,±ϑ]),

(2.9)

Here, in the formulation of PEM approximation, the scaling value ϑ and scalar weight

factors w0, w1 and w2 are still not known. As mentioned in [80], they are determined by

substituting the function k(ξ) with even-order monomials k(ξ) = 1, k(ξ) = ξ2
i , k(ξ) =

ξ4
i , k(ξ) = ξ2

i ξ
2
j 6=i (i, j ∈ {1, · · · , nξ}) as follows.

w0 + 2nξw1 + 2nξ(nξ − 1)w2 =
∫
Iξ 1f(ξ)dξ, (2.10)

2w1ϑ
2 + 4(nξ − 1)w2ϑ

2 =
∫
Iξ ξ

2
i f(ξ)dξ, (2.11)

2w1ϑ
4 + 4(nξ − 1)w2ϑ

4 =
∫
Iξ ξ

4
i f(ξ)dξ, (2.12)

4w2ϑ
4 =

∫
Iξ ξ

2
i ξ

2
j 6=if(ξ)dξ. (2.13)

In order to solve these equations to calculate the scaling value and scalar weight factors,

the probability distribution of uncertainties in parameter ξ has to be specified. Accord-

ing to the previous works [80, 27], the standard Gaussian distribution is used and the

calculated values from solving Eqs. (2.10) to (2.13) are ϑ =
√

3, w0 = 1 +
n2
ξ−7nξ

18 , w1 =
4−nξ

18 , w2 = 1
36 . Please note that other types of standard probability distributions, which

are symmetric and independent, could also be used. But the values for ϑ,w0, w1 and w2

have to be recalculated as shown in [6]. For odd-order monomials, such as ξ1
i , ξ3

i , ξ1
i ξ

2
j ,

etc, Eq.(2.9) is always valid as long as the probability distribution of uncertainties in

parameter ξ is independent and symmetric [80]. Hence, the PEM formulation is valid

for all odd-order monomials and even-order monomials up to 4, the overall precision of

PEM is guaranteed for the integral of functions with moderate nonlinearities, i.e., system

up to fifth-order [80, 3]. Please note that the system with fifth-order means it can be

accurately approximated with the sum of monomials up to order of five. In principle,

the PEM can also be adapted to ensure lower or higher precisions, but the proposed

setting has the best trade-off between precision and computational cost [74].
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2.2.2 Sampling Strategy for Independent/Correlated Random Variables of

Arbitrary Distributions

As mentioned above, the proposed PEM with the provided factor values is only applica-

ble in the circumstance of independent standard Gaussian distributions describing the

parameter uncertainties. For most practical applications, however, they confront with

problems in which the parameter uncertainties have arbitrary and correlated probability

distributions. Therefore, the PEM is extended by using Proposition 2.1.

Proposition 2.1. For two random variables (θ, ξ), where ξ ∼ N (0, I) and θ has an

arbitrary distribution, and the function Φ(·) = F−1
θ (Fξ(·)), the following relation for the

integral terms of the nonlinear function k(θ) holds [3]:∫
Iθ

k(θ)f(θ)dθ =

∫
Iξ

k(Φ(ξ))f(ξ)dξ. (2.14)

Based on Proposition 2.1, the integral of function k(θ) is approximated as:

∫
Iθ

k(θ)f(θ)dθ ≈ w0k(Φ(ξ1)) + w1

2d+1∑
i=2

k(Φ(ξi)) + w2

2d2+1∑
j=2d+2

k(Φ(ξj)), (2.15)

where the samples from the original PEM for ξ are transformed via Φ(·) = F−1
θ (Fξ(·)) to

the corresponding points in θ, which can be directly evaluated with function k(·). The

joint cumulative density function (CDF) F θ(θ) in Φ(·) is typically unknown in practical

applications and derived from marginal CDFs [F1(θ1), . . . , Fd(θd)] and the correlation

matrix Σ ∈ Rd×d for the uncertain parameter θ. Please note that it is actually infeasible

to derive an analytical expression for Fθ(θ) and Φ(·) [3]. Thus, Algorithm 1 is introduced

to transform the samples from ξ to θ numerically. The transformed sample points can

be directly used for the approximation scheme:

∫
Iθ

k(θ)f(θ)dθ ≈ w0k(θ1) + w1

2d+1∑
i=2

k(θi) + w2

2d2+1∑
j=2d+2

k(θj). (2.16)

Algorithm 2.1 is derived from the Nataf transformation procedure, which is based

on Gaussian-copula [89]. By definition, the Gaussian-copula concept needs only the

marginal distributions and the correlation matrix to approximate multivariate distribu-

tions. Technically, the Gaussian-copula is used for describing multivariate distributions

with linear correlation, and thus might lose accuracy in describing multivariate distri-

butions with non-linear correlations.
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Algorithm 2.1 Nataf transformation for deriving generalized PEM samples.

Initialization: Random variables ξ ∼ N (0, I), I ∈ Rd×d; θ have marginal cumula-
tive density functions [F1(θ1), . . . , Fd(θd)] and correlation matrix Σ ∈ Rd×d; F is the
cumulative density function of standard Gaussian distribution.

1: Sample U = [ξ1, · · · , ξN ] with size of N = 2d2 + 1 from ξ and dimension d from
Generator function GF [·];

2: Cholesky decomposition of Σ = LLT , where L is a lower triangular matrix;

3: Correlate the sample, V = LU;

4: Convert the sample to the corresponding cumulative density W =
[F (V1), · · · , F (Vd)]

T ;

5: Transform into sample of θ, [θ1, · · · ,θN ] = [F−1
1 (W1), · · · , F−1

d (Wd)]
T .

2.3 Polynomial Chaos Expansion

The Polynomial Chaos Expansion (PCE) was introduced back in the 1930s [81] and

was populated for solving stochastic finite element problems in the field of engineering

applications [90]. It was firstly constructed for standard normal random variables and

then generalized to other type of standard random variables, e.g. Uniform and Beta

distribution, [82]. The method is an efficient tool for taking care of stochastic problems

and has been further implemented in many other disciplines for accounting the influence

of uncertainties (e.g., [75, 83]). The general structure of PCE is given in Section 2.3.1 and

methods for computing PCE coefficients for individual problem is presented in Section

2.3.2.

2.3.1 Polynomial Basis

In PCE, any function of finite variance G(ξ) ∈ L2(Ω,F , P r), can be represented as [81]:

G(ξ) =a0Γ0 +

nξ∑
i1=1

ai1Γ1(ξi1) +

nξ∑
i1=1

i1∑
i2=1

ai1,i2Γ2(ξi1 , ξi2) + · · ·

+

nξ∑
i1=1

i1∑
i2=1

· · ·
ip−1∑
ip=1

ai1,i2,··· ,ipΓp(ξi1 , ξi2 , · · · , ξip) + · · · ,

(2.17)
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where Γp is the p-th order multivariate polynomial for ξ = {ξi}
nξ
i=1. ξ are independent

random variables with standard normal distribution. ai1··· ,iP are the coefficients which

quantify the relation between the corresponding polynomial ΓP and the function G(ξ).

PCE can also be directly written as:

G(ξ) =

∞∑
k=0

αkΨk(ξ), (2.18)

where the {Ψk(ξ)}∞k=0 and {αk}∞k=0 are multivariate polynomials and corresponding co-

efficients of infinite degree, respectively. k is the number of the polynomials. The multi-

variate polynomials Ψk(ξ) are constructed by the product of the univariate polynomials

[82]:

Ψk(ξ) = Φk1
1 (ξ1)Φk2

2 (ξ2) · · ·Φ
knξ
nξ (ξnξ), (2.19)

where nonnegative integer {ki}
nξ
i=1 indicate the individual order of the univariate polyno-

mials {Φki
i (ξi)}

nξ
i=1. The order of the multivariate polynomials Ψk(ξ) is the sum according

to p = k1 + k2 + · · ·+ knξ . The multivariate and univariate polynomials are orthogonal

with respect to their corresponding stochastic measure:∫
Φm
i (ξi)Φ

n
i (ξi)f(ξi)dξi = rmδmn, (2.20)∫

Ψm(ξ)Ψn(ξ)f(ξ)dξ = γmδmn, (2.21)

f(ξ) = f(ξ1)f(ξ2) · · · f(ξnξ)dξ1dξ2 · · · dξnξ , (2.22)

where δmn is the Kronecker delta function which is 1 for identical values of m and n and

0 for the others. rm and γm are the normalized constants of Φm and Ψm, respectively.

The type of univariate polynomials depends on the probability distributions of the

random variables. [81] introduced Hermite polynomials for Gaussian random variables.

Although the model can be used for other distributions through isoprobabilistic trans-

formation, the efficiency and accuracy of the model are decreased considerably [77].

Alternatively, the Askey scheme was used to construct orthogonal polynomials for other

types of statistical distribution, e.g., Jacobi polynomials for beta distribution, as shown

in [82]. Subsequently, PCE has been further adapted to arbitrary distributions by [91, 92]

and [93]. The general formulation of PCE works only for independent variables, but PCE

can also be constructed for correlated variables [94].
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Practically, instead of using a set of an infinite number of polynomials as in Eq. (2.18),

a finite number of polynomials is retained to approximate the random variable [95], e.g.,

polynomials with a total order not exceeding pmax:

G(ξ) ≈
P−1∑
k=0

αkΨk(ξ), (2.23)

where P is the dimension of the polynomial basis depending on maximum order pmax

and nξ:

P =

(
nξ + pmax
pmax

)
=

(nξ + pmax)!

nξ!pmax!
(2.24)

Since the dimension of the input variable (nξ) is fixed for certain problems, the optimal

option for pmax is the minimum value needed to guarantee the target accuracy.

2.3.2 PCE Coefficient Calculation

Estimation of the coefficients {αk}P−1
k=0 plays an essential role in PCE-based calculations

as the stochastic properties of PCE are mainly characterized by them. Several methods

are available for computing the coefficients, and they are classified into two groups: intru-

sive methods and non-intrusive methods. Intrusive methods, such as Galerkin projection,

have optimal accuracy but require adaptation of the numerical model, which might be

challenging to implement for chemical processes [77]. In contrast, non-intrusive methods

require only model evaluations for some realizations and can be applied for models of

any complexity. The number of required model evaluations, however, might restrict the

implementation.

In the vast majority of the cases, heterogeneity in the coefficients of PCE reflects

the differences regarding significance of the polynomial basis in representing the original

model. For example, polynomial basis, which represent high–order interactions between

uncertain parameters, could be close to zero, as they are irrelevant in improving the

accuracy of the PCE [96]. Therefore, the number of relevant polynomial basis in PCE

could be relatively small compared to the number of the full set. In order to avoid the

interference of those insignificant terms and reduce the number of model evaluations,

the concept of sparse PCE is introduced by [61]. First, the set of polynomial basis is

truncated with certain criteria to roughly remove the redundant terms. One truncated

scheme has been already mentioned in the last section, where only the polynomial basis

with highest total order of p are retained. Beside that, other truncated schemes, e.g.,
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low rank truncated scheme and hyperbolic truncated scheme, could also be implemented

([96]). Moreover, if the sensitivities of the polynomial basis are known in advance, an

anisotropic truncated scheme could also be provided for certain problems([61]). Second,

the relevant polynomial basis are picked out from the truncated scheme by analyzing the

correlation between them and the residual of approximation. Several approaches were

described and compared in [61] and [97] for selecting the relevant polynomial basis. And

the native and modified Least Angles Regression (LAR) [97] are suggested as a stable

and efficient solution. The procedure for estimation of the PCE coefficients, which is

developed from Least Angle Regression (LAR) [97, 61], is summarized in Algorithm 2.2.

Here, let us consider a sample set S={ξ1, . . . , ξN} generated for random variables

ξ. Y = (G(ξ1), . . . , G(ξN )) is the vector of the model evaluations associated with the

sample set S. The function G(ξ) is approximated by
∑P−1

k=0 αkΨk(ξ), where P is the

number of polynomials of the truncated scheme (Eq. (2.24)). Note that other truncated

schemes can be selected based on the information from model structure [61].

The algorithm is initialized by function evaluations Y and of polynomials {Ψk(ξ)}P−1
k=0

from the truncated scheme, which are evaluated for sample set S. Note that the size of

the sample set can be enlarged when the accuracy of the PCE is not satisfied. For each

iteration, the size of the multivariate polynomials is enlarged while the maximum order

of the polynomials increases from 1 to pmax, where pmax is the maximum order of the

multivariate polynomials allowed for approximation. The most correlated polynomial is

selected and moved to the active set at step 6. The coefficients for the polynomials of

the active set are adapted in an optimal direction in step 9, using the correction term ∆

[97]. All the possible active sets are validated, and the optimal one is selected by using

cross validation in steps 11 and 12. Finally, the coefficients for the optimal PCE (step

18) are estimated through ordinary least squares regression. Note that the size of the

active set, i.e., the number of multivariate polynomials used for the final estimation, is

typically much smaller than the size of the full PCE model. This leads to a considerable

reduction in the number of model evaluations. In principle, the resulting sparsity of the

PCE model can be quantified by

Sparsity =
A(Active set)

A(Full set)
, (2.25)

where A means the cardinality of the set.
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Algorithm 2.2 Computing adaptive sparse PCE with LAR.

Initialization
1: Select the truncated scheme
2: Compute Y and {Ψk(ξ)}P−1

k=0 for S
Estimation of polynomial coefficients

3: for p← 1, pmax do
4: Set a = {α0, . . . , αP−1} = 0, R = Y, active set = {}, basic set = {Ψk(ξ)}P−1

k=0 ,
m = 0

5: while m ≤ min(N,P ) do
6: k∗ = argmax

Ψk(ξ)∈basic set

∣∣Corr(R,Ψk(ξ)
∣∣

7: Move basis polynomial Ψk∗(ξ) from the basic set to the active set
8: Calculate the correction term ∆ [97]
9: Update the polynomial coefficients, a = a + ∆

10: Update the residual, R = Y −
∑P−1

k=0 αkΨk(ξ)
11: Recalculate the coefficients for the active set with ordinary least squares re-

gression

12: Get mean approximation error ε
(p)
m via the cross-validation procedure

13: m = m+ 1
14: end while
15: Store ε∗p = min(ε

(p)
1 , . . . , ε

(p)
m ) and the corresponding optimal active set

16: Stop if either ε∗ = min(ε∗1, . . . , ε
∗
p) satisfies the target accuracy or increases for

the last two iterations ε∗p−2 ≤ ε∗p−1 ≤ ε∗p
17: end for
18: Estimate the relevant polynomial coefficients for the last optimal active set via or-

dinary least squares regression

2.4 Chapter Summary

In this chapter, uncertainty propagation and quantification as well as the associated

techniques are discussed and compared. Especially, the PEM and PCE, which possess

better compromises between their efficiency and accuracy, are presented in more detail.

The PEM, which computes the statistical moments with the deterministic samples, has

the best efficiency among all the techniques. Albeit it is defined and its hyper-parameters

are determined based on standard Gaussian distribution, the Nataf transformation proce-

dure is proposed to generalize the method to parameter uncertainties with non-Gaussian

distributions and mutual correlations. Unlike the PEM, PCE projects the original model

to the space that constitutes with orthogonal polynomials and approximates the rela-

tions between uncertain parameters and model outputs with the polynomials. In case

of independent parameter uncertainties, the statistical moments of model outputs can
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be determined with PCE coefficients straightforwardly. Moreover, the PCE model could

also be considered as an efficient substitution of the computationally expensive model for

approximating the complete probability distribution of model outputs. The PCE could

be extended to any types of probability distribution with generalized or customized

polynomial basis and be computed efficiently with the LAR algorithm.
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Chapter 3

Efficient Global Sensitivity Analysis
3

In this chapter, the global sensitivity analysis (GSA) techniques are introduced for quan-

titative analysis of the influence of parameter uncertainties on pharmaceutical manufac-

turing processes and investigate the impact of parameter dependencies.

The chapter is organized as follows. Section 3.1 provides a brief introduction of GSA,

motivation and solution strategy of this chapter. Section 3.2 presents the method for

describing and sampling independent/correlated random variables. Section 3.3 describes

the mathematical formulation and properties of GSA techniques. Section 3.4 presents

the computational framework for these sensitivity measures with PCE. In Section 3.5,

the application to a continuous synthesis process, which is used for produce API-scaffold,

is illustrated and discussed. Finally, the chapter summary is given in Section 3.6.

3.1 Global Sensitivity Analysis

GSA quantifies variations in model output on the entire domain of the parameter space

and comprehensively analyzes the interactions among parameters. Different techniques

for GSA are available, such as derivative-based methods [98, 99], non-parametric meth-

ods [100, 101], variance-based methods [102, 103], and moment-independent methods

[62]. A detailed review of those methods is provided by [51] and [55]. Our focus is on

GSA techniques with the following features [51]: 1) the technique has a quantitative

measure of parameter sensitivities, 2) it is global for the entire parameter space, 3) it

is independent of the model structure, and 4) it is available for independent and corre-

lated model parameters which might be of vital importance. In this chapter, two highly

promising methods for GSA, which fulfill the features, are introduced and compared: i)

Sobol’ sensitivity indices (SSI) representing the classical variance-based approach [104],

3Part of this chapter has been published in (Xie et al., Reliab. Eng. Syst. Safe., 187, 159–173, 2019
[9])
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Figure 3.1: Exemplary illustration of the parameter correlation effect on sensitivity anal-
ysis: A correlated bivariate probability density function of two process pa-
rameters (A) results into a proper parameter sensitivity ranking (B). Pa-
rameter θ1 has a high sensitivity (H), and the sensitivity of θ2 is low (L).
For the same process model (C) but ignoring parameter correlations (D) the
sensitivity ranking is misleading (E).

This figure is originated from [9] and created by René Schenkendorf

and ii) the moment-independent sensitivity analysis (MISA) analyzing the entire prob-

ability distribution of model outputs [62].

The SSI and MISA are commonly used for sensitivity analysis of problems with in-

dependent model parameters [61, 62, 37]. However, problems with correlated model

parameters, which arise from inherent parameter dependences or parameter identifica-

tion procedures, are the standard in chemical processes and other industrial applications

[59, 63, 64, 65]. The parameter space is restricted by the parameter dependencies and

is different from the one without correlations, which is illustrated in Fig. 3.1. This

could lead to a different impact onto the analyzed process model. Thus, the sensitiv-

ity analysis and robust design under the hypothesis of independent parameters might

lead to unreliable results if the parameter dependencies actually exist. Despite the

comprehensive investigation and application with SSI, the method is defined under the

assumption of independent parameters [104, 105]. Therefore, explorations on innovative

methods upon variance-based sensitivity analysis for systems with correlated random

variables were presented in several research works[106, 105, 107, 108, 109]. The covari-

ance decomposition-based sensitivity analysis (CoDSA) proposed by [105] and further

explained by [110] is a promising tool for dealing with problems in the presence of pa-
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Figure 3.2: Framework for global sensitivity analysis, upper rectangle gives problems,
middle rectangle presents the methods to solve the sensitivity analysis prob-
lems, lower rectangle presents the results and their potential applications

rameter dependencies. In contrast to the SSI, MISA is not based on the assumption of

independent parameters, and thus can be directly extended to problems with correlated

parameters [62].

The SSI, CoDSA and MISA are commonly computed by using Monte Carlo simulation

[111, 105, 62]. However, Monte Carlo simulations require a large number of deterministic

simulations and become computationally expensive especially for large-scale problems.

In order to confront the problem, a surrogate model is used to substitute the computa-

tionally expensive model. To this end, a polynomial chaos expansion (PCE) surrogate

model is implemented [75]. The PCE model is estimated by using LAR (see Chapter 2;

[97]). The sensitivity measures are computed through the coefficients of the PCE model

or rapid PCE model evaluations [110].

In the current chapter, two questions are answered: 1) How does the performance of

the (co)variance-based SA compare with that of the MISA in analysis of the pharma-

ceutical processes? 2) How do the correlations among parameters impact the parameter

sensitivities? To this end, a deep insight into the different implemented methods for
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GSA; i.e., the SSI, CoDSA and MISA approach is firstly provided. Second, the per-

formance of the proposed methods is analyzed with an application to a continuous-flow

reactor in the absence and presence of parameter correlations by following the framework

shown in Fig. 3.2.

3.2 Independent and Correlated Random Model Parameters

Before starting with the methods for sensitivity analysis, some definitions for multivariate

distribution and the difference between independent and correlated model parameters

are briefly explained.

The uncertainties are assigned to the model parameters and described with a specific

type of probability distribution, for example, Gaussian and uniform distribution. Note

that the model parameters could also be design variables, which depends on the type of

the problems. The model response Y is represented as the function G:

Y = G(θ) = G(θ1, θ2, · · · , θn), (3.1)

where θ1, θ2, · · · , θn are n random model parameters. The probability of the random

parameters on their entire domain are given by an n-dimensional joint probability dis-

tribution (fθ(θ)), while the probability of θi without reference to the value of the other

parameters and with reference to the values of the other parameters is given by the

marginal distribution (fθi(θi)) and the conditional distribution (fθi|θ∼i=θ∼i(θi)), respec-

tively. Samples for model parameters could be drawn from one of these distributions

based on the purpose. For example, a sample group with a constant value for θi is

generated from the conditional distribution fθ∼i|θi=θi(θ∼i). Note that choosing the right

distribution is extremely important because the conditional and marginal distributions

are completely different in the case of correlated model parameters.

For independent model parameters, the conditional distribution for θi is not affected

by the values of other parameters and is equivalent to its marginal distribution. As such,

the joint distribution is simplified to the product of the marginal distributions of each

parameters:

fθ(θ) = fθ1(θ1)fθ2(θ2) · · · fθn(θn) (3.2)

Note that the marginal distributions for each parameters are always given in advance

for process analysis purpose. An example of independent parameters is shown in Fig.3.1

(D) which illustrates independent bivariate normal distribution.
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For the correlated model parameters, the equivalence between the marginal and con-

ditional distribution and the simplification of the joint distribution in Eq. (3.2) does no

longer hold. In order to obtain the joint distribution for correlation model parameters,

copula formalism [112] derived from Sklar’s theorem provides the link between the joint

and marginal distributions for all types of distributions whether they are independent

or not [113]. The copula formalism is written as follows [113]:

fθ(θ) = c(Fθ1(θ1), · · · , Fθn(θn)) ·
n∏
i=1

fθi(θi), (3.3)

where Fθi(θi) is the marginal cumulative density function (CDF) for random param-

eter θi. Here, c(Fθ1(θ1), · · · , Fθn(θn)) is the copula density which can be derived by

transforming the copula function C(Fθ1(θ1), · · · , Fθn(θn)) [113]:

c(Fθ1(θ1), · · · , Fθn(θn)) =
∂nC(Fθ1(θ1), · · · , Fθn(θn))

∂Fθ1(θ1) · · · ∂Fθn(θn)
(3.4)

One frequently used copula function is the Gaussian copula which is formulated as [112]:

C(Fθ1(θ1), · · · , Fθn(θn);ρ) = Fn(F−1(Fθ1(θ1)), · · · , F−1(Fθn(θn));ρ) (3.5)

Here, Fn(·) is the multivariate cumulative Gaussian distribution function with correla-

tion matrix ρ, and F−1(·) is the inverse standard Gaussian distribution function. The

correlation matrix consists of Pearson’s correlation coefficients (ρij), which quantifies

the correlation between θi and θj and is defined as:

ρij =
cov(θi, θj)

σiσj
, (3.6)

where cov is the covariance function, and σi is the standard deviation of θi. The values

of the correlation coefficient ρ are within the range -1 to 1, where 0 and 1(-1) represent

independent and completely positive (negative) correlated variables, respectively. The

Gaussian copula is available only for linear dependence which is shown in Fig. 3.1

(A). For variables with non-linear correlations, other copulas are required. Additional

descriptions of other copulas are beyond the scope of this thesis and refer to [112].

For industrial applications, since only the linear dependence, i.e., correlation matrix, is

commonly used for describing the correlations between parameters, the Gaussian copula

is a proper choice in this case and as such is also the focus in this work.
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Samples of correlated and independent bivariate distributions are illustrated in Fig.

3.1 (A) and (D), respectively. Although the variables have the same marginal distri-

butions, but the shapes of the sample spaces are completely different. The correlation

between two parameters restricts the sampling space, which completely changes the

information obtained from the sensitivity analysis.

3.3 Methods for Global Sensitivity Analysis in the Absence and

Presence of Correlation among the Model Parameters

In this section, the mathematical formulation and definition of the sensitivity measures

for the methods used for Global sensitivity analysis, i.e., the SSI, CoDSA and MISA,

are briefly reviewed.

3.3.1 Sobol’ sensitivity indices for independent model parameters

The Sobol’ sensitivity indices (SSI) derived from the decomposition of the model output

variance [104] is widely used for global sensitivity analysis of problems with independent

model parameters. The following explanation of SSI is based on the definition in [104, 51].

For function Y = G(θ) of finite variance, it can be uniquely decomposed as follows

[51]:

G(θ) = G0 +
n∑
i=1

Gi(θi) +
∑

1≤i<j≤n
Gij(θi, θj) + · · ·+G12···n(θ1, · · · , θn), (3.7)

where the partial functions are defined as:

G0 = E(Y ), (3.8)

Gu(θu) = Eθ∼u(Y |θu)−
∑
w⊂u
w 6=∅

Gw −G0, (3.9)

where E(·) denotes the expectation operation. The uniqueness of the function decom-

position is ensured based upon the following properties of the partial functions:∫
Gu(θu)fθi(θi)dθi = 0 i ∈ u, (3.10)∫

Gu(θu)Gv(θv)fθ(θ)dθ = 0 u 6= v (3.11)
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u and v are different subsets of the full index set {1, · · · , n}. Note that Gu(θu) = G0 if

u is an empty set. θu includes the variables marked with the numbers in subset u.

Based on the orthogonal property of the component function described in Eq. (3.11),

the decomposition of the variance of function G(θ) can be deduced from Eq. (3.7) and

is written as:

V ar(Y ) =

n∑
i=1

Vi +
∑

1≤i<j≤n
Vij + · · ·+ V12...n, (3.12)

where

Vu = Vθu(Eθ∼u(Y |θu))−
∑
w⊂u
w 6=∅

Vw, (3.13)

and ∼ u denoting the complementary subset of u. V ar(Y ) is the variance of function

G(θ). Vi, Vij , · · · , and V123...n are partial variances which describe the effect of individual

parameters or parameter interactions on V ar(Y ).

Based on the normalization of Eq. (3.12), [104] introduced the SSI as follows:

Suci =
Vi

V ar(Y )
, (3.14)

Sucij =
Vij

V ar(Y )
, (3.15)

· · ·

Suc12...,n =
V12...n

V ar(Y )
(3.16)

Suci are called the first-order sensitivity indices and Sucij , · · · , Suc12...n are called interaction

sensitivity indices. First-order sensitivity indices give the percentage of the total variance

of Y due to the uncertainty in each input variable, whereas the interaction sensitivity

indices measure the interaction among input variables. Moreover, the total sensitivity

indices SucTi are introduced to describe the contribution of single variables θi and their

interactions with other model parameters, which is defined as [51]:

SucTi =
Vi + Vi,j + · · ·+ V1...i...n

V ar(Y )
(3.17)
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Practically, instead of calculating 2n − 1 sensitivity indices, which are the total number

of the first-order and interaction terms and increase dramatically with larger n, only the

total sensitivity indices and the first-order sensitivity indices (with a number of 2n) are

calculated to save computational cost.

The SSI performs satisfactorily and reflects the model structure for functions with

independent model parameters. However, a problem arises in implementing the SSI for

functions with correlated model parameters as discussed in [114]. Therefore, other de-

composition concept and new sensitivity indices are required for problems with correlated

model parameters [105].

3.3.2 Covariance Decomposition-based Sensitivity Analysis (CoDSA) for

Correlated Model Parameters

As be described in Sec. 3.2, the entire sampling space for correlated parameters is

different from that for independent parameters. This might result in the shift of the

mean and the variance, or more generally the entire distribution, of the model response

as shown in Fig. 3.3. Therefore, it is necessary to calculate the sensitivities in the

presence of parameter correlations.
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Figure 3.3: Exemplary illustration of probability distributions of the model response (A)
with independent (C) or correlated random parameters; i.e., Case 1 (B) and
Case 2 (D) are two different situations decided by the structure of the model
and dependency among the model parameters.

One idea for dealing with correlated random parameters is using isoprobabilistic trans-

formation concepts, such as the Rosenblatt transformation [115, 65] and the Nataf trans-

formation [89]. By utilizing those transformations, the original correlated variables are

converted to new independent variables. For instance, this approach has been applied
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in [107] and [108]. Here, some new sensitivity measures are given regarding parameter

dependencies. Alternatively, as proposed by [105], new sensitivity indices can be derived,

which are based on the covariance decomposition of function G(θ). As there is no need

for an isoprobabilistic transformation step, the covariance decomposition approach is of

primary interest in this chapter.

3.3.2.1 Covariance Decomposition

Let us consider the second-order function G(θcor) again, but with correlated model

parameters. As pointed out by [116], the same functional decomposition of G(·) is still

available, as the additional correlations among the model parameters do not affect the

structure of the model. Therefore, similar functional relationships between the model

parameters and the outputs can be derived as [116]:

Y = G(θcor) =G0 +

n∑
i=1

Gi(θ
cor
i ) +

∑
1≤i<j≤n

Gij(θ
cor
i , θcorj ) + · · ·+

G123···n(θcor1 , · · · , θcorn ),

(3.18)

G0 = E(Y ), (3.19)

Gu(θcoru ) = Eθ∼u(Y |θu)−
∑
w⊂u

Gw −
∑

u 6⊇ w ⊆ {1, 2, . . . , n}
u ∩w 6= ∅

Eθ∼u [Gw], (3.20)

where Eθ∼u(·) is the operator which calculates the (conditioned) mean value of the

output with the marginal distribution of θ∼u. After the decomposed functions are con-

structed, the correlations among the parameters should be considered for the sensitivity

analysis. Note that Gu(θcoru ) is not mutually orthogonal for the correlated model pa-

rameters, and thus, the variance decomposition of model output Y in Eq. (3.12) is no

longer defined. Therefore, the covariance decomposition of V ar(Y ) was introduced by

[105]:

V ar(Y ) = Cov[(G0 +
∑

u ⊂ {1, 2, · · · , n}
u 6= ∅

Gu(θcoru )), G(θcor)],

=
∑

u ⊂ {1, 2, · · · , n}
u 6= ∅

Cov[Gu(θcoru ), G(θcor)],
(3.21)
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where V ar(Y ) is exactly partitioned by Cov[Gu(θcoru ), G(θcor)] which describes the total

contribution of component function Gu(θcoru ) to the total variance of output V ar(Y ).

Further decomposition of Cov[Gu(θcoru ), G(θcor)] can be used to separate the total con-

tribution into two parts similar to:

Cov[Gu(θcoru ), G(θcor)]

= Cov[Gu(θcoru ), G0 +
∑

u ⊂ {1, 2, · · · , n}
u 6= ∅

Gu(θcoru )],

= V ar[Gu(θcoru )] +
∑
v 6=u

Cov[Gu(θcoru ), Gv(θcorv )]

(3.22)

V ar[Gu(θcoru )] denotes the contribution of the component function to V ar(Y ), which de-

pends on the function itself (structure) and the marginal pdf fθu(θu) only.
∑

v 6=uCov[Gu

(θcoru ), Gv(θcorv )] denotes the contribution due to the correlation among the model pa-

rameters.

Obviously, the covariance decomposition has a completely different structure compared

to the variance decomposition for the independent case. The major difference between

them is that the component contribution of the covariance decomposition (both covari-

ance parts of Eqs. (3.21) and (3.22)) could be negative, which can never happen in

variance-based decomposition. Due to the participation of correlations, new sensitivity

indices are required for the sensitivity analysis.

3.3.2.2 Covariance Decomposition-based Sensitivity Indices

[116] introduced three new sensitivity indices for CoDSA, which are obtained by renor-

malizing Eqs. (3.21) and (3.22) with V ar(Y ) and formulated as follows:

Scovu = Cov[Gu(θcoru ), G(θcor)]/V ar(Y ), (3.23)

SUu = V ar[Gu(θcoru )]/V ar(Y ), (3.24)

SCu =
∑
v 6=u

Cov[Gu(θcoru ), Gv(θcorv )]/V ar(Y ) (3.25)

The new indices are called total covariance-based sensitivity indices Scovu , structural

sensitivity indices SUu , and correlative sensitivity indices SCu [116]. The structural and

correlative sensitivity indices indicate, in turn, the sensitivity of model structure and

correlations among the model parameters on model output Y . Scovu is the sum of the

two sensitivity indices as shown in Eq. (3.26) and presents the total effect on model
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output Y :

Scovu = SUu + SCu (3.26)

Note that the sum of Scovu for all possible subset u is equal to 1 no matter whether

the individual value of Scovu is positive, negative or larger than 1. The three sensitivity

indices could be the sensitivities for individual parameters (first-order) or interactions

among two or more variables depending on subset u. The total sensitivity indices can

be directly extended for CoDSA similar to Eq. (3.17), and thus, there are the total

covariance-based total sensitivity indices ScovTi
, structural total sensitivity indices SUTi ,

and correlative total sensitivity indices SCTi . The structure of all the indices used for

CoDSA is illustrated in Fig. 3.4, where the structural sensitivity indices are listed on

the left hand side and the correlative sensitivity are listed on the right hand side.
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Figure 3.4: Topology of the covariance-based sensitivity indices.

As mentioned previously, the assumption of mutual orthogonality of the component

functions in Eq. (3.18) fails for correlated parameters. Thus, the decomposition in Eq.

(3.18) is not unique and depends on the applied method, respectively. This may affect

the sensitivity results derived from the covariance decomposition. Alternatively, [117]

proposed a general and unique decomposition for functions with correlated parameters

based on the relaxed vanishing condition, where the component functions are hierarchi-

cally orthogonal. Such kind of decomposition is more rigorous but requires sophisticated

construction methods. The interested reader is referred to [117, 118] and references

therein.
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3.3.3 Moment-independent Sensitivity Analysis (MISA)

In the previous subsections, the SSI and CoDSA which are defined based on the (co)variance

of the model output are presented. However, using a single statistical moment for SA

may lead to an apparent loss of information from other statistical moments as skewness

and kurtosis [62]. Therefore, MISA, which is derived directly from the entire distribution

of the model output, is introduced and used for sensitivity studies [62]. MISA compares

the difference between probability distribution fY (y) of output Y and conditional prob-

ability distributions fY |θi(y) of output Y to calculate the parameter sensitivities [62],

which is mathematically expressed as:

s(θi) =

∫
|fY (y)− fY |θi(y)|dy (3.27)

s(θi) is also called the shift function, and the average of the shift function on the entire

distribution of θi is then given by:

Eθi [s(θi)] =

∫
fθi(θi)

[∫
|fY (y)− fY |θi(y)|dy

]
dθi, (3.28)

where fθi(θi) is the marginal density of model parameter θi. Based on Eq. (3.28), [62]

proposed a new indicator δi for global sensitivity analysis, which is defined as follows:

δi =
1

2
Eθi [s(θi)] (3.29)

The indicator can also be directly extended to a group of parameters equal to:

Eθu [s(θu)] =

∫
fθu(θu)

[∫
|fY (y)− fY |θu(y)|dy

]
dθu, (3.30)

δu =
1

2
Eθu [s(θu)], (3.31)

in which u is a vector that includes the index of the parameters part of the group,

and fθu(θu) is the marginal distribution of the parameter group. [62] also concluded 5

properties for the indicator: 1) The δi (or δu) varies in the range [0,1] and 2) it indicates

independence between θi (group θu) and output Y if δi(orδu) = 0. 3) The indicator of

all model parameters (δ1,2,...,n) equals unity, which is straightforward to understand as

the uncertainty of the output vanishes once the uncertainties of all model parameters are
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eliminated. 4) δij for parameters θi and θj is within the boundary as δi ≤ δij ≤ δi + δi|j,

in which δi|j is the conditional δ. 5) The left equal holds if the output is independent of

θj. As can be seen, the boundaries for the parameter sensitivity indicator δ is provided

within the last two properties. These properties make the sensitivity indicator more

representative and comparable. Further descriptions and proofs please refer to [62].

The method is also available for problems with correlated model parameters, as the

assumption of independent parameters is not required for its definition.

In this section, three different methods for SA are reviewed. However, the proposed

concepts require the calculation of statistical values for the model output, which results

in high-order numerical integration problems. Therefore, highly efficient methods for

uncertainty quantification are required to lower the computational burden of applying

SA to complex chemical processes.

3.4 Estimation of Sensitivity Measures using Polynomial Chaos

Expansion

Numerical techniques are the standard in determining parameter sensitivities because

analytical solutions are not feasible, especially for highly nonlinear pharmaceutical pro-

cesses [75, 51]. Methods presented in Chapter 2 can be used for conducting GSA. MCs,

its variations and GQ have been used in literatures [51], but their practicability are hin-

dered by their computational burden. PEM, as an efficient solution strategy, has been

used to calculate SSI in [27] but is not suitable for conducting MISA. Therefore, PCE is

used, as PCE is tailored for GSA [75]. The basics of PCE has been already introduced

in Chapter 2. And the computation of all aforementioned GSA techniques with PCE is

present in what follows.

3.4.1 Computation of Sensitivity Indices using PCE

Suppose there is a function Y = G(θ), where θ is the nθ-dimensional random model

parameter vector with given distributions. With the proposed procedures in Chapter 2,

the function Y = G(θ) is represented by the PCE truncated at order pmax:

Y = G(θ) ≈
P−1∑
k=0

αkΨk(θ) (3.32)

For the sake of simplicity, indices k = {k1, k2, . . . , knθ}, where ki is the order of univariate

polynomials for individual input variable i, are defined. Here, the polynomial basis are
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assumed to be built upon random variable θ. Otherwise the PCE expression should be

a function of random variables used for the construct of polynomial basis, e.g., Ψk(ξ),

as explained in Chapter 2. A is a set of all possible indices k truncated at order pmax:

A = {k ∈ Nnθ |k1 + k2 + · · ·+ knξ ≤ pmax} (3.33)

Therefore, the PCE can be written compactly as:

Y = G(θ) ≈
∑
k∈A

αkΨk(θ) (3.34)

3.4.1.1 Computation of the SSI using PCE

To calculate the SSI, function G(X) is decomposed as shown in Eq. (3.7). Due to

the orthogonality of the basis polynomials, the component functions Gu in the Sobol’

decomposition in Eq. (3.7) are approximated by:

Gu(θu) ≈
∑
k∈Au

αkΨk(θ), (3.35)

where Au ⊂ A and is defined as:

Au = {k ∈ A|ki 6= 0 if and only if i ∈ u} (3.36)

From the definition, it is clear that the PCE in Eq. (3.35) is only a function of the

variables included in θu because the order of the univariate polynomials of the other

variables is zero. The statistical property of function G(θ), especially the mean and the

variance, can be directly obtained from the coefficients of their PCE coefficients as:

EY,A = α0, (3.37)

VY,A =
∑

k∈A,k 6=0

α2
k (3.38)

The SSI (Eq. (3.14)) can easily be derived from the representation above:

Sucu =
1

VY,A

∑
k∈Au

α2
k, (3.39)

where Sucu could be 1) a first-order sensitivity if u contains only one element or 2) an

interaction sensitivity if it contains more than one. The total sensitivity indices are then
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given by:

SucTi =
1

VY,A

∑
k∈Ai

α2
k, (3.40)

where Ai ⊂ A and includes all the basis polynomials related to variable ξi:

Ai = {k ∈ A|ki 6= 0} (3.41)

3.4.1.2 Computation of CoDSA using PCE

The construction of the sensitivity indices for function Y = G(θ) with correlated inputs

is presented in Sec. 3.3.2.2, where three new sensitivity indices Scovu , SUu and SCu are in-

troduced. As be explained in Sec. 3.3.2.2, a unique decomposition where the component

functions are hierarchically orthogonal is not easy to construct. Therefore, the function

decomposition approach, i.e., the PCE model, to compute the sensitivity indices, is used.

The exclusive use of PCE models also makes the computation more comparable for the

three GSA techniques. The PCE approximation, as shown in Eqs. (3.34) and (3.35),

is constructed as if the random variables are independent. However, the statistical mo-

ments in covariance decomposition cannot be derived directly from the coefficients of

PCE because the orthogonality between the basis polynomials of PCE does not exist for

the correlated variables. For this reason, Monte Carlo simulation are used to estimate

the mean, variance and covariance of function G(θ) and component function Gu(θu)

with samples drawn from correlated distributions:

E(Y ) =
1

N

N∑
i=1

∑
k∈A

αkΨk(θi), (3.42)

V ar(Y ) =
1

N − 1

N∑
i=1

(
∑
k∈A

αkΨk(θi)− E(Y ))2, (3.43)

E(Gu(θu)) =
1

N

N∑
i=1

∑
k∈Au

αkΨk(θiu) (3.44)

Here, θi is one sample vector for the random model parameter vector, and n samples

are drawn from the given distribution. Eqs. (3.45) and (3.46) represent an evaluation

of the functions approximated by PCE with the sample θi:

G(θi) =
∑
k∈A

αkΨk(θi), (3.45)
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Gu(θiu) =
∑
k∈Au

αkΨk(θi) (3.46)

The covariance-based sensitivity indices computed from the Monte Carlo estimation are

formulated as:

Scovu =

∑N
i=1(Gu(θiu)− E(Gu(θu)))(G(θi)− E(Y ))

(N − 1)V ar(Y )
, (3.47)

SUu =

∑N
i=1(Gu(θiu)− E(Gu(θu)))2

(N − 1)V ar(Y )
, (3.48)

SCu = Scovu − SUu (3.49)

We should note that the computational cost is low as all the evaluations are conducted

on the PCE model. The computational effort for the Monte Carlo simulation on the

PCE model is negligible compared to that for estimation of the coefficients for the PCE

model.

3.4.2 Computation of MISA using PCE

According to the definition of MISA in Sec. 3.3.3, the density functions fY (y) and

fY |θi(y) for the model output are required for calculating the shift function and the

indicator, and therefore, the kernel density estimator (KDE) is used to estimate the

distributions [119]. The KDE is a non-parametric method for estimating the probability

density function of random variables with an arbitrary probability distribution [120]

according to:

f̂(h) =
1

n∆

n∑
i=1

K(
h− hi

∆
), (3.50)

where n is the number of samples, K is the kernel function, and ∆ is the bandwidth.

K is normally a non-negative function, e.g., a standard normal density function. hi is

the constraint evaluation at sample i. Moreover, the double-loop Monte Carlo method

illustrated in Fig. 3.5 is used to calculate the indicator δ [121].

The double-loop method starts with two groups of samples generated from the distri-

bution of the random model parameters. The unconditioned density function fY (y) is

estimated from the model evaluations associated with the samples in A. For loop 2, the

conditioned density function fY |θi(y) is estimated by ni samples, and the shift function

s(θi) is calculated at a given value θji . Note that the samples are different for the inde-

pendent and correlated model parameters. For the independent case, the samples are
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generated directly by replacing the i-th column of sample B with the (i, j)-th element

θij in sample A. However, this does not work for the correlated case as the conditioned

density f
θ∼i|θi=θji

(θ∼i) is different for different values of θi. Therefore, the samples should

be updated for each iteration according to the conditioned density with parameter θi

specified to the value θji in sample A. In loop 1, loop 2 is repeated for different values of

θi from sample A, and the indicator δi is calculated with the values for the shift func-

tion. Note that the calculation formula for shift function s(θi) and δi is the Monte Carlo

estimation of Eqs. (3.27) and (3.29). The total number (nt) of model evaluations for the

double-loop Monte Carlo method is (n×ni+1)×no, where n, no and ni are the number

of model parameters, the size of samples A and B, respectively. The number nt could be

prohibitively high as the KDE requires a large sample size to ensure the accuracy of the

estimated density function. Thus, the PCE model derived above is used for the model

evaluations to ensure low computational costs.

3.5 Case Study: a Continuous Synthesis of an API–Scaffold

3.5.1 Problem Statement

In this study, a model of a continuous-flow reactor processing the synthesis of aminopy-

rimidine as an API–scaffold [63] is considered. The mechanism of the reactions is de-

scribed as follows:

A + B
r1

C (3.51)

A + B
r2

D (3.52)

C + B
r3

E (3.53)

D + B
r4

E (3.54)

Eq. (3.51) to Eq. (3.54) describe the nucleophilic aromatic substitution reactions (SNAr)

of 2,4-dichloropyrimidine (A) and morpholine (B) in ethanol which produce the de-

sired product 2-substituted aminopyrimidine (D), the less-desired product 4-substituted

aminopyrimidine (C) and side product 2,4-substituted aminopyrimidine(E) [63]. A com-

plete description of the reactions and their potential application in the pharmaceutical

field can be found in [63]. The governing equations of the continuous-flow reactor are

formulated as follows:

dCA
dt

= −k1CACB − k2CACB (3.55)
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dCB
dt

= −k1CACB − k2CACB − k3CBCC − k4CBCD (3.56)

dCC
dt

= k1CACB − k3CBCC (3.57)

dCD
dt

= k2CACB − k4CBCD (3.58)

dCE
dt

= k3CBCC + k4CBCD, (3.59)

where

ki = Aiexp(−
EAi
RT

), i ∈ {1, 2, 3, 4} (3.60)

in which Cj with j ∈ {A,B,C,D,E} are the concentrations, ki are the kinetic constants,

Ai and EAi are pre-exponential factors and activation energies, and ri are the reaction

rates determined by the corresponding kinetic constant and concentration of reactants.

According to [63] an isothermal reactor is assumed, i.e., the temperature T is constant

along the reactor. Residence time t is defined as the position in the tubular reactor

divided by the flow rate of the substance based on the assumption that plug flow is inside

the reactor. The values for the initial conditions and parameters are listed in Table 3.1,

where tend is the final residence time which is decided by the volume of the reactor

and volumetric flow rate of the components inside the reactor. The kinetic parameters

Ai and EAi estimated from the experiments are not accurate and their uncertainties

are characterized by normal distributions as shown in Table 3.1. For the first part of

the sensitivity analysis, the eight parameters are assumed to be independent. However,

the data provided by [63] reveal strong correlations among the parameters measured

by the correlation matrix in Table 3.2. This correlation matrix is used in the second

part of the sensitivity analysis. The model output that is of interest here is the final

concentration of product D (CDf ). Therefore, the surrogate model is constructed for

the eight kinetic parameters and CDf before starting the sensitivity analysis. The PCE

model is constructed and estimated in UQLAB© [122], software for UQ and surrogate

modeling. Sensitivity analysis performed later are conducted in MATLAB®, and the

function ode15s is used to solve the dynamic equations of the reactor.

3.5.2 Construction of the PCE Model

The PCE model for CDf (model output) and eight kinetic parameters (inputs) is con-

structed based on the probability distribution assigned to the parameters. Table 3.3

lists the information for the PCE model. According to Table 3.3, the coefficients of the
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Table 3.1: Parameters and uncertainties for the continuous-flow reactor [63].

Parameters Nominal Value Uncertainty

CA0(M) 0.150 –
CB0(M) 0.375 –
CC0(M) 0 –
CD0(M) 0 –
CE0(M) 0 –
T (K) 373.15 –
tend(s) 1200 –
R(J/mol·k) 8.314 –
log10(A1)(M-1s-1) (θ1) 3.4 N (3.4 , 0.1)
EA1(kJ/mol) (θ2) 27.0 N (27.0 , 0.6)

log10(A2)(M-1s-1) (θ3) 3.5 N (3.5 , 0.1)
EA2(kJ/mol) (θ4) 32.1 N (32.1 , 0.6)

log10(A3)(M-1s-1) (θ5) 4.9 N (4.9 , 0.2)
EA3(kJ/mol) (θ6) 60.0 N (60.0 , 1.6)

log10(A4)(M-1s-1) (θ7) 3.0 N (3.0 , 0.2)
EA4(kJ/mol) (θ8) 45.0 N (45.0 , 1.7)

Table 3.2: Correlation coefficients for the eight parameters from [63].

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

θ1 1.000 0.997 0.976 0.968 -0.002 -0.003 0.000 0.000
θ2 0.997 1.000 0.976 0.973 -0.003 -0.003 0.000 0.000
θ3 0.976 0.976 1.000 0.997 -0.006 -0.006 0.000 0.000
θ4 0.968 0.973 0.997 1.000 -0.007 -0.007 0.000 0.000
θ5 -0.002 -0.003 -0.006 -0.007 1.000 1.000 -0.008 -0.008
θ6 -0.003 -0.003 -0.006 -0.007 1.000 1.000 -0.008 -0.008
θ7 0.000 0.000 0.000 0.000 -0.008 -0.008 1.000 1.000
θ8 0.000 0.000 0.000 0.000 -0.008 -0.008 1.000 1.000
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Table 3.3: PCE model settings and characteristics.

Number of random inputs 8
Polynomial basis Hermite
Maximum order of polynomials 3
Number of model evaluations 200
Estimation error 0.001
Sparsity 40%

PCE model are estimated with 200 random evaluations of the original model by using

Algorithm 2.2, and only 40% of the full basis which have maximum order of 3 are ac-

tivated here. Please note that the maximum order of the polynomials is determined by

the desired estimation error and the complexity of the reactor model. The accuracy of

the PCE model is indicated by the estimation error in Table 3.3, and further analyzed

by comparing with the results from direct Monte Carlo simulations in Fig. 3.6. The

probability density function estimated by the PCE model with 200 model evaluations

is as good as the one from Monte Carlo simulations with 10,000 model evaluations but

much better than the one from Monte Carlo simulations with 200 model evaluations;

i.e., using the original process model given in Eqs. (3.55) to (3.59). Based on the PCE

model, different sensitivity measures can be then calculate in the absence and presence

of correlations as in the following.

3.5.3 Sensitivity Measures in the Absence of Correlation

This section presents the results for the first part of the sensitivity analysis where the

correlations among the parameters are neglected. The SSI and MISA for the independent

parameters on CDf are calculated by using the sparse PCE model.

The SSI is obtained directly from the coefficients of the preceding PCE model by using

Eqs. (3.39) and (3.40). The first-order and total sensitivities of the eight kinetic pa-

rameters for the final product concentration CDf are summarized in Table 3.4. Evident

differences exist among the magnitude of the sensitivities for different parameters. The

first four parameters, θ1, . . . , θ4, have the strongest impact on the final product con-

centration and its variance Var(CDf ), while the parameters θ5, . . . , θ8 are less relevant.

Moreover, the small deviation between the first-order, Suci , and total sensitivities, SucTi ,

indicate that the interaction among the parameters is low, i.e, the sum of first-order

sensitivities is close to 1.
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Figure 3.6: Probability density function of component D (CDf ) evaluated with 200 and
10,000 Monte Carlo simulations and with PCE from 200 simulations. KDE is
used to estimate the probability density functions with the model evaluations.

Unlike the SSI calculated directly from the coefficients of the PCE model, MISA is

computed by the method described in Sec. 3.4.2. The samples in the outer loop (no) and

the inner loop (ni) are set to 1000. Thus, a total number of 8×106 evaluations of the PCE

model are required for calculating the indicators. Fig. 3.7 shows the comparison between

the unconditioned and conditioned distributions of CDf , where the effect of eliminating

the uncertainty of one parameter can be directly observed in the corresponding sub-

figures. The quantitative measures for independent parameters, i.e., indicator δuci (i =

1 . . . 8), are illustrated in Fig. 3.8(a).

The sensitivity measures from the SSI and MISA reveal the influence of parameter

uncertainties on the variation of CDf . According to the results, it can be observed

that the trends of the measures from the SSI and MISA are analogous. The kinetic

parameters of reactions 1 and 2, i.e., θ1, θ2, θ3 and θ4, have higher influence than the

others. This makes sense from a physical point of view as reactions 1 and 2 are faster

than the other reactions and have a direct or indirect relation with product D. it can

also be observed that θ1 and θ3 have similar importance, which is also true for θ2 and

θ4. The reason is that reactions 1 and 2 are parallel and have similar competitiveness.

In contrast, the kinetic parameters of reactions 3 and 4, i.e.,θ5, θ6, θ7 and θ8, have lower
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(a) Density distributions
considering θ1

(b) Density distributions
considering θ2

(c) Density distributions
considering θ3

(d) Density distributions
considering θ4

(e) Density distributions
considering θ5

(f) Density distributions
considering θ6

(g) Density distributions
considering θ7

(h) Density distributions
considering θ8

Figure 3.7: Comparison of unconditioned distributions (blue line) and conditioned dis-
tributions (red lines) of concentrations of component D representing different
parameter realizations in the absence of correlations.
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Table 3.4: First-order and total Sobol’ sensitivity indices of the kinetic parameters for
the final product concentration CD.

Parameters Suci SucTi

θ1 0.2547 0.2684
θ2 0.1790 0.1896
θ3 0.2535 0.2673
θ4 0.1786 0.1893
θ5 2.3011 × 10-5 4.3189 × 10-5

θ6 3.7996 × 10-5 7.7143 × 10-5

θ7 0.0400 0.0514
θ8 0.0577 0.0710

Sum 0.9637 –

Var(CDf ) 8.5989 ×10-5

influence, because reactions 3 and 4 are comparatively slow according to the values of the

associated kinetic parameters and concentration of corresponding reactants. However, θ7

and θ8 are more important than θ5 and θ6 because they have a direct impact on product

D. As can be seen, results from both methods are consistent with the structure of the

model when the correlations among the parameters are neglected. In the following, the

effect of the correlations on the results of the sensitivity analysis is presented.

3.5.4 Sensitivity Measures in the Presence of Correlations

We investigate the effect of parameter correlations given in Table 3.2 on the results

of the sensitivity analysis. According to the correlation matrix, the parameters are

divided into three subgroups: 1) θ1, θ2, θ3 and θ4, 2) θ5 and θ6, and 3) θ7 and θ8. The

parameters from the same subgroup have a strong correlation, while the parameters

from different subgroups have a weak or even no correlation. The samples used in the

following calculations are generated with Gaussian copula as Eq.(3.3).

Due to the presence of correlations among the parameters, the SSI is not well defined

and, therefore, cannot be used in this situation. CoDSA is available to observe the effect

of the parameters, as well as their correlations. The method presented in Sec. 3.4.1.2 is

used to compute CoDSA with a sample size of 10,000. The calculated sensitivity indices

are listed in Table 3.5, where SUi ,SCi and Scovi are the first-order sensitivity indices

and SUTi ,S
C
Ti

and ScovTi
are the total sensitivity indices for the corresponding parameters,

respectively. When comparing the first-order and total sensitivity indices, it can be
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(a) (b)

Figure 3.8: MISA sensitivity values of moment-independent measure δuc for the eight
kinetic parameters when ignoring parameter correlations (a), and when pa-
rameter correlations are considered properly (b).

observed that the interaction term is not relevant to describe the parameter influence

on the model output. Moreover, SUi has the same trend as the SSI result but with

different magnitudes. The large magnitudes of SUi mean the parameter uncertainties

have a stronger influence on the model output if they are independent. This can also

be observed from SCi which represents the effect of correlations and is negative in this

case. It turns out the correlations reduce the importance of the parameters and the

variance of the model output. The total impact of the parameters on the model output

is indicated by the total covariance-based sensitivity indices Scovi . Please note that the

existence of negative values for Scovi is due to the covariance function formulation and

the importance of the parameter is quantified by the absolute value of Scovi .

In contrast to the variance-based SA methods, MISA is well posed in the presence

of correlations among parameters, as its formulation is not based on the assumption

of independent parameters. A similar structure for computation as for the independent

case is used. Here, however, the correlation matrix of the joint density distribution of the

parameters is added. In Fig. 3.8(b), it shows that the indicators δcori which are obtained

for the given parameter correlations. Here, the most sensible parameters for CDf are

the kinetic parameters θ7 and θ8 for reaction 4, which is different from the case with

independent parameters. A detailed analysis of the related probability distributions, see

Fig. 3.9, explains the new parameter ranking. Here, in Figs. 3.9(g) and 3.9(h), the

probability distribution of CDf shifts dramatically if θ7 and θ8 are given. θ1, θ2, θ3
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Table 3.5: Covariance-based sensitivity indices estimated with sparse PCE.

Parameters SUi SCi Scovi SUTi SCTi ScovTi

θ1 131.80 -132.98 -1.18 136.23 -137.47 -1.24
θ2 92.72 -91.55 1.17 99.35 -98.15 1.19
θ3 131.91 -129.88 2.03 141.63 -139.52 2.11
θ4 93.09 -94.76 -1.67 96.30 -97.96 -1.66
θ5 0.01 -0.01 -0.00 0.03 -0.03 0.00
θ6 0.02 -0.02 0.00 0.02 -0.02 0.00
θ7 20.68 -24.16 -3.48 20.73 -24.23 -3.50
θ8 29.87 -25.57 4.30 26.27 -22.26 4.01

Sum – – 1.17 – – –

Var(Y) 1.65 × 10-7

and θ4 still have a non-ignorable impact on the model response but are impaired by the

correlation between the parameters. θ5 and θ6 have the weakest impact.

In this case study, it can be concluded that the outcome of the parameter importance

ranking is severely affected by the sensitivity measure used; i.e., when applying the

(co)variance-based or the moment-independent approach the parameter sensitivities are

qualitatively similar. In contrast, the consideration of parameter correlations is crucial

for the parameter importance ranking. Thus, the impact of parameter correlations are

further discussed in the next section.

3.5.5 Comparison of the Results in the Absence and Presence of

Correlations

To compare the resulting variation of CDf in the absence and presence of correlations,

the corresponding probability distributions are illustrated in Fig. 3.10. To further

demonstrate the effect of parameter correlation which are different from one and less

dominating, two additional scenarios are shown in Fig. 3.10. As expected, the correlation

has a considerable impact on the resulting distributions. Here, the spread of the shown

distribution increases for lower correlation values but is still different compared to the

nominal case, i.e., assuming no correlation. It turns out that the uncertainty of the model

output, CDf , which is estimated under the assumption of independent parameters for

this study is magnified and, therefore, may render a model-based robust design strategy

too conservative.
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(a) Density distributions
considering θ1

(b) Density distributions
considering θ2

(c) Density distributions
considering θ3

(d) Density distributions
considering θ4

(e) Density distributions
considering θ5

(f) Density distributions
considering θ6

(g) Density distributions
considering θ7

(h) Density distributions
considering θ8

Figure 3.9: Comparison of unconditioned distributions (blue line) and conditioned dis-
tributions (red lines) of concentrations of component D considering different
parameters in the presence of correlations.
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Figure 3.10: Comparison of the resulting probability density functions of CDf in the
absence and presence of parameter correlations. The correlation coefficients
for θ1, θ2, θ3, θ4, θ7, θ8 are assigned with 0.5 and 0.9 assuming fictious, equal
correlations for two cases. The result based on a correlation matrix derived
from experimental data is illustrated in addition.

In what follows, the importance ranking for the different sensitivity measures ne-

glecting parameter correlation, as well as including parameter correlations based on

experimental data are compared; see Table 3.6. For the sake of completeness, results

for fictitious correlation coefficients can be found in the Appendix A. The ranking from

the first (third) and second (fourth) rows are transposed, while the rankings from first

(second) and third (fourth) rows are analogous. To get a more quantitative comparison

of the ranking, the Savage score correlation coefficient (SSCC, [123]), which provides a

top-down ranking comparison, is calculated for comparing the four sensitivity measures,

see Table 3.7. The SSCC has a value range from -1 to 1, where 1 and -1 indicate identi-

cal and transposed rankings, respectively. More information regarding the calculation of

SSCC is referred to [123]. As it can be seen from Table 3.7, the values of SSCC(Suc, δuc)

and SSCC(Scov, δcor) are high and close to 1. However, the values of SSCC(Suc, Scov)

and SSCC(δuc, δcor) are low and negative as the most relevant variables for them are

different. According to this, it can be seen that the discrepancy in the ranking of the
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Table 3.6: Parameter ranking from (co)variance-based and moment-independent sensi-
tivity analysis in the presence and absence of correlations.

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

Suci 1 3 2 4 8 7 6 5
Scori 5 6 3 4 8 7 2 1
δuci 1 4 2 3 8 7 6 5
δcori 6 5 4 3 8 7 1 2

Table 3.7: Savage score correlation coefficients on importance ranking from variance-
based and moment-independent sensitivity in the absence and presence of
correlations.

SSCC Suc Scov δuc δcor

Suc 1
Scov -0.06 1
δuc 0.98 -0.03 1
δcor -0.21 0.78 -0.17 1

most relevant parameters emerges due to the existence of parameter correlations and is

less affected by the particular method used for the global sensitivity analysis.

3.6 Chapter Summary

In this chapter, different methods for global sensitivity analysis in the absence and

presence of parameter dependencies are presented and compared critically for the con-

tinuous synthesis of an active pharmaceutical ingredient scaffold. Sparse polynomial

chaos expansion (PCE) was introduced for calculating these sensitivity measures effi-

ciently. Gaussian copulas were utilized to sample from joint and conditional distribu-

tions, representing independent and correlated model parameters. In the case study, a

continuous-flow reactor model was implemented and analyzed. PCE surrogate model

was generated for this reactor model. Here, it can be observed that the presented least

angle regression (LAR) algorithm improves the efficiency in PCE modeling. It can also

be observed that the PCE model can approximate relevant statistics of simulation re-

sults at low computational cost. After performing the sensitivity analysis on the PCE

model, the obtained results were compared between (co)variance-based methods (SSI

and CoDSA) and the moment-independent method (MISA). Similar parameter sensitiv-
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ity ranking for the analyzed metrics are observed, which indicates consistent sensitivity

analysis results between these two methods for the situation that parameter uncertain-

ties are Gaussian distributed. Moreover, by comparing the results for independent and

correlated parameters, the significant differences between parameter sensitivity ranking

were also observed. For independent parameters, the kinetics of reactions 1 and 2 influ-

enced the simulation outcome the most. For the correlated parameters, however, their

impact was reduced significantly, and the kinetics of reaction 4 dominated. Moreover, it

is noticed that the variance and the width of the distribution of the model output were

decreased once parameter correlations were considered.

In summary, global sensitivities provide useful information for analysis and design in

the field of pharmaceutical manufacturing and can be derived at acceptable computa-

tional cost even for complex problems when using PCE in combination with the LAR

algorithm. MISA might be preferable because it is available for problems with inde-

pendent and correlated model parameters. In addition, MISA is also more rigorous and

precise than the (co)variance-based method as MISA considers the entire distribution

instead of a single moment of the model output. However, independent of the metrics

used for global parameter sensitivity, parameter correlations should always be consid-

ered, i.e., utilizing the full information of the parameter (co)variance matrix for process

analysis and design. In the next part of the thesis, robust design of pharmaceutical

processes under uncertainty reflecting the importance of parameter correlation is also

presented.
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Chapter 4

Comprehensive and Efficient Framework for

Robust Process Design
4

This chapter introduces a holistic and efficient framework for probability-based robust

process design. The PEM introduced in Chapter 2 is used to quantify the statistical

moments of model outputs needed in the robust objective function and constraints.

Robust formulations of both inequality and equality constraints are investigated. The

significance of parameter uncertainties is quantified with the GSA technique introduced

in Chapter 3 and used for reducing the computational burden of the robust design. The

influence of parameter dependencies, which was shown to be significant on the results of

sensitivity analysis, is also investigated for robust process design.

This chapter is organized as follows. Section 4.1 contains the general formulation of the

probability-based robust optimization problem. Section 4.2 provides details about robust

inequality and equality constraints and approximation methods. The final structure of

the proposed framework for robust optimization is given in Section 4.3. To demonstrate

the performance of the proposed framework, two case studies are thoroughly discussed

in Section 4.4: including a classic jacket tubular reactor and a fed-batch bioreactor for

penicillin fermentation. Chapter summary can be found in Section 4.5.

4.1 General Problem Formulation

Model-based design is frequently applied to optimize the performance while satisfying

relevant constraints of production processes [22, 27]. However, external disturbances

and parameter uncertainties might affect the performance of the processes, which then

would deviate from the expected and simulated process characteristics or even result in

operation failures [70]. The reliability of the designed processes under various conditions

4Part of this chapter has been published in (Xie et al., Processes, 6(10), 183, 2018 [2])
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and disturbances is called robustness. Optimization problems that account for process

performance and robustness is named as robust process design. Probability-based robust

process design, as has been pointed out already in Chapter 1, outperforms the scenario-

based approach and could provide solutions with adjustable conservativeness.

The general problem formulation of the probability-based robust process design is

given as follow:

Problem 1. Probability-based robust optimization (RO) problem

min
x(·),u(·)

E[M(xtf )] + αV ar[M(xtf )], (4.1a)

subject to:

ẋd(t) = gd(x(t),u(t),p), (4.1b)

0 = ga(x(t),u(t),p), (4.1c)

xd(0) = x0, (4.1d)

Pr[hnq(x(t),u(t),p) ≥ 0] ≤ εnq, (4.1e)

Pr[heq(x(t),u(t),p) 6= 0] ≤ εeq, (4.1f)

umin ≤ u ≤ umax. (4.1g)

First-principle models showed in Chapter 2 are used to describe physicochemical mech-

anisms of pharmaceutical processes mathematically, as in Equations (4.1b) and (4.1c).

E[·] and V ar[·] denote the mean and the variance of the cost function M(xtf ), respec-

tively, Pr[·] denotes the probability measure, α denotes a scalar weight factor, εnq and

εeq are tolerance factors, [umin,umax] are the upper and lower boundaries for the control

input vector and xtf is the state vector at final time tf . In detail, M(xtf ) denotes a Mayer

objective term that is used for nominal optimal control problems. Please note that cer-

tain reformulations can be made to consider optimal Lagrange control problems, as well.

The two functions hnq : R(nxd+nxa )×nu×np → Rnnq and heq : R(nxd+nxa )×nu×np → Rneq

are used to represent the inequality and equality constraints, which come from process

restrictions, such as temperature limitations. The model equations are also considered

as equality constraints as discussed in Section 4.2.

In Problem 1, Equation (4.1a) gives the robust form of the objective function M(xtf ),

where E[M(xtf )] and V ar[M(xtf )] represent the expected performance and the robust-

ness of the objective function, respectively. The trade-off between the performance and

the robustness is adjusted by the weight factor α. Equations (4.1e) and (4.1f) give the
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robust form of the inequality and equality constraints, respectively. They ensure that

the probability of all constraint violations is less than or equal to a certain tolerance

factor that can be adjusted according to given specifications and safety rules. How-

ever, to solve Problem 1 practically, the following two aspects have to be addressed.

First, the estimation of the probabilities of both constraint violations cannot be solved

in closed form, and standard numerical methods might be computationally demanding.

Second, the robust equality constraints in Equation (4.1f), which were rarely consid-

ered in previous robust process design studies [124, 30], are infeasible and render robust

optimization insolvable. Therefore, in this chapter, the moment methods introduced

by [125] for structural reliability analysis are implemented to approximate the robusti-

fied constraints. The statistical moments needed for the approximation are computed

with the PEM, as it has the highest efficiency compared to other methods and could

be embedded in the optimization with affordable computational demand. Moreover, the

robust equality constraint is relaxed to ensure the feasibility of the robust optimization

problem.

The dependencies of parameter uncertainties, which are referred to as parameter de-

pendencies in the following context, commonly exist in practical applications [63, 110,

65], but are generally not taken into account in robust process design. Chapter 3 shows

the significant impact of parameter dependencies on parameter sensitivities and the

resulting probability distributions of the model output. A similar observation is also

presented in [3, 4]. Therefore, PEM presented in Chapter 2 is adapted to include pa-

rameter dependencies for robust process design. The effect of parameter dependencies on

the robust process design is investigated and critically compared with the reference case

where parameter dependencies are neglected in the selected case studies. Additionally,

the global sensitivity analysis technique is also utilized to obtain a better understanding

of the process under study and provide information for simplifying and constructing the

robust optimization problem systematically.

4.2 Moment Method for Approximating Robust Inequality and

Equality Constraints

In this section, details of inequality and equality constraints are discussed. In Section

4.2.1, the constraints are categorized into two special types, i.e., hard and soft con-

straints, and discuss the effects of parameter uncertainties on the constraints. In Sec-
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tions 4.2.2 and 4.2.3, a robust formulation of soft inequality and soft equality constraints

and methods for approximating the robustified expressions are presented.

4.2.1 Categorization of the Constraints

There are two types of robust inequality and equality constraints: hard and soft con-

straints [126]. Hard constraints must be satisfied regardless of uncertainties in the RO.

Hard constraints ensure that optimized results satisfy physical laws. For instance, in

Problem 1, equality constraints Equations (4.1b) and (4.1c), i.e., the governing equations,

are hard constraints as they describe the underlying (bio)chemical processes and have

to be consistently satisfied when assuming deterministic simulation results. Soft con-

straints, in turn, do not have to be exactly satisfied under uncertainties. Soft constraints

(e.g., Equations (4.1e) and (4.1f)) are typically imposed by the designer to restrict the

design space and to satisfy additional process specifications. Therefore, soft constraints

can be satisfied only in a probabilistic manner and might occasionally be violated, i.e.,

an acceptable violation probability has to be defined for RO. Please note that the per-

formance of the objective function may decrease if a very low violation probability is

required. Soft constraints are considerably affected by parameter uncertainties and are

investigated in the following section.

4.2.2 Robust Formulation of Soft Inequality Constraints

Soft inequality constraints do not have to be strictly satisfied, but in a probabilistic

manner. Inequality constraints hnq(x(t),u(t),p) ≤ 0 formulated on the probability

space are also named chance constraints [127] and read as:

Pr[hnq(x(t),u(t),p) ≤ 0] ≥ 1− εnq, (4.2)

where the probability of constraint satisfaction must be higher or equal to 1−εnq. Please

note that Equation (4.2) can also be equivalently transformed into Equation (4.3) when

the probability of a constraint violation is used:

Pr[hnq(x(t),u(t),p) ≥ 0] ≤ εnq. (4.3)

The probability of constraint violations is frequently estimated by MC simulations. A

large number of samples are drawn from given parameter distributions, and the samples,

where the constraints are violated, are counted. MC simulations are straightforward in

implementation but require a considerable number of CPU-intensive model evaluations.
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The computational burden might be prohibitive, especially for the iterative nature of

the RO. Moment-based approximation of failure probabilities has been widely applied

in the field of reliability analysis [125], and thus, this method is used as an alternative

concept to approximate the chance constraints in this work. In addition, it takes the

advantage of the proposed PEM for estimating the needed statistical moments.

The basic idea of the moment-based approximation method is to transform the prob-

ability distribution of the constraint functions into some specific distributions, e.g., the

standard normal distribution ξ ∼ N (0, 1) and to obtain the failure probability based on

the probability. Here, the one-dimensional constraint function −hnq(x(t),u(t),p) with a

negative sign is abbreviated as hnq and used in the following. The isoprobabilistic trans-

form given in Proposition 2.1 is applied to express the relation between the standard

normal distribution and the probability distribution of hnq as:

ξ = F−1
ξ (Fhnq(hnq)), (4.4)

where F−1
ξ indicates the inverse CDF of the standard normal distribution and Fhnq in-

dicates the CDF of hnq. Based on this transformation, the failure probability of the

constraint function hnq is equivalent to the probability of ξ ≤ F−1
ξ (Fhnq(0)) as shown

in Equation (4.5). As the CDF of ξ is known analytically, the failure probability of the

constraint function can be determined if F−1
ξ (Fhnq(0)) is given. However, the transfor-

mation function F−1
ξ (Fhnq(·)) is typically not available as the CDF of hnq is unknown in

practice. Thus, transformation rules that are based only on the statistical moments of

hnq is a better option [125]:

Pr[hnq(x(t),u(t),p) ≥ 0] = Pr[hnq ≤ 0],

= Pr[ξ ≤ F−1
ξ (Fhnq(0))].

(4.5)

Two representative moment-based approximation methods [125], i.e., the second mo-

ment method and the fourth moment method, are used to estimate the failure probability

with the first four statistical moments of the probability distribution of the constraint

function hnq, which are the mean (µhnq), variance (σ2
hnq

), skewness (αhnq ,3) and kurtosis

(αhnq ,4). The second moment method approximates the transformation function with

the first two moments as in Equation (4.6), while the fourth moment method utilizes all

four moments and has a more complex structure; see Equation (4.7) [125]. The approx-

imations are incorporated in Equation (4.5) to calculate the failure probability of the
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constraints:

F−1
ξ (Fhnq(0)) = −

µhnq
σhnq

, (4.6)

F−1
ξ (Fhnq(0)) = −

3(αhnq ,4 − 1)(
µhnq
σhnq

) + αhnq ,3((
µhnq
σhnq

)2 − 1)√
(9αhnq ,4 − 5α2

hnq ,3
− 9)(αhnq ,4 − 1)

. (4.7)

The accuracy of the moment-based approximation methods is determined by two fac-

tors. The first factor is the intrinsic approximation error, which results from the approx-

imated transformation function (Equation (4.4)) using a limited number of statistical

moments. By definition, the fourth moment method has a lower intrinsic approxima-

tion error because this method is more rigorously defined with higher order statistical

moments. The second factor is the estimation error of the statistical moments, espe-

cially the higher order moments, e.g., skewness and kurtosis. The PEM introduced in

Section 2.2 is used to calculate the needed statistical moments with considerably lower

computational costs in comparison to MC simulations. However, the precision of the es-

timated statistical moments deteriorates with higher order statistical moments, because

the PEM might fail for highly nonlinear problems of higher order terms. Thus, especially

the fourth moment method may suffer from the estimation error. According to these

two sources of approximation errors, it is difficult to determine which approximation

method, i.e., the second or fourth moment method, is superior for robust process design.

Therefore, both concepts are further analyzed and their benefits for efficient and credible

robustification strategies are investigated in the case studies.

4.2.3 Robust Formulation of Soft Equality Constraints

Similar to the inequality constraints, soft equality constraints are considered in a prob-

abilistic manner for the RO problem and are given as:

Pr[heq(x(t),u(t),p) 6= 0] ≤ εeq (4.8)

However, Equation (4.8) is not directly solvable for most applications as the constraint

function heq has a continuous probability distribution. In other words, the probability

of a single point is equal to zero when the random space is continuous [128]. Thus, it
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can find that:

Pr[heq(x(t),u(t),p) 6= 0] = 1, (4.9)

which contradicts Equation (4.8) if εeq � 1. Note that the aim is to satisfy the equality

constraint with high probability, and thus, εeq � 1. Figure 4.1a shows an example of

the equality constraint in the random parameter space. Here, the samples are drawn

from their distributions, and the curve shows the locations where the samples satisfy the

constraints.

To solve the RO problem, the robust equality constraints must be relaxed as shown

in Figure 4.1b. This idea is analogous to the relaxed margin used in support vector

machines (SVMs), which have been applied extensively in machine learning [129]. The

restriction from the constraints is eased by admitting that samples can lie within a certain

range around the constraints. Based on the relaxation, the robust equality constraints

in Equation (4.8) are substituted by:

Pr[−δeq ≤ heq(x(t),u(t),p) ≤ δeq] ≥ 1− εeq, (4.10)

where δeq indicates the relaxation factor and determines the range of relaxed equality

constraints. As can be seen in Figure 4.1b and Equation (4.10), there is a region rather

than a single curve where the constraint is satisfied. Thus, probability is nonzero, and

the RO problem becomes solvable. The robust equality constraints in Equation (4.10)

have nearly the same structure as the robust inequality constraints in Equation (4.2).

Therefore, the methods described in Section 4.2.2 can be used to solve Equation (4.10)

in RO problems immediately.

As mentioned previously, there is a trade-off between the performance of the objective

function and the satisfaction probability of soft inequality and soft equality constraints.

The relevant factors, εnq, εeq and δeq, have to be adapted properly. More details about

how to select these factors are presented with the given case studies in Section 4.4.

4.3 Robust Optimization with the PEM

The final structure to solve the RO problem defined in Problem 1 is summarized in what

follows. Note that F (·) in Equations (4.18) and (4.19) indicates the CDF of a standard

Gaussian distribution. The PEM is used to estimate the relevant statistical moments to

include the effect of parameter uncertainties. Equations (4.13)–(4.17) are the evaluations

of the dynamic system and the constraint functions for all deterministic sample points
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𝜃2 

𝐡𝑒𝑞(𝐱, 𝐮, 𝐩) = 0 
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(b)

Figure 4.1: Illustration of soft equality constraints heq(x,u,p) = 0. For the sake of
explanation, a two-dimensional random space with uncertain parameters θ1

and θ2 is used. Samples satisfying the constraints are shown by blue-filled
circles , while samples that violate the constraints are shown by red cross .
(a) The probability of samples that satisfy the equality constraint (red line

) is equal to zero for the continuous random space; (b) the equality con-
straint and its relaxed boundaries (green dashed line ) with width δeq. The
probability of satisfying the equality constraints is given by the percentage
of samples, i.e., , which are located within the boundaries.
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that are generated from the probability distributions of the uncertain model parameter.

Based on the evaluations, Equations (4.21)–(4.26) calculate the statistical moments of

the objective function and constraints, which are used in Equations (4.11), (4.18) and

(4.19). Although Equations (4.18) and (4.19) demonstrate the approximation with the

fourth moment method, it is easy to switch to the second moment method by adapting

the structure with Equation (4.6).

min
x(·),u(·)

E[M(xtf )] + αVar[M(xtf )], (4.11)

subject to:

i = 1, . . . , 2d2 + 1, m = 1, 2, 3 (4.12)

θi = [pi,x0,i]
T ,xi = [xd,i,xa,i]

T ,xd,i(0) = x0,i,xtf ,i = xi(tfinal), (4.13)

ẋd,i(t) = gd(xi(t),u(t),pi), 0 = ga(xi(t),u(t),pi), (4.14)

h1,i = −hnq(xi(t),u(t),pi), (4.15)

h2,i = heq(xi(t),u(t),pi) + δeq, (4.16)

h3,i = −heq(xi(t),u(t),pi) + δeq, (4.17)

F (−
3(αh1,4 − 1)(

µh1
σh1

) + αh1,3((
µh1
σh1

)2 − 1)√
(9αh1,4 − 5α2

h1,3
− 9)(αh1,4 − 1)

) ≤ εnq, (4.18)

F (−
3(αh2,4 − 1)(

µh2
σh2

) + αh2,3((
µh2
σh2

)2 − 1)√
(9αh2,4 − 5α2

h2,3
− 9)(αh2,4 − 1)

)+

F (−
3(αh3,4 − 1)(

µh3
σh3

) + αh3,3((
µh3
σh3

)2 − 1)√
(9αh3,4 − 5α2

h3,3
− 9)(αh3,4 − 1)

) ≤ εeq, (4.19)

umin ≤ u ≤ umax, (4.20)

E[M(xtf )] = w0M(xtf ,1) + w1

2d+1∑
i=2

M(xtf ,i) + w2

2d2+1∑
j=2d+2

M(xtf ,j), (4.21)

65



Chapter 4 Comprehensive and Efficient Framework for Robust Process Design

Var[M(xtf )] = w0(M(xtf ,1)−E[M(xtf )])2+

w1

2d+1∑
i=2

(M(xtf ,i)−E[M(xtf )])2 + w2

2d2+1∑
j=2d+2

(M(xtf ,j)−E[M(xtf )])2, (4.22)

µhm = w0hm,1 + w1

2d+1∑
i=2

hm,i + w2

2d2+1∑
j=2d+2

hm,j , (4.23)

σ2
hm

= w0(hm,1 − µhm)2 + w1

2d+1∑
i=2

(hm,i − µhm)2+

w2

2d2+1∑
j=2d+2

(hm,j − µhm)2,

(4.24)

αhm,3 =

w0(hm,1 − µhm)3 + w1

2d+1∑
i=2

(hm,i − µhm)3 + w2

2d2+1∑
j=2d+2

(hm,j − µhm)3

σ3
hm

,
(4.25)

αhm,4 =

w0(hm,1 − µhm)4 + w1

2d+1∑
i=2

(hm,i − µhm)4 + w2

2d2+1∑
j=2d+2

(hm,j − µhnq)
4

σ4
hm

,
(4.26)

4.4 Case Studies

In this section, the performance of the proposed framework is demonstrated with two case

studies. In Case Study 1, an optimal jacket temperature profile is design for a tubular

reactor considering two uncertain and correlated model parameters. Additionally, a

robust equality constraint for the product temperature at the reactor outlet is assumed

to incorporate process intensification aspects in the design problem. In Case Study 2,

a penicillin fermentation process is analyzed as it is of interest in the pharmaceutical

industry. A fed-batch bioreactor model is used to design an optimal feeding profile

under parameter uncertainties. GSA is applied to determine the influence of parameter

uncertainties on the process states and to offer a more tractable problem, i.e., a reduced

number of uncertain model parameters, which have to be considered in the robust process

design.

GSA and the RO problem were solved in MATLAB®(Version 2017b, The MathWorks

Inc., Natick, Massachusetts, USA). Parameter sensitivities for the independent case were

calculated with UQLAB (Version 1.0, ETH Zurich, Switzerland) [122]. The RO problem
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for the first case study was solved with the MATLAB function fmincon, while the RO

problem for the second case study, which is more complex, was solved by the simultaneous

approach [130] and implemented in the symbolic framework CasADi (Verion 3.3.0, KU

Leuven, Belgium) for numerical optimization [131] using the NLP solver IPOPT [132]

and the MA57 linear solver [133].

4.4.1 Case Study 1: A Jacket Tubular Reactor

Here, the design of a tubular reactor, where an irreversible first-order reaction in Equa-

tion (4.27) takes place, is considered as the first benchmark case study [30].

A −→ B + C. (4.27)

The reactor, which is operated under the steady-state condition, is described by the

following governing Equations [30]:

dx1

dz
=
αkin
v

(1− x1)e
γx2
1+x2 , (4.28)

dx2

dz
=
αkinδ

v
(1− x1)e

γx2
1+x2 +

β

v
(u− x2), (4.29)

where z is the relative position along the reactor, 0 ≤ z ≤ 1. The states x1 and x2 are

the dimensionless forms of the reactant concentration of A and the reactor temperature,

respectively. The jacket temperature is the control input given in its dimensionless form

u = (Tj − Tin)/Tin and is adjusted to meet the desired performance and robustness

requirements. The control input is discretized into 25 equidistant elements constrained

within 280 K and 400 K. The kinetic coefficient αkin and the heat transfer coefficient β

are assumed to be uncertain [30]. They both follow Gaussian distributions with mean at

their nominal value and standard deviation equal to 10 % of their nominal values. The

implemented parameter values and operating conditions are summarized in Table 4.1.

For additional details of the proposed reactor model, the interested reader is referred

to [30], from which the case study is taken. The conversion of the reactor Cf , as well as

the reactor temperature Tr, can be calculated from their dimensionless form via:

Cf (z = 1) = x1(z = 1), (4.30)

Tr(z) = x2(z)× Tin + Tin. (4.31)

In this case study, the final conversion of reactant A is maximized while fulfilling the

given constraints on the reactor temperature [30]. In particular, an upper boundary is
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added to the reactor temperature to avoid undesired side reactions [30]. The results of

the deterministic optimal design are depicted on the left of Figure 4.2. As can be seen,

the reactor temperature increases rapidly to the upper boundary to ensure the maximum

reaction rate and final conversion of 0.996, respectively. However, numerous violations

of the temperature boundary occur when the parameter uncertainties are taken into

account. In contrast to the deterministic process design, a robust optimal design that

includes parameter uncertainties is conducted next. Here, a weight factor α = 3 and a

tolerance value εnq = 1% are used for the robust objective and inequality constraints.

Please note that the weight factor α indicates the amount of trade-off between process

performance and robustness of objective function, and is selected based on one previous

study [68]. The tolerance value εnp = 1% means the robust solution has to guarantee

that the violation probability of inequality constraints should not be larger than 1%,

and could be changed depending on robustness required for the inequality constraint.

The robust inequality constraints are approximated with the second moment method as

in Equation (4.6). The corresponding results are given on the right of Figure 4.2. As

can be seen from the results, the jacket temperature profile is different from the nominal

design, especially from location 0.3 to the end of the reactor. Moreover, the reactor

temperature profile of the robust design remains below its upper limit with a probability

of 99% with the loss in the reactor performance; i.e., final conversion decreases to 0.985.

Table 4.1: Parameters for the tubular reactor model.

Parameters Unit Nominal Value Uncertainty

x1(0) - 0 -
x2(0) - 0 -
αkin s−1 0.058 N (0.058, 0.00582)
β s−1 0.2 N (0.2, 0.022)
v m s−1 0.1 -
γ - 16.66 -
δ - 0.25 -

4.4.1.1 Robust Design with Parameter Correlation

Next, the influence of parameter correlation on the robust process design is investigated.

The two uncertain parameters αkin and β are assigned with the marginal distributions

shown in Table 4.1 and the additional Pearson correlation coefficient of 0.8. Determin-

istic sample points for the correlated parameters are generated with Algorithm 2.1 and
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Figure 4.2: Results for nominal design (left) and robust design (right). (a,b) are the
optimal profiles of the jacket temperature; (c,d) are the evolution of the
reactor temperature and the 99% confidence interval (CI). The mean and
standard deviation of the conversion of reactant A have values of [0.996,
0.004] and [0.985, 0.010] for the nominal and robust design, respectively.
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the generalized PEM is used to calculated the statistic moments used in the robust ob-

jective function and constraints. The structure of the RO problem is similar to that for

independent parameters with a weight factor α = 3 and a tolerance value εnq = 1%.

Here, too, the second moment method is applied. In Figure 4.3, results for the optimal

design with parameter correlation are given. As can be seen, the profile of the jacket

temperature has considerable differences compared to the independent case; see Figure

4.2. Especially, the drop in the jacket temperature between position z = 0.5 and z = 0.8

results from the parameter dependencies effect.
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Figure 4.3: Results for robust design with parameter correlation: (a) the optimal jacket
temperature profile and (b) the reactor temperature and its 99% confidence
interval (CI). The mean and standard deviation of the conversion of reactant
A are 0.986 and 0.008, respectively.

4.4.1.2 Performance of the Fourth Moment Method

Thus far, only the second moment method has been used to approximate the robust

inequality constraints. The resulting confidence intervals of the reactor temperature are

illustrated with green dashed curves in Figures 4.2d and 4.3b. As can be observed,

the upper boundaries of the confidence intervals stay the same with the upper limit of

the reactor temperature once they approach it. However, the confidence intervals are

approximated by taking into account only the first and second statistical moments and

are insufficient if the probability distribution of the reactor temperature is non-Gaussian.

Reference values based on MC simulations with 10,000 sample points are summarized in

Table 4.2. In the case of the second moment method, the violation probabilities are 4.7%

and 3.6%, respectively, which exceeds the tolerance value εnq = 1%. The reason for this
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mismatch is mainly due to the approximation error of the robust inequality constraints

while considering only the first two statistical moments.

Table 4.2: The number of constraint violations from 10,000 Monte Carlo simulations,
where the robust inequality constraints are approximated by the second and
fourth moment methods for process designs with independent and correlated
parameters.

Second Moment Method Fourth Moment Method

Number of Independent Correlated Independent Correlated
violations 470 357 440 385

Probability 0.047 0.036 0.044 0.039

As discussed in Section 4.2.2, the fourth moment method uses more statistical infor-

mation than the second moment method and has a lower approximation error. The

same RO problem is solved again with the fourth moment approach, and the violation

probabilities are estimated and listed in the right of Table 4.2. However, the expected

improvement could not be validated. In fact, the violation probability for the correlated

scenario increases in case of the fourth moment method. The reason for this unexpected

performance is mainly due to the estimation error of higher order statistical moments.

When comparing the first four statistical moments estimated by the PEM and the MC

simulations (as reference), it can be seen in Figure 4.4 that the PEM provides useful

approximations for the first and second moments and deteriorates considerably for the

higher order moments. As has been mentioned, the PEM is accurate if the system can be

accurately approximated with the sum of monomials up to order of five, and as such its

accuracy deteriorates with the increasing order of the statistical moments. The compar-

ison indicates that the fourth moment method might not be suitable for the PEM-based

robust optimization framework, especially for practical applications where the systems

might be already highly nonlinear and complex. The fourth moment approach, in turn,

is still a promising way to approximate probability distributions if the higher order

moments can be estimated accurately, e.g., using PCE. Based on this finding, in the

following section, the second moment method is exclusively implemented.

Alternatively, one might adjust the tolerance value for the robust inequality constraints

to mitigate the effect of approximation errors when using the second moment method.

The violation probabilities of the inequality constraints for the robust design with dif-

ferent tolerance values are given in Figure 4.5. As can be seen from the figure, the
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Figure 4.4: A comparison of the first four statistical moments, (a) mean value, (b) stan-
dard deviation, (c) skewness, and (d) kurtosis, estimated with the point
estimate method (PEM) and Monte Carlo (MC) simulations for the reactor
temperature in Case Study 1.
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probability can achieve 0.01 by setting the tolerance value to 0.002 for the independent

and correlated cases, while the average conversion of reactant A is slightly decreased.
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Figure 4.5: The violation probability of the reactor temperature (Pro) and the average
conversion of the reactant A (Con) for process designs with different tolerance
values. Ind and Cor indicate the results for the independent and correlated
scenarios.

4.4.1.3 Impact of Robust Equality Constraints

Here, the effect of robust equality constraints that might result from process specifica-

tions is investigated. Process integration and intensification for energy and raw material

saving purpose is added as additional design target of the continuous processes [30]. For

instance, a cooling part could be integrated into the reactor design and bring down the

reactor outlet temperature, so that extra cooling expenses for downstream process is

avoided. To this end, an equality constraint is added to lower the outlet temperature to

the value of the inlet temperature [30]:

∣∣Tr(z = 1)− Tr(z = 0)
∣∣ = 0. (4.32)

With this additional soft equality constraint, there exists a trade-off between maxi-

mizing the reactant conversion while minimizing the temperature difference. First, the

results of the reactor design, where parameter uncertainties are neglected, are given in
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Figure 4.6a. The jacket temperature drops sharply to its lower limit for the second

half of the reactor, and the outlet temperature returns exactly to 340 K. Consequently,

the reactant conversion decreases with 2% compared to the nominal design without the

equality constraint (Figure 4.2). Next, the effect of parameter uncertainties on the nom-

inal design is illustrated in Figure 4.6b with the green dotted line. Here, the case where

uncertain parameters are correlated is considered. In this case, a strong violation of

inequality and equality constraints exists and has to be tackled properly. The robust

optimization framework proposed in Section 4.3 is used to solve this problem. An iden-

tical setting (α = 3 and εnq = 1%) is used for the objective function and inequality

constraints here. Different scenarios with different relaxation factors δeq and tolerance

factors εeq are used to demonstrate the effect of robust equality constraints on the pro-

cess performance. Values for the relaxation factors and results are summarized in Figure

4.7. It can be seen that the probability distribution of the outlet temperature narrows

quickly once the relaxed region and the violation probability are reduced, while the per-

formance of the reactor (the reactant conversion) deteriorates considerably. Therefore,

the process engineer has to decide on the trade-off between product performance and

energy expense. Note that the robust inequality constraints in these scenarios are always

satisfied, and thus, are not explicitly shown here.
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Figure 4.6: Results for the nominal design with terminal equality constraints: (a) the
optimal jacket temperature profile and (b) the reactor temperature with
its 99% confidence interval (CI). The mean and standard deviation of the
conversion of reactant A are 0.980 and 0.016, respectively.

74



Chapter 4 Comprehensive and Efficient Framework for Robust Process Design

1 2 3 4
scenario

0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 c
on

ve
rs

io
n

320 340 360
Outlet temperature

0

0.2

0.4

0.6

P
D

F

320 340 360
Outlet temperature

0

0.2

0.4

0.6

P
D

F

320 340 360
Outlet temperature

0

0.2

0.4

0.6

P
D

F

320 340 360
Outlet temperature

0

0.2

0.4

0.6

P
D

F
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the outlet temperature for four scenarios that have different relaxation factors
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δeq = 2, εeq = 10%, 4: δeq = 2, εeq = 1%.
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4.4.2 Case Study 2: Fed-Batch Bioreactor for Fermentation of Penicillin

The performance of the PEM-based robust optimization framework is also demonstrated

with a fermentation process as illustrated in Figure 4.8. Fermentation processes have

received great interest in the pharmaceutical industry, and in this study, the focus is

to optimize the penicillin fermentation [134]. To this end, a substrate feeding profile

is designed to ensure the optimal performance and robustness of the bioreactor which

is the essential unit of the fermentation process. A fed-batch reactor model is used

to describe the bioreactor based on the following assumptions: (1) ideal mixing of all

components in the bioreactor; (2) isothermal condition in the reactor; and (3) the effect

of the oxygen transfer can be neglected by considering an upper limitation on the biomass

and substrate concentrations. The mathematical expression of the model reads as [134]:

dX

dt
= µX − F

V
X (4.33)

dS

dt
= − µ

Yx
X − θp

Yp
X −mxX +

F

V
(Sf − S) (4.34)

dP

dt
= θpX −KP −

F

V
P (4.35)

dV

dt
= F, (4.36)

where the state variables, X,S, P and V , indicate the concentration of the biomass,

substrate, product and the volume of components in the bioreactor, respectively. The

feeding stream of the substrate has a constant concentration Sf and a time-dependent

flow rate F . The specific growth rate of the biomass µ and the product θp is described

by the contois kinetics and substrate inhibition kinetic with the following form [134]:

µ =
µmS

S +KxX
(4.37)

θp =
θmS

S +Kp + S2/Ki
. (4.38)

in which µm is the maximum specific growth rate, Kx is the Contois Saturation constant,

θm is maximum specific production rate, Kp is the Michaelis-Menten constant and Ki is

the dissociation constant. The initial conditions of the state variables and the nominal

value of the other kinetic parameters are summarized in Table 4.3. Further details about

the model are given in [134].

First, the process is optimized assuming that all parameters are estimated precisely;

i.e., parameter uncertainties are neglected. The goal is to maximize the final concentra-
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Table 4.3: Nominal values of the model parameters and the initial conditions for the
fed-batch model.

Parameters Unit Nominal Value Parameters Unit Nominal Value

µm 1/h 0.11 mx 1/h 0.029
Kx - 0.006 Sf g/L 400
θm 1/h 0.004 t h 0–80
Kp g/L 0.0001 X(0) g/L 1
Ki g/L 0.1 S(0) g/L 0.5
K 1/h 0.01 P (0) g/L 0
Yx - 0.47 V (0) L 250
Yp - 1.2

tion of product P within a given time range while the concentration of biomass X and

substrate S should be below 40 g/L (limited by the oxygen transfer capacity) and 0.5

g/L (to avoid side reactions) for the entire time horizon, respectively [135]. The control

variable F is parametrized with 100 elements, which are bounded within the range of [0,

10]. The resulting dynamic optimization problem is firstly solved with the nominal value

of all parameters, and the results are shown in Figure 4.9. Here, the feed rate of the

substrate is adjusted to keep the substrate concentration equal to 0.5 g/L at which the

maximum growth rate of the biomass is achieved at the beginning. After the biomass

concentration reaches its upper limit, the substrate concentration drops nearly to zero

to cease the self-reproduction of the biomass. At the same time, the substrate is fed at

low rate and is consumed by the biomass to produce the desired product, i.e, penicillin.

However, due to imperfect measurement data and model simplifications, the estimates

of the model parameters may have a considerable error as well as being correlated. Based

on the results given in [53], the uncertainties in the nine parameters are assigned with

a multivariate Gaussian distribution, where their marginal distributions have the mean

values equal to the nominal values and standard deviations equal to 10% of the nominal

values. To investigate the effect of parameter correlations, two scenarios are analyzed:

(1) the parameter dependencies are neglected, and the correlation matrix Σ is set to the

identity matrix; (2) the correlation coefficients of µm, θm, Yx, and mx in Σ are set to 0.95.

The effect of parameter uncertainties on the process performance is also shown in Figure

4.9 with the blue dotted lines. Strong violation of the constraints and large variation

in the product quality are observed, and thus, the parameter uncertainty has to be

considered in the robust design of the fermentation process. Please note that the negative
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Figure 4.8: Scheme of a fermentation process with a fed-batch bioreactor.
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Figure 4.9: (a) Feeding profile; evolution of the (b) biomass; (c) substrate and (d) prod-
uct obtained from the nominal design, where the parameter uncertainties are
neglected. In turn, the blue dotted lines illustrate the effect of the parameter
uncertainties.
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confidence interval (CI) of the substrate concentration stems from the assumption that

the CIs are symmetric and directly derived from the mean and variance of the states.

4.4.2.1 Global Sensitivity Analysis

Before solving the RO problem for the fermentation process, it is desired to decrease its

computational cost by deciding which parameters are not relevant and can be neglected

in the robust process design. Thus, the corresponding time-dependent sensitivity in-

dices of the parameters are calculated for the biomass and substrate concentrations in

addition to the product concentration at the final time point, i.e., for those quantities

involved in either the objective function or the constraints of the optimization problem.

Figures 4.10a,c and 4.11a show the sensitivity results for the independent case. As can

be seen, the biomass and product concentrations are strongly affected by parameters

µm, θm, Yx, and mx, while the other parameters have a minor impact. Moreover, by

summing up the first-order sensitivity indices, the interaction among the parameters

are negligible. Next, the correlative (SC) and total covariance-based (Scov) first-order

sensitivity regarding the biomass, substrate, and product concentration are calculated;

see Figures 4.10b,d and 4.11b. Here, the results for the structural sensitivity indices and

all the total sensitivity indices are not shown. The reason is that the model structure

does not change with the existence of parameter correlations, and thus, the structural

sensitivity indices and parameter interactions are similar to those for the independent

case. Nevertheless, an evident effect of parameter correlations on the sensitivity analysis

result can be observed: The parameter sensitivities have a completely different trend

compared to the independent case. The sensitivity results from the correlated case also

suggest considering the uncertainties and correlations from µm, θm, Yx, and mx for the

RO problem. By using the information from the sensitivity analysis, the number of

required PEM points for the RO problem can be significantly reduced. The number of

model evaluations for each optimization iteration decreases from 2 × 92 + 1 = 163 to

2 × 42 + 1 = 33 for both independent and correlated cases. The performance of the

RO with parameter uncertainties of appreciable sensitivities is studied in the following

section.

4.4.2.2 Robust Optimization

The RO is solved with the framework proposed in Section 4.3. To this end, a weight

factor α = 3 and a tolerance value εnq = 1% are used for the robust objective and

inequality constraints. The PEM points for RO are generated only for parameters with
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Figure 4.10: Sensitivity results of the nine parameters on the biomass and substrate
concentrations for the independent case: (a) first-order sensitivity indices
for the concentration of biomass X; (b) first-order sensitivity indices for the
concentration of substrate S; and correlated case (c) total covariance-based
first-order sensitivity indices for biomass X; (d) total covariance-based first-
order sensitivity indices for substrate S.
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Figure 4.11: Sensitivity results of nine parameters on the final product concentrations
for the independent (a) and correlated (b) case.
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appreciable sensitivities, i.e., four parameters are considered. First, the RO is solved for

the simplifying assumption of the independent parameters. The evolution of the mean

and 99% CIs for the biomass and the substrate are illustrated in Figure 4.12. Please

note that the CIs in all the plots are quantified with considering the uncertainties from

all nine parameters. As it can be seen from Figure 4.12, the biomass grows rapidly

until its CI approaches the upper boundary to maximize the productivity, while the

CI of the substrate remains at its upper boundary at the beginning and decreases to

a low value to activate the production phase. However, the result of the RO ignoring

parameter dependencies is too conservative. The effect of parameter dependencies is

shown in Figure 4.13 for the previous optimized setting, i.e., assuming independent

parameters. The shape of the CIs of the biomass and the substrate are quite different

from those in Figure 4.12 and do not reach their upper boundaries, which leaves some

space for improvement. Therefore, the RO is repeated with considering the parameter

dependencies accordingly and show the results in Figure 4.14. As it can be seen, the CIs

of both biomass and substrate concentration reach the upper boundaries and are less

conservative compared to the results in Figure 4.13. The optimized feeding profile of the

substrate for the independent and correlated cases are compared in Figure 4.15a. The

substrate for the correlated case is fed with a higher rate and descended a bit earlier

than that for the independent scenario. The PDFs of the product concentrations at

the final time point shown in Figures 4.13 and 4.14 are compared in more detail in

Figure 4.15b. The product concentration is improved considerably as the dashed curve,

which represents the correlated parameter case, is a bit narrowed and shifted to higher

concentrations.

As mentioned above, the negative CIs of the substrate concentration in all the figures

are due to the assumption of symmetric distributions of the states. This also indicates

that the CIs might not be accurate, and thus, they are validated by checking the number

of constraint violations with 10,000 Monte Carlo simulation for the independent and

correlated case, where the corresponding optimal feeding profiles are applied. The results

are listed in Table 4.4. As it can be seen from the second row, the violation frequencies

are higher than expected, εnq = 1% = 100
10,000 , especially for the substrate concentration.

Although the violation frequencies might be acceptable for practical applications, the

reliability of the RO can be improved by using a smaller tolerance factor as introduced

in Section 4.4.1.2. Corresponding results are shown in the third row of Table 4.4. All

violation numbers are improved, while the reactor performance regarding the penicillin

productivity is slightly decreased.
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Figure 4.12: Evolution of the mean and 99% confidence interval (CI) of the (a) biomass
and (b) substrate concentrations for the robust design of the fed-batch biore-
actor, where the uncertain parameters are independent. The feeding profile
from the robust design with independent uncertain parameters is applied.
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Figure 4.13: Evolution of the mean and 99% confidence interval (CI) of the (a) biomass
and (b) substrate concentrations for the robust design of the fed-batch biore-
actor, where the uncertain parameters are correlated. The feeding profile
from the robust design with independent uncertain parameters is applied.
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Figure 4.14: Evolution of the mean and 99% confidence interval (CI) of the (a) biomass
and (b) substrate concentrations for the robust design of the fed-batch biore-
actor, where the uncertain parameters are correlated. The feeding profile
from the robust design with correlated uncertain parameters is applied.
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Figure 4.15: Results for the robust design of the fed-batch bioreactor, where the uncer-
tain parameters are either independent or correlated. (a) control sequence
for substrate feeding; and (b) final concentration of the product, respec-
tively.
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Table 4.4: The number of constraint violations from 10,000 Monte Carlo simulations,
where the tolerance factor εnq = 1% and εnq = 0.14% for both designs with
independent and correlated parameters. The performance indicates the mean
value of the production concentration at the end.

Independent Correlated

εnq = 1% X 146 35
S 572 554

performance 3.63 3.76

εnq = 0.14% X 19 2
S 378 369

performance 3.53 3.67

4.5 Chapter Summary

In this Chapter, a new framework for solving robust optimization problems using the

point estimate method is proposed. Here, a sampling strategy derived from an isoprob-

abilistic transformation was used to include parameter dependencies and soft equality

constraints of practical relevance. In parallel, methods including higher-order statistical

moments are investigated to approximate robust equality and inequality constraints. To

include only the most relevant model parameters and to reduce the computation costs,

the global parameter sensitivities are calculated before the robustification step.

Two case studies, which include chemical and biological production processes, were

used to demonstrate the performance of the proposed framework. The first case study

attempts to maximize the conversion of a reactant while simultaneously satisfying the

constraints on the reactor temperature of a tubular reactor. The proposed method ad-

dresses the trade-off between performance and robustness for the reactor under parame-

ter uncertainties. An evident influence of parameter correlation on the designed control

profile and confidence intervals of the system states is observed. Performances of the

second and fourth moment methods for approximating the robust inequality constraints

were also examined. The fourth moment method has a more rigorous structure com-

pared to the second moment approach. However, the performance of the fourth moment

method is limited by the accuracy of the PEM. Thus, it could be concluded that the

second moment method might be more favorable in this particular case. Furthermore,

the approximation error could be compensated by using more conservative tolerance

values, which resulted in slight deterioration of the reactor performance. To save energy

costs, an equality constraint is added to the outlet temperature. The robust equality
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constraint had to be relaxed deliberately to be solvable. The process performance deteri-

orated dramatically with lower relaxation factors. The second example is about optimal

design of a bioreactor for the penicillin fermentation process. Global sensitivity analysis

was used to determine the relevant parameters and to ease the computational expense of

the robustification framework. This is extremely useful for large-scale problems with a

high number of uncertain parameters. Moreover, the effect of parameter correlations on

the robust process design was also observed. Here, the PEM still performs reasonably

well and retains a relatively low computational cost.

In conclusion, the proposed framework provides a comprehensive strategy for robust

optimization problems and covers features that have not been considered in previous

works from literature. It is able to achieve suitable robust design in the absence and

presence of parameter correlations at low computational costs. As discussed, the PEM

might fail in estimating higher-order statistical moments, especially for systems with

strong nonlinearities. This is also the main reason why the performance of the fourth

moment method did not provide the expected improvement in robustification. Alter-

natively, the accuracy of the PEM can be increased using extended sample-generating

rules, i.e., higher sample number results in more precise approximation at the cost of

efficiency, or different methods for uncertainty quantification might be studied.
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Robust Process Design with Non-Gaussian

Parameter Uncertainties
5

In this chapter, the framework proposed in Chapter 4 is further implemented for the

robust design of a downstream process, i.e., the freeze-drying process (lyophilization),

in which non-Gaussian parameters are considered. Moreover, a novel idea of combining

Gaussian mixture distributions (GMD) with the PEM is presented as an alternative

to address parameter uncertainties with non-Gaussian distributions. The different ap-

proaches are explained and compared in detail.

The chapter is organized as follows. The mathematical background of the methods

and the structure of the robust process design problem are introduced in Section 5.2.

The first-principle model of the freeze-drying process, as well as the assumed parameter

uncertainties, is presented in Section 5.3. Results and discussion about the performance

of the proposed GMD-PEM algorithm for robust process design are provided in Section

5.4. In Section 5.5, the conclusions are given.

5.1 Motivation

Probability-based approaches have been implemented extensively in various studies to

solve robust optimization problems. These approaches provide an explicit descrip-

tion of uncertainties in terms of probability distributions, and thus, probability-based

approaches ensure less conservative solutions compared with scenario-based concepts

[29, 136, 137]. However, probability-based approaches suffer from high computational

costs of the propagation and quantification of uncertainties [138, 30]. The point estimate

method (PEM) introduced in Chapter 2 [74, 3] aims to avoid costly sampling and simu-

lation runs by analyzing exclusively statistical moments of low order. In doing so, fewer

5Part of this chapter has been published in (Xie et al., Chem. Eng. Sci., 207, 805-819, 2019 [10])
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sample points compared with Monte Carlo simulations (MCs) and polynomial chaos

expansion (PCE) have to be evaluated in robust process design [93, 139]. Moreover,

the PEM is superior than other cubature methods, in terms of approximation accuracy,

as concluded by [84]. The original PEM, however, is limited to Gaussian probability

distributions [80].

The typical method for calibrating models is regressing the model to the experimental

data, in which the Gaussian likelihood function is used to find the most reliable parameter

values [6]. Furthermore, the associated confidence region of parameter value is derived

with the inverse of the Fisher information matrix (FIM) [6]. However, the mentioned con-

cept and derived parameter uncertainties is reliable only under the assumption of linear

relationship between the parameters and observations (measurements) in the model and

Gaussian distributed uncertainties [140, 6]. In practically application, these two assump-

tions are highly likely not consistent with the real process and associated measurement

data, which are highly nonlinear and complex [141, 142]. Shi[140] compared estimated

parameter uncertainties based on the two methods, which are linear regression method

and Bayesian technique. The results point out that the parameter uncertainties could be

non-Gaussian distributions [140]. Kalyanaraman[143] also obtained non-Gaussian distri-

butions for parameter uncertainty estimated with experimental data using the Bayesian

approach. A similar conclusion is given in [144] where the parameter uncertainties, which

are approximated by the bootstrap method, have non-Gaussian distributions. Therefore,

it is necessary to consider probability distributions with non-Gaussian distributions for

robust process design in the field of pharmaceutical manufacturing [145, 146, 93]. Robust

process design that includes parameter uncertainties of non-Gaussian, data-centric prob-

ability density functions is still missing in the literature and is the focus of this chapter.

To apply the PEM for these non-Gaussian uncertainties, an adapted sampling scheme

within a Gaussian-mixture framework is presented for proper uncertainty quantification.

Commonly, not only the non-Gaussian shape of parameter distributions but also pa-

rameter correlations are ignored to simplify robust process design problems [30, 84].

This assumption, in turn, leads to an inevitable loss of information and might result

in sub-optimal process designs. Alternatively, in the case of the PEM, non-Gaussian

distributions including parameter correlations can be incorporated via a transformation

step, as presented in Chapter 2. In the last chapter, the Nataf transformation is used

to map the original PEM samples to the samples for parameters associated with mul-

tivariate Gaussian distribution and parameter dependencies. The transformation step,

however, leads to additional complexity in the approximation which might reduce the

accuracy of the PEM. Moreover, the Nataf transformation is capable only of describing
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linear correlations between the parameters. In the current chapter, Gaussian mixture

distributions (GMD) is propose to represent non-Gaussian and correlated parameter un-

certainties with the weighted sum of a limited number of Gaussian distributions. The

advantage of using GMD concept is that it does not introduce extra complexity in the

approximation with PEM and is available for nonlinear parameter correlation problems.

GMD has been extensively applied in the field of pattern recognition and machine

learning to cluster data into subgroups [147]. Rossner[145] came up with the idea of using

GMD to decompose a one-dimensional Gaussian distribution into several component

distributions to approximate the uncertainties in the model output more accurately

even if the resulting model uncertainties are non-Gaussian. Technically, a least square

estimation approach with additional constraints on the width of the Gaussian mixture

components was used to determine the weight factors of the GMD. Here, GMD is also

used for proper uncertainty quantification but follow a different philosophy. In this

chapter, first, the multivariate distribution is decomposed directly instead of doing that

individually for each marginal distribution which alleviates the computational costs.

Second, the expectation-maximization (EM) algorithm is implemented to cluster the

data and to estimate the weight factors of the GMD. Note that for the traditional

least square estimation as suggested in [145], the optimal weight factors are difficult to

obtain, especially for high-dimensional parameter problems [148]. With this novel GMD-

PEM algorithm for robust process design, the shapes of the non-Gaussian parameter

distributions and the respective model output distributions can be captured realistically.

The novel GMD-PEM algorithm in robust process design is motivated and applied to

the freeze-drying process. The freeze-drying process provide the solution for preservation

and transportation of medicines[149, 150]. However, comprehensive and sophisticated

design have to be investigated to minimize the degradation effects during the drying steps

and ensure cake integrity [151]. Moreover, the current status of freeze-drying process is

time-consuming and noncontinuous, which requires further design focus on maximizing

the efficiency [151]. Here, the primary drying step, in which most water is removed from

the product, is the most time-consuming and failure-prone step [151]. As APIs used for

freeze-drying are highly valuable products, the model-based design of the primary drying

step may help to ensure product quality at a competitive cost. A mathematical model

for primary drying was investigated in [151, 152] to mimic the mass and energy transfers

during the freeze-drying process. [70] adapted the model for the first steps in model-

based process design. A grid-based approach was implemented to increase the efficiency

of the primary drying step while guaranteeing the CQAs of the dried product [48].

Moreover, Monte Carlo simulations were also used to quantify the effect of parameter
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uncertainties which might result from measurement noise and model simplifications [70].

However, optimization with the Monte Carlo simulations at individual time points might

lead to a sub-optimal solution and is computationally expensive by definition, especially

in combination with Monte Carlo simulations for uncertainty quantification.

Here, the aim is to optimize the freeze-drying process under uncertain model parame-

ters with advanced process system engineer techniques. Uncertainties with non-Gaussian

distributions are assumed for two critical process parameters: the mass transfer resis-

tance coefficient of the product and the heat transfer coefficient of the vial and the

product [153, 70]. The non-Gaussian distributed parameters are taken into account in

the freeze-drying simulation, and the resulting uncertainties in the sublimation mass and

the temperature at the sublimation interface are quantified as illustrated in Fig. 5.1.

The novel GMD-PEM algorithm is implemented to efficiently describe and quantify the

non-Gaussian uncertainties in the model parameters and outputs, and these uncertain-

ties are integrated into the robust process design to ensure product quality standards

and process efficiency simultaneously. Moreover, the superiority of the novel GMD-PEM

algorithm is demonstrated by comparing the derived robust process design results from

different approaches.

Uncertain model parameters Uncertain process performanceFreeze-drying
process

B
C

model

A

Figure 5.1: Illustration of uncertain model parameters in the freeze-drying process: Two
correlated model parameters with a non-Gaussian distribution, see the scat-
ter plot (A), of the freeze-drying process (B) lead to uncertain non-Gaussian
simulation results, e.g., sublimation mass distributions (C).

This figure is originated from [10] and partially created by René Schenkendorf
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5.2 Methodology

In this section, the basics and the mathematical formulations of the GMD-PEM algo-

rithm for robust process design is described. First, it starts with a brief review of the

PEM, the single Gaussian approach, and the nonlinear-transfer approach. Second, the

EM algorithm is introduced to calibrate the GMD-PEM algorithm, i.e., to iteratively

determine the maximum likelihood of the parameters even when the actual structure of

the Gaussian mixture distribution is unknown.

Robust process design requires statistical information regarding the quantities of in-

terest, e.g., yield, conversion and costs, to ensure meaningful designs based on simulation

studies. To this end, the parameter uncertainties that are propagated through the model

have to be transferred to the simulation results, and the resulting statistics are then quan-

tified. Two options are available to calculate the needed statistical information. One

option is to estimate the probability distribution directly with Monte Carlo simulations

and kernel density estimators [78], which requires a vast number of samples to cover the

relevant parameter space [119]. The second option is to calculate statistical moments

instead, e.g., mean, variance, skewness, and kurtosis, and to parameterize the probabil-

ity distributions with these statistical moments [125]. As the statistical moments can be

approximated with the PEM [80, 74, 3], the computational cost is low compared to the

direct approximation of the resulting probability density functions. The basics of the

PEM are presented in Chapter 2.

Assuming an nξ-dimensional random parameter vector ξ ∈ Iξ ⊂ Rnξ , the correspond-

ing multivariate normal distribution with the joint density function f(ξ) reads as:

f(ξ) =
1√

(2π)nξ |Σ|
exp(−1

2
(ξ − E(ξ))TΣ−1(ξ − E(ξ))), (5.1)

where E(ξ) and Σ are the vector of the mean values and the covariance matrix, re-

spectively. Moreover, a nonlinear function g(ξ) : R(nξ) → Rnx is used to represent the

mathematical process model. The process model maps the model parameters to the

model outputs; i.e., y = g(ξ). The nth statistical moment of y is given as:

µ1 =
∫
Iξ
yf(ξ)dξ, (5.2)

µn =
∫
Iξ

(y − µ1)nf(ξ)dξ n ≥ 2. (5.3)

According to the PEM presented in Chapter 2, the integral terms in Eqs. (5.2) and

(5.3) can be approximated with the weighted sum of the model simulations which are
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evaluated at deterministic parameter sample points:

µ1 ≈ w0g(GF [0]) + w1

∑
g(GF [±ϑ]) + w2

∑
g(GF [±ϑ,±ϑ]), (5.4)

µn ≈ w0(g(GF [0])− µ1)n + w1

∑
(g(GF [±ϑ])− µ1)n+

w2

∑
(g(GF [±ϑ,±ϑ])− µ1)n,

(5.5)

where ϑ =
√

3, w0 = 1 +
n2
ξ−7nξ

18 , w1 =
4−nξ

18 , w2 = 1
36 .

As pointed out in Chapter 2, the PEM can calculate integral terms of monomials

only up to order of 5 accurately. In other words, the complexity of function g(ξ), as

well as the order of the calculated statistical moments, determines the accuracy of Eqs.

(5.4) and (5.5) when the original PEM is used. According to the results from Chapter

4, satisfactory estimations of the first- and second-order moments can be found, while

higher-order moments with n ≥ 3 might be beyond the capability of the PEM. Note

that the approximation is available only if ξ follows a standard multivariate normal

distribution; i.e., E(ξ) = 0 and Σ = I [80, 3]. Thus, for non-Gaussian parameter

uncertainties, The PEM has to be modified.

5.2.1 Non-Gaussian Parameter Uncertainties

5.2.1.1 Methods from Literature and Previous Chapter

As mentioned in [145], the distribution of parameter uncertainties estimated with ex-

perimental data from various resources might have arbitrary shapes; i.e., the parameter

uncertainties cannot be described properly by Gaussian density functions. Thus, Eqs.

(5.4) and (5.5) are ill-posed and have to be refined. To employ the PEM for non-Gaussian

parameter distributions, the deterministic sample points have to be modified as illus-

trated in Fig. 5.2. Here, it is assumed that θ ∈ Iθ ⊂ Rnθ is the vector of the parameters

with non-Gaussian uncertainties, and it aims to estimate the mean and variance of g(θ)

which could be the cost function or the constraint function for the process design. The

first idea, which is what is called the single Gaussian approach in the left column, is to

approximate the arbitrary distribution with a multivariate normal distribution of which

the mean E(θ) and variance Σ(θ) are estimated according to:

E(θ) =
1

N

N∑
i=1

θi, (5.6)
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Single Gaussian distribution Gaussian mixture distributionSingle arbitrary distribution

nS = (2nΘ
2  + 1)ncnS = (2nΘ

2  + 1)nS = (2nΘ
2  + 1)

Original distribution

Nonlinear-transfer approach Gaussian mixture distributionSingle Gaussian approach

Generate sample points for the point estimate method (PEM)

Calculation of 
mean and variance

Estimation 
maximization

Nataf transformation
(Gaussian copula)

Single Gaussian distribution Gaussian mixture distributionSingle arbitrary distribution

Linear transformation Linear transformation

Figure 5.2: A schematic diagram for the single Gaussian approach (section 2.2), the
nonlinear-transfer approach (section 4.2), and the Gaussian mixture distri-
bution (GMD) with an example of a one-dimensional probability distribution.
nS and nθ are the number of sample points for the PEM and the number of
parameters. nc is the number of component mixtures for the GMD.
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Σ(θ) =
1

N

N∑
i=1

(θi − E(θ))(θi − E(θ))T . (5.7)

in which N is the number of parameter samples. Note that the off-diagonal elements

Σ(θ) are typically neglected and set to zero; i.e., the parameter uncertainties are consid-

ered a multivariate Gaussian distribution without parameter correlations. The original

PEM samples generated by function GF [·] are mapped onto the the multivariate normal

distribution described by E(θ) and Σ(θ) with the linear transformation given below:

θPEMi = AξPEMi + E(θ), i = 1 . . . 2n2
θ + 1, (5.8)

where A is the lower triangle matrix from the Cholesky decomposition of Σ(θ). Accord-

ing to Eq. (2.16), the mean and variance of g(θ) can be derived with the transformed

samples based on Eqs. (5.4) and (5.5):

µ1(g(θ)) ≈
2n2
θ+1∑
i=1

wig(θPEMi ), (5.9)

µ2(g(θ)) ≈
2n2
θ+1∑
i=1

wi(g(θPEMi )− µ1(g(θ)))2. (5.10)

For the sake of simplicity, in the robust process design literature, it is commonly assumed

that the parameter uncertainties follow a Gaussian distribution and are independent

[154, 30, 73, 155]. However, this assumption leads to a certain loss of information

regarding parameter uncertainties and includes extra deviations in the approximations

of Eqs. (5.9) and (5.10).

The second approach is one presented in Chapter 2 and implemented in Chapter 4 for

handling parameter dependencies, the so-called nonlinear-transfer approach (NTA). It

is illustrated in the middle column of Fig. 5.2. Instead of using a Gaussian distribution,

the PEM samples are directly mapped to the actual parameter distribution. To this

end, the iso-probabilistic transformation given in Proposition 2.1 is used:

θPEMi = F−1
θ (Fξ(ξ

PEM
i )). (5.11)

In Eq. (5.11), Fθ and Fξ are the joint cumulative density function (CDF) for parameters

θ and standard Gaussian random parameters ξ. The joint CDF Fθ for multivariate

distributions are usually complex and implicit, especially when the distributions are

non-Gaussian and correlated. Moreover, it is also challenging to map directly from one
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parameter space to the other with Eq. (5.11) due to the complexity of Fθ. Therefore,

Fθ is approximated using Gaussian copulas with marginal CDFs Fnθ for individual

parameters and the correlation matrix Σρ, as shown in Section 3.2:

Fθ = Fn[F−1(F1), · · · , F−1(Fnθ); Σρ]. (5.12)

Furthermore, the inverse Nataf transformation, which is an alternative numerical algo-

rithm based on Eqs. (5.11) and (5.12) and has been presented in Algorithm 2.1, is used

to transform the PEM samples of a standard multivariate Gaussian distribution to the

samples of the target distribution of θ. With the modified samples, Eqs. (5.9) and (5.10)

can be used to calculate the mean and the variance of the model outputs.

This method retains almost all of the parameter distribution information in the mod-

ified PEM sample points. However, the iso-probabilistic transformation might be highly

nonlinear and induces extra complexity in the simulation results g(θ) = g(F−1
θ (Fξ(ξ))).

The additional complexity from the transformation step might deteriorate the approxi-

mation accuracy of PEM, and a such lead to sub-optimal robust process designs.

5.2.1.2 Gaussian Mixture Distributions (GMD)

GMD are an essential part of the proposed algorithm for robust process design. Unlike

the two previous approaches where either a non-Gaussian distribution is simplified into

an independent Gaussian distribution or the original PEM samples are transformed to a

non-Gaussian distribution with nonlinear transformation, the GMD concept represents

the non-Gaussian distribution with the superposition of a limited number of Gaussian

distributions. The PEM samples are then mapped to these Gaussian distributions with

a linear transformation step, as illustrated in the right column in Fig. 5.2.

The GMD is structured as

θ ∼
NC∑
j=1

ωjN (Ej ,Σj), (5.13)

where N (Ej ,Σj) means the Gaussian distribution with mean Ej and covariance matrix

Σj for the jth component. Here, ωj is the non-negative weight for ith component with∑NC
j=1 ωj = 1. NC is the total number of Gaussian distributions. The probability density
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function (PDF) of θ is equal to:

f(θ) =

NC∑
j=1

ωjf j(θ), (5.14)

where f j(θ) is the PDF of the jth component distribution given as

f j(θ) =
1√

(2π)nθ
∣∣Σj

∣∣exp(−1

2
(θ − Ej)TΣj

−1(θ − Ej)). (5.15)

Note that the sum of Gaussian distributed random variables and the weighted sum of

the Gaussian distributions of random variables are different concepts, i.e., the sum of

the random variables results in a Gaussian distribution, whereas the weighted sum of

the Gaussian distributions can represent non-Gaussian distributions needed for robust

process design. With the approximation in Eq. (5.13), the original PEM samples are

mapped individually to the component distributions with the linear transformation given

in Eq. (5.8). Here, NC × (2n2
θ + 1) samples are obtained as:

θPEMji = Ajξ
PEM
i + Ej , i = 1 . . . 2n2

θ + 1, j = 1 . . . NC , (5.16)

where Aj is the lower triangle matrix from the Cholesky decomposition of the full co-

variance matrix Σj . To determine the samples with Eq. (5.16), it still needs information

about the structure of the GMD in Eq. (5.13). In other words, the values for ωj , Ej , Σj

and NC have to be estimated.

Assuming z are the realizations from a non-Gaussian distribution. Generally, the

unknown parameters ωj , Ej , and Σj can be determined by maximizing the marginal

likelihood function of the unknown parameters given realizations z [156, 145]. However,

it is challenging to numerically maximize the marginal likelihood function here, because

of the existence of latent variables [147], which are in this case, the distribution group, to

which the individual sample belongs. Note that the latent variables are discretized and

are assigned with the index of component distributions from which the realizations stem.

Alternatively, the EM approach, which is commonly used to maximize the marginal like-

lihood function of parameters in cases where latent variables exist [147], is implemented.

The EM approach includes two steps:

• The expectation step: the conditional distribution of the latent variables is de-

termined with the parameter values; i.e., ωj , Ej , and Σj obtained from the last

iteration.
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• The maximization step: the parameter values are updated with the results from

maximizing the expected value of the log-likelihood function for the conditional

distribution of the latent variables determined in the expectation step.

The expectation and maximization steps are iterated until the terminal condition is

fulfilled. For more details regarding the derivation, the proof, and the mathematical

equations of the EM approach, the interested reader is referred to [147] and [157]. More-

over, to identify a meaningful number of Gaussian distributions NC to build the GMD,

the Bayesian information criterion (BIC) is applied to determine the optimum number

of component distributions [158, 159].

Unlike the single Gaussian distribution and the nonlinear-transfer approach, the mean

and the variance of g(θ) are derived with the weighted sum of the mean and the variance

of g(θ) on the component distributions and are formulated as:

µ1(g(θ)) ≈
NC∑
j=1

ωjµ1j(g(θ)), (5.17)

µ2(g(θ)) ≈

NC∑
j=1

ωj(µ2j(g(θ)) + µ1j(g(θ))2)

− µ1(g(θ))2, (5.18)

where the mean and the variance of g(θ) of the component distributions are calculated

as:

µ1j(g(θ)) ≈
2n2
θ+1∑
i=1

wig(θPEMji ), (5.19)

µ2j(g(θ)) ≈
2n2
θ+1∑
i=1

wi(g(θPEMji )− µ1j(g(θ)))2. (5.20)

In summary, the proposed GMD-PEM approach retains most of the information of

a non-Gaussian parameter distribution and does not introduce additional nonlinearities

from the transformation step in Eq. (5.16) to Eqs. (5.17) to (5.20). Note that the

computational cost of GMD-PEM approach increases proportionally to the number of

component distributions, and thus, the BIC is applied to ensure that only a low number

of component distributions are used. In the next section, the structure of a robust

process design with GMD-PEM approach is presented.
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5.2.2 Robust Process Design with Non-Gaussian Uncertainties

The general structure of the probability-based robust process design is given in Eq. 4.1.

The structure of the robust process design where the single Gaussian approach and the

nonlinear-transfer approach are implemented could be easily adapted from the formu-

lations in Section 4.3. The structure of the GMD-PEM algorithm for robust process

design is shown in Eq. 5.21. The proposed GMD-PEM algorithm provides meaning-

ful results not only for non-Gaussian parameter uncertainties but also for non-Gaussian

simulation results. The failure probability of the inequality constraints is approximated

with the weighted sum of the failure probability results of the individual component

distributions as shown in Eq. (5.21f). The second moment method is used, as it out-

performs the fourth moment method when PEM is used to approximate the statistical

moments. Moreover, the formulation of robust equality constraints is actually similar

to that of robust inequality constraints, as they have to be relaxed to circumvent the

ill-posed structure. Therefore, they are not shown in Eqs. 5.21.

Note that when the SGA or NTA is implemented, the approximation is accurate only

if the probability distribution of the constraints is Gaussian. Thus, the SGA- and NTA-

based approaches might lose essential information about the model output uncertainties

in the case of non-Gaussian distributions, which might be the result of non-Gaussian

model parameter uncertainties or due to model nonlinearities. The performance of the

different algorithms and their accuracy are compared with the case study in the next

section.

min
x(·),u(·)

µ1(M(xtf )) + αµ2(M(xtf ))0.5, (5.21a)

subject to:

i = 1, . . . , 2n2
θ + 1 j = 1, . . . , NC , (5.21b)

θji = [pji,x0,ji]
T ,xji = [xd,ji,xa,ji]

T ,xd,ji(0) = x0,ji,xtf ,ji = xji(tf ), (5.21c)

ẋd,ji(t) = gd(xji(t),u(t),pji), 0 = ga(xji(t),u(t),pji), (5.21d)

hji = −hnq(xji(t),u(t),pji) (5.21e)

NC∑
j=1

ωjF

(
−
µ1j(h)

µ2j(h)0.5

)
≤ εnq, (5.21f)

µ1(M(xtf )) =

NC∑
j=1

ωjµ1j(M(xtf )), (5.21g)
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µ2(M(xtf )) =

NC∑
j=1

ωj(µ2j(M(xtf )) + µ1j(M(xtf ))2)

− µ1(M(xtf ))2, (5.21h)

µ1j(M(xtf )),µ2j(M(xtf )),µ1j(h),µ2j(h)are calculated

with Eqs. (5.19) and (5.20)
(5.21i)

umin ≤ u ≤ umax, (5.21j)

5.3 Case Study: the Freeze-Drying Process

To demonstrate the performance of the GMD-PEM algorithm, the freeze-drying process

is used as a case study. First principle model of the freeze-drying process is introduced

in this section.

The freeze-drying process, also known as lyophilization, is a solution for the storage

and transportation of APIs, e.g, vaccines [149]. For these APIs, the traditional meth-

ods of preservation in aqueous solutions are not applicable for long term purpose [150].

However, shortages of such process are the high energy consumption, high time cost and

critical operation conditions [152]. Freezing, primary drying and secondary drying are

the major steps for a batch chamber based freeze-drying process [152]. The schematic

diagram of the freeze-drying process is illustrated in Fig. 5.3. The primary drying step is

recognized as the most time-consuming and error-prone step [151]. Thus, in this study,

the robust design of the primary drying step is considered, in which parameter uncer-

tainties are taken into account and the risk level of defective dried APIs is minimized.

Typically, during the primary drying step, the shelf temperature is increased, and

the chamber pressure is decreased to a certain level so that sublimation of the water in

the vials is initiated and continued at the sublimation surface, which moves downward

during the drying step. The water vapor is transferred from each vial to the condenser

chamber and is discharged via the vacuum pump to keep the pressure in the chamber at

a specific level. Assuming the mass and energy transfer occur in the vials is identical,

the model of the primary drying step is based on a single vial as shown in Fig. 5.3. The

mathematical model for the primary drying in a single vial is adapted from [70].

The mass transfer equation [152], which describes the dynamics of the sublimation

process at the sublimation surface, is given as:

dmsub

dt
= Ap

Pi − Pc
Rp

, (5.22)
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Condenser 
chamber

Vacuum pump

Pc

Frozen product

Sublimation 
interface

Heating shelf

A

B

Dried product

Vial

Ts

Figure 5.3: Schematic diagram of a lyophilizer where the temperature of the heating shelf
(Ts) and the pressure of the chamber (Pc) are optimized to achieve maximum
performance. On the left side is the enlarged view of the vial with the frozen
and dried API. The light blue and red arrows indicate the flow of the vapor.
A and B are the locations where a choked flow might exist.

where Ap is the cross-sectional area of the product, Pc is the chamber pressure, and

Rp is the dried product resistance to the vapor flux. Pi is the vapor pressure at the

sublimation interface which can be calculated according to the equation in [160]:

Pi = exp(9.55− 5720

Ti
+ 3.53ln(Ti)− 0.00728Ti). (5.23)

Ti is the temperature at the sublimation interface and is calculated with the energy

balance equation given in [152]. Here, the heat used for sublimation is assumed to be

equal to the heat transferred from the heating shelf:

Kv(Ts − TB)Av = ∆Hs
dmsub

dt
, (5.24)

where Kv, Av, and Ts denote the heat transfer coefficient, the outer cross-sectional

area of the vial, and the shelf temperature, respectively. ∆Hs is the specific heat of

sublimation as given in [160] and reads as:

∆Hs = 4.68× 104 + 35.9Ti − 0.0741T 2
i + 542exp(−(

Ti
124

)2). (5.25)
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TB is the temperature at the bottom of vial and is equal to

TB = Ti + ∆T, (5.26)

where ∆T is the temperature difference across the frozen layer and is calculated with

the following equation given by [70]:

∆T =
889200

(Lf (Pi−Pc))
Rp

− 0.0102Lf (Ts − Ti)
1− 0.0102Lf

. (5.27)

Here, Lf is the height of the frozen layer and has the following relation with msub:

msub = (Ltotal − Lf )ρIεAp, (5.28)

where Ltotal, ρI , and ε are the total height of the product layer, the density of the ice,

and the volume of the ice fraction, respectively. The model parameters and the size of

the vials, are taken from [70]. Note that the value of Rp and Kv in Table 5.1 are the

averages of their values at different conditions. More details regarding the determination

and the structure of coefficients Rp and Kv can be found in [161] and [70]. Since these

two coefficients are estimated from experiments, they also suffer from the existence of

measurement noise and inaccuracy in the parameter estimation strategy. Therefore,

uncertainties in these two parameters have to been considered for the design of primary-

drying step.

The mathematical model is used in this case study to maximize the efficiency of the

primary drying step under parameter uncertainties in Rp and Kv while ensuring the

product quality at the same time. Thus, the objective function is to maximize the

total mass of the ice removed by sublimation per operating time, i.e., minimize the

operation time. To avoid irreversible product damage and have an acceptable API cake

appearance, the production temperature at the sublimation interface should be carefully

maintained below the critical collapse temperature Tc, which in this case is assumed to

be equal to the glass transition temperature Tg [70]. Additionally, an upper boundary

is given for the sublimation rate dmsub
dt , which is due to the choke flow phenomenon at

the vial neck as explained in [162]. The choked sublimation rate is calculated using the

following equation as in [70]:

ṁsub,choke,vial =
0.3Av,n

√
kTrR
M M

RTr
Pc, (5.29)
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Table 5.1: Nominal values of the model parameters and the initial conditions for the
primary drying model.

Parameters Unit Nominal Value

Ap m2 3.80× 10−4

Av m2 4.15× 10−4

Av,n m2 1.25× 10−4

Rp m/s 5.57× 104

Kv J/(m2sK) 11.47
Ltotal m 0.00658
ρI kg/m3 919
ε − 0.97
M kg/mol 0.018
k − 1.33
R J/(Kmol) 8.314
Tg

◦C -34

where Av,n is the cross area at the vial neck, the equation inside the square root oper-

ation is used for the calculation of the speed of sound in an idea gas, Tr is the absolute

temperature at the vial neck. Chamber pressure Pc and shelf temperature Ts are ma-

nipulated within the range from [5 Pa 30 Pa] and [-40 ◦C 30 ◦C], respectively. Note that

the lower boundary of Pc is normally not set below 5 Pa, as a very low chamber pressure

may have problems with product contamination and heterogeneous heat transfer [153].

The uncertainties of Rp and Kv are assumed to follow a non-Gaussian distribution and

is characterized by the samples in the scatter plot in Fig. 5.4. The result structure of

the nominal optimization of the primary drying process is given in A.2. Moreover, the

structure of the robust optimization of the primary freeze-drying step can be straightfor-

wardly derived with Eq. 5.21 and equations in Section 4.3 for the different approaches,

respectively.

The case study is coded in MATLAB®. The robust process design was solved with the

simultaneous approach [130] which was implemented in the symbolic framework CasADi

for numerical optimization [131] using the NLP solver IPOPT [132] and the MA57 linear

solver [133]. The EM algorithm is initialized by k-means [163].

5.4 Results and Discussion

This section discusses the robust process design results of the primary freeze-drying step.

First, the results for the nominal process design are given. Next, the adverse effect of
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Figure 5.4: Scatter plot of the sample points for two uncertain parameters Rp and Kv.
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the parameter uncertainties on the nominal process design is presented. To this end, the

accuracy of approximated statistical moments and distributions are analyzed, and the

results from the robust process design for the primary freeze-drying step are compared

and discussed for the different approaches presented in the previous sections.

5.4.1 Results for the Nominal Process Design
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Figure 5.5: Control profile of chamber pressure Pc and shelf temperature Ts (a), and
evolution profile of the mass of the ice removed by sublimation and the
temperature at the sublimation interface (b) from the nominal design.

First, it aims to optimize the efficiency of the primary drying process in the absence

of parameter uncertainties. As be described in the last section, shelf temperature Ts and

chamber pressure Pc are designed to achieve the maximum amount of ice removed by

sublimation within the shortest drying time, while the appearance of the dried product

is guaranteed by limiting temperature Ti at the sublimation interface below critical

temperature Tc. The designed temperature and pressure profiles are shown in Fig. 5.5.

As in Fig. 5.5(a), Ts is kept at its upper boundary, i.e., 30 ◦C, to provide more energy for

the sublimation. In Fig. 5.5(b), Ti is also kept at its upper boundary to ensure higher

vapor pressure Pi at the sublimation interface to accelerate the sublimation process

according to Eqs. (5.22) and (5.23). At the beginning, Pc is set to 9.6 bar to achieve

a higher sublimation speed and is decreased gradually to compensate the influence of

the decreasing height of the frozen layer in accordance with Eq. (5.27). Note that the

complete expressions of Rp and Kv from [70] are used for the nominal process design.

Note that Mortier[70] also attempted to optimize the primary drying in the freeze-drying
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process with a grid-based approach. In contrast to our results, the grid-based design

compensates the influence of the decreasing height of the frozen layer by decreasing the

shelf temperature, which leads to a certain loss in the sublimation speed. Consequently,

it requires less than 6 h rather than almost 7 h in [70] to complete the primary drying

process as indicated by the curve of msub in Fig. 5.5(b). Note that the transition phase

at the beginning, i.e., heating the shelf and vacuuming the chamber to the design value,

is neglected in this work because the period is quite short compared to the entire primary

drying step. In addition, the choked flow limit at the vial neck calculated with Eq. 5.29

is not activated because the sublimation speed is far below the limit, which is also shown

in the following subsection.

5.4.2 Effect of Parameter Uncertainties on the Nominal Process Design

The optimal process design for the nominal case above is based on the assumption

that the model parameters are accurate. However, due to measurement imperfections

and model simplifications, model parameters derived from noisy measurement data are

imprecise and might be described best via arbitrarily distributed random variables [145].

In this particular case, it is assumed that the two parameters Rp and Kv are uncertain

as indicated in the scatter plot in Fig. 5.4. Next, the adverse effect of these parameter

uncertainties on the performance of the primary drying process obtained by ignoring

these parameter uncertainties is analyzed. The results are illustrated in Fig. 5.6. As

can be observed, the curves for the evolution of msub and Ti in Figs. 5.6(a) and 5.6(c)

deviate from the nominal values and vary in certain ranges expressed with the confidence

intervals (CIs) [164]. The primary drying process with smaller (higher) values for Rp

and Kv has a lower (higher) Ti. In contrast, with smaller Rp and larger Kv values, the

efficiency of the process is higher than what is expected regarding the nominal process

design. As Ti exceeds the critical temperature Tc = −34◦C, this leads to an undesired

collapse of the API cake. In Fig. 5.6(d), there is a high risk that the API product will

be wasted as almost half of the probability distribution is on the right side of the red

line, i.e., above the critical temperature. Therefore, it is necessary to consider parameter

uncertainties in the design of the primary drying process as part of the robust process

design.

5.4.3 Deterministic Samples

As discussed in Section 5.2, the GMD-PEM algorithm can be used to propagate and

to quantify uncertainties in the field of robust process design efficiently. The resulting
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Figure 5.6: Evolution of the mean and 99% confidence interval (CI) of the mass of the
ice removed by sublimation msub (a) and the temperature at sublimation
interface Ti (c). (b) and (d) are the plots of the probability density function
(PDF) of msub and Ti at t = 5 h, respectively.
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Figure 5.7: Illustration of the original samples and the deterministic samples derived
from the three approaches. The green and red points in (a) are the determin-
istic samples from the single Gaussian approach (SGA) and the nonlinear-
transfer approach (NTA), respectively. The purple and blue points in (b) are
the deterministic samples for two component distributions of the Gaussian
mixture distribution (GMD).
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samples are plotted in Fig. 5.7 in comparison with sample points derived with the SGA

and the NTA. The green sample points in Fig. 5.7(a) are derived with the SGA. They

are symmetrically distributed in the parameter space as only the mean and the variance

of the individual parameters are used; see Section 5.2.1. The red sample points in Fig.

5.7(a) are derived with the NTA. The NTA sample points are asymmetrically located in

the parameter space due to the nonlinear transformation step addressing the correlation

and the non-Gaussian shape of the parameter distributions. The EM algorithm and the

BIC as explained in Section 5.2.1 are used to determine the number and the coefficients

of the Gaussian component distributions. In Fig. 5.7(b), two component distributions

are illustrated which have the best match with the parameter uncertainties. The cor-

responding deterministic samples for different component distributions are highlighted

individually in Fig. 5.7(b) with purple and blue sample points, respectively. Although

the number of GMD-PEM samples is twice as many as those for SGA or NTA, they can

represent the shape of the original parameter uncertainties more accurately with lower

computational cost compared to Monte Carlo simulations.

5.4.4 Approximation Accuracy

In this section, the accuracy of the novel GMD-PEM algorithm regarding the approxi-

mated mean and the variance of the freeze-drying process relevant state variables, i.e.,

msub and Ti, is analyzed. The results are summarized in Fig. 5.8. Here, the approxi-

mated mean and variance values are compared with the references from the Monte Carlo

simulations. As shown in Figs. 5.8(a) and 5.8(b), the mean of msub can be estimated

accurately with the SGA, NTA, and GMD-PEM algorithm, while the variances are es-

timated more accurately with the NTA and the GMD-PEM algorithm. Note that the

approximated variances derived with the NTA deviate slightly from the reference, but

the deviation is considerably smaller compared to the estimation based on the SGA;

see Fig. 5.8(b). The same analysis for Ti is illustrated in Figs. 5.8(c) and 5.8(d). The

estimated means and variances from the GMD-PEM algorithm are in good accordance

with the references. The estimated mean based on the SGA or NTA is slightly lower

than the references. However, the estimated variance deviates considerably from the ref-

erence, especially the variance approximated by the SGA. The GMD-PEM algorithm, in

turn, not only provides a more accurate estimate of the mean and the variance but also

captures the non-Gaussian shape of the model output distributions which is essential

for approximating the robust inequality constraints given in Eq. (5.21f). For instance,

the non-Gaussian distribution can be observed from the temperature at the sublima-
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Figure 5.8: Comparison of the mean and the variance of the mass of the ice removed by
sublimation msub and the temperature at sublimation interface Ti, which are
estimated with the single Gaussian approach (SGA), the nonlinear-transfer
approach (NTA), and the Gaussian mixture distribution (GMD). Values from
Monte Carlo simulations (MCs) are used as references.
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Figure 5.9: Comparison of the original probability density function of the temperature at
sublimation interface Ti at a single time point with the ones approximated by
the single Gaussian approach (SGA), the nonlinear-transfer approach (NTA),
and the Gaussian mixture distribution (GMD).

tion interface Ti given in Fig. 5.9 and is accurately approximated with the GMD-PEM

algorithm.

5.4.5 Robust Process Design Results

The different robust process design strategies presented in Section 5.2.2 are implemented

with the associated samples shown in Fig. 5.7 to design the primary drying process. The

tolerance factor εnq is set to 1%, so that the risk of failure in the API cake appearance

is equal or lower than 1%. The designed profiles for the control variables Pc and Ts are

compared in Fig. 5.10. As it can be seen, the optimal shelf temperature is lower than the

upper boundary to force Ti to be lower than the critical collapse temperature with 99%

probability. In parallel, the chamber pressure decreases to its lower boundary 5 bar to

accelerate the sublimation. While the chamber pressure is fixed, Ts is gradually decreased

to compensate for the influence of decreasing height of the frozen layer. As discussed in

Section 5.4.4, the approximation accuracy of the SGA, NTA, and GMD-PEM is different,

and thus, the optimized Ts is different as well. To compare the performance of the results

obtained from the SGA, NTA, and GMD-PEM algorithm, the primary drying process is

simulated with 6000 samples that are derived from the original parameter distributions;

see Fig. 5.4. The mean value of msub at the final time point and the number of constraint

violations are calculated based on the simulation results which are related to the 6000

parameter samples. The results are listed in Table 5.2. The nominal design has the

best efficiency: a low freeze-drying time and high msub. However, almost 50% of the
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Figure 5.10: Results from a robust process design with the deterministic samples
from the single Gaussian approach (SGA), the nonlinear-transfer approach
(NTA), and the Gaussian mixture distribution (GMD). (a) and (b) are the
profiles for chamber pressure Pc and shelf temperature Ts, respectively.

simulations violate the temperature constraint; i.e., Ti exceeds the critical temperature.

The SGA result, in turn, has a better performance compared to the results from the

NTA and the GMD-PEM algorithm, but the constraint violation is 94
6000 = 1.6% which

is almost twice as high as the target value εnq = 1%. The resulting NTA setting has

much fewer constraint violations, but the efficiency is low with 6.45 h for the primary

drying process. In other words, the design is too conservative. In contrast, the derived

robust design from the GMD-PEM algorithm has the best trade-off between process

efficiency and product quality, i.e., the API cake appearance and integrity. In Table

5.2, the GMD-PEM design achieves the same msub within 6 h and results in a failure

probability of 62
6000 = 1%. The choked flow limit is investigated for the GMD-PEM

design, and the sublimation speed is considerably slower than the choked flow limit, as

shown in Fig. 5.11. Thus, the flow rate of the vapor at the vial neck is not fast enough

to reach the speed of sound and to trigger the choked flow phenomenon [162].

5.5 Chapter Summary

In this chapter, a novel GMD-PEM algorithm for propagating and quantifying param-

eter uncertainties with non-Gaussian distributions was introduced. The GMD-PEM

algorithm is benchmarked with two approaches which are either commonly used in lit-
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Table 5.2: Results from the nominal design and the robust design with the determinis-
tic samples from the single Gaussian approach (SGA), the nonlinear-transfer
approach (NTA), and the Gaussian mixture distribution (GMD). 6000 sam-
ples generated from the original samples are used to validate the number of
constraint violations for the different methods. Samples column in the table
means the number of sample needed for robust process design with different
approaches, which is proportional to the computational cost.

drying time [h] mean(msub)×103 [kg] constraint violations samples

Nominal 5.90 2.2 50% -
SGA 5.80 2.0 1.6% 9
NTA 6.45 2.0 0.15% 9
GMD 5.98 2.0 1% 18
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Figure 5.11: Comparison of the sublimation rates during the the primary drying process
and the choked flow limitation.
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erature or introduced in the previous chapter. The robust process design framework

proposed in this chapter is constructed based on GMD-PEM algorithm in which the

component distributions are quantified with the expectation-maximization algorithm.

PEM samples for the component distributions are generated with linear transformation

and used to approximate the statistic information in both the objective function and

constraints. A case study on freeze-drying process is investigated in this chapter. The

primary drying step of the freeze-drying process is firstly optimized while the parameter

uncertainties were ignored. A design with higher drying efficiency was obtained com-

pared to the literature but might result in low-quality products in practice due to the

neglected parameter uncertainties. Afterwards, the proposed robust design approach

is used to design the primary drying step with taking into account the non-Gaussian

distributed parameter uncertainties. Moreover, robust design framework with other

approaches, i,e, SGA and NTA, are also implemented to design the same primary dry-

ing step. As demonstrated, the proposed algorithm can approximate the non-Gaussian

model parameters and the output distributions adequately, which is essential in fulfilling

inequality constraints under non-Gaussian parameter uncertainties. Monte Carlo simu-

lations were used to evaluate the final design. In comparison to SGA and NTA approach,

the GMD-PEM algorithm provides the best trade-off between process efficiency and the

acceptable limit of constraint violations on the product-relevant sublimation interface

temperature.
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Chapter 6

Stochastic Back-off Robust Process Design
6

In this chapter, limitations on strategies for robust process design introduced in Chapter

4 and 5 are addressed. A novel stochastic back-off strategy is proposed to handle the

potential flaws of the aforementioned strategy for robust process design. PCE is used

to compute the statistical information needed for the novel back-off strategy. Moreover,

a back-off strategy, in which PEM is used, is also presented and compared with the

novel approach. The proposed approaches are demonstrated on a separation process of

pharmaceutical manufacturing, i.e., a plug-flow crystallizer.

The chapter is organized as follows. A brief introduction and motivation of this chapter

is provided in Section 6.1. In Section 6.2, the basics of the traditional back-off strategy

are presented. Next, the novel stochastic back-off strategy is introduced in Section 6.3.

A case study involving the continuous crystallization of ibuprofen is detailed in Section

6.4. Results and discussions are provided in Section 6.5. Section 6.6 summarizes the

chapter.

6.1 Motivation

The probability-based robust process design provides less conservative solution compare

to the scenario-based method [30, 3]. In Chapter 4 and 5, probability-based approaches

are proposed to incorporate the parameter uncertainty with any types of probability

distributions and mutual dependencies in process design to derive expected solutions.

The PEM, as the most efficient UQ method indicated in Chapter 2, is used as the core

of these approaches to compute the statistical moments needed. However, within the

optimization iterations, the statistical moments have to be calculated and updated in

each iteration. This means that the computational demand of the approaches depends

not only on the UQ method, but also on the number of optimization iterations. In case

6Part of this chapter has been published in (Xie et al., Comput. Chem. Eng., 124, 80-92, 2019 [11])
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of inadequate optimization formulation, e.g., poor initial guesses, the computational

demand of robust design becomes burdensome.

There are at least two alternatives for circumventing this issue. The first one is intro-

ducing a surrogate models to replace the process model and alleviate the computational

burden for calculating the statistical moments, as illustrated in [165, 1, 166, 167, 5].

The accuracy of the surrogate model, however, is a crucial problem with this approach,

especially for a large-scale optimization problem [1]. Alternatively, Srinivasan[154] in-

troduced an iterative back-off strategy to shrink the feasible region of the optimization

problem and thus, making the optimal operating conditions robust. The merit of this

iterative back-off strategy is that the back-off terms are determined outside the opti-

mization, as such robust process design does not include additional complexity from

calculating the statistical information and remains the same computational efficiency

as solving a nominal optimization problem. With the benefit of its computational effi-

ciency, this approach has been further investigated and implemented in model-predictive

control [168], optimal experimental design [169] and robust process design [73, 170, 8].

In this chapter, the structure of the conventional iterative back-off strategy is briefly

summarized and the procedure is improved by introducing a quantitative update rule

for the back-off factor η which controls the conservativeness of a robust process design.

With implementing the adapted iterative back-off strategy, the desired robustness for

the constraints in robust process design can be guaranteed, even for non-Gaussian dis-

tributions, without trial-and-error updating of η factor. However, the two nested loops

for determining back-off terms and the η factor introduce additional difficulties in the

convergence of the conventional iterative back-off strategy. Moreover, the validation and

calculation of the η factor limit the strategy’s overall efficiency. Therefore, the main con-

tribution in this chapter is to introduce a novel stochastic back-off strategy which has

simpler structure. The key idea is that the back-off terms are derived by the entire prob-

ability distribution rather than the standard deviations of the constraints. Moreover,

the computational efficiency of the stochastic back-off strategy is improved consider-

ably by using PCE to replace the CPU-intensive process model and to approximate the

probability distributions of the constraints [82, 171].

To demonstrate the performance of the stochastic back-off strategy, a continuous crys-

tallization process of ibuprofen is used as a case study. Ibuprofen is one of the most

commonly used medicines for treating pain, fever, and inflammatory diseases [172]. The

mechanisms and kinetics of the crystallization of ibuprofen, e.g., the nucleation and

growth rates, were recently investigated [172]. The identified value of the kinetics pa-

rameters and the associated uncertainties from [172] are used to design a continuous
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plug-flow crystallizer for ibuprofen. The stochastic back-off strategy is implemented

to ensure the supersaturation level of the solution stays below the primary nucleation

threshold to avoid unstable primary nucleation. Moreover, this strategy is compared with

other iterative back-off strategies to highlight the superiority of the proposed stochastic

concept in terms of computational efficiency.

6.2 Basics of the standard back-off strategy

Assume there is an inequality constraint for the process design

h(x, θ) ≤ 0, (6.1)

where function h : Rnx×nθ → Rnh , x is the vector of the state variables, and θ is the

vector of the uncertain parameters with the joint probability density function (PDF)

f(θ). Technically, to ensure the robustness of the inequality constraint, Eq. (6.1) must

be satisfied for all or at least most possible parameter realizations of PDF f(θ), as

presented in Chapter 4. However, straightforward implementation of Eq. (4.1f) for

all possible realizations results in a semi-infinite optimization problem (similar to the

worst-case scenario) which might be NP-hard. Alternatively, the inequality constraint

can be robustified by introducing back-off terms to ensure the reliability of the inequality

constraint under uncertainty. The back-off terms b are added to the left hand side of

the inequality constraint in Eq. (6.1)

h(x, θn) + b ≤ 0, (6.2)

where θn represents the vector of the nominal parameter values. Here, Eq. (6.2) has

the same complexity as the inequality constraint for the nominal design, and the back-

off term b, which could be a constant or time-varying variable, moves the inequality

constraint at the nominal condition away from its boundary to ensure a sufficient safe

margins for counteract with the influence from parameter uncertainties.

Pioneering work in [173] on the back-off concept has been advanced to select control

structures for different chemical processes, in which linearized models are used to cal-

culate the back-off terms [174, 175]. The original back-off strategy has also been used

to guarantee the dynamic feasibility of joint process design and control optimization

problems [176, 177, 178]. [179] and [180] approximated back-off terms with constraint

derivatives and implemented for robust design of a fed-batch fermentation process and

a batch distillation process, respectively. However, the back-off terms used were de-
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termined by linearization of the model and the constraints, and thus, are not reliable

for the robust design of highly non-linear pharmaceutical processes and might lead to

robustification that is either too conservative or not robust enough with excessive con-

straint violations. Moreover, [154] proposed the idea of iterative calculation of back-off

terms; i.e., in addition to the optimization loop an outer back-off validation loop is used

based on Monte Carlo simulations. This iterative back-off concept was also implemented

and refined by [73] for robust optimization of a polymerization process, in which Monte

Carlo simulations were used to propagate the parameter uncertainties through the orig-

inal process model and to approximate the resulting mean and variance values of the

constraints for the back-off calculation as summarized in Eqs. (6.3) to (6.5):

b = η
√
V ar(h(x, θ)), (6.3)

V ar(h(x, θ)) =

∫
Iθ

(h(x, θ)− E(h(x, θ)))2f(θ)dθ (6.4)

≈
nMC∑
i=1

1

nMC
(h(x, θMC

i )− E(h(x, θ)))2,

E(h(x, θ)) =

∫
Iθ

h(x, θ)f(θ)dθ ≈
nMC∑
i=1

1

nMC
h(x, θMC

i ), (6.5)

where nMC is the number of Monte Carlo simulation samples, E(h(x, θ)) and V ar(h(x, θ))

indicate the mean and the variance of the constraint function h, and η is the factor for

adapting back-off terms to controls the conservativeness/robustness of the robust con-

straints. Shi[73] also demonstrated that the back-off terms could be improved with an

iterative update based on Eqs. (6.3) to (6.5), in which the optimal design from the

previous iteration is used. And the results from the back-off strategy are equivalent to

those from multi-scenario optimization once the back-off terms converge. To reliably

approximate the mean and variance values with Eqs. (6.4) and (6.5), nMC has to be

large, which might be prohibitive especially for large-scale systems and complex process

models [8]. Emenike[8] came up with the idea of calculating back-off terms with the

point estimate method (PEM) as a more efficient alternative to the conventional Monte

Carlo simulations. Based on their results [8], a dramatical improvement of computa-

tional efficiency of robust process design is observed with using the PEM-based back-off

terms. In addition, Koller[181] investigated the impact of different η values on the per-

formance of a back-off strategy by applying it to a simultaneous design, control, and

scheduling problem of multi-product systems. Maussner[170] introduced an additional

iteration loop to update the η value to ensure that the number of constraint violations is
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below an acceptable level. This particular double-loop back-off strategy is summarized

in the workflow diagram in Fig. 6.1.
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Figure 6.1: Flow diagram for the double-loop back-off strategy for robust process design.

The double-loop back-off strategy given in Fig. 6.1 has an internal loop (A) for the

convergence of the back-off terms and an external loop (B) for updating the value of

the factor η. More details about the double-loop back-off strategy presented in [8] are

summarized below.

Step 1 (External loop (B) start) Specify the initial η value. The quantile of the

standard Gaussian distribution with the desired probability is taken. For example, the

quantile is set to 2.33 to ensure that 99% of the inequality constraints are satisfied.

Step 2 Initialize the internal loop (A).

Step 3 (Internal loop (A) start) Optimize with the inequality constraints; i.e.,

h(x, θ) + b0 ≤ 0, where b0 is the back-off term. Note that the optimization in the
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first iteration with b0 = 0 is equivalent to nominal optimization and has the same

computational complexity as the nominal optimization problem in general.

Step 4 Quantify the impact of the parameter uncertainties on the constraints. The

PEM is used to estimate the mean and variance of the constraints as given in Eqs. (6.6)

and (6.7) based on the optimal design result from Step 3:

E(h(x, θ)) ≈
2n2
θ+1∑
i=1

wih(x, θPEMi ), (6.6)

V ar(h(x, θ)) ≈
2n2
θ+1∑
i=1

wi(h(x, θPEMi )− E(h(x, θ)))2, (6.7)

where nθ is the number of uncertain parameters, and wi and θPEMi are the weight factors

and the deterministic parameter samples, respectively. [3].

Step 5 Calculate the back-off term with η and the variance calculated in Step 4 by

using Eq. (6.3). The time-varying back-off term b(t) is used as it provides more flexibility

and better solution [73].

Step 6 (Internal loop (A) end) Check if the back-off term converges; if not, b0 is

replaced with the new back-off term b and steps 3 to 6 are repeated until it converges.

Step 7 (External loop (B) end) With the converged back-off term, the optimal

design is validated with Monte Carlo simulations. To this end, 10,000 realizations gen-

erated from the distribution of the parameter uncertainty are evaluated and used to

calculate the probability of a constraint violation. If the violation probability is smaller

than 1%, the optimal solution is exported. If not, a new value for η has to be selected

and the whole algorithm is repeated. Note that any other violation probability might

be feasible but affects the initial η value selection procedure in Step 1.

As can be seen, the two loops are essential to fulfill the probability of the given con-

straint violation limits. Note that the internal loop with the initial guess of η from the

quantile of a standard Gaussian distribution might be sufficient but only if the proba-

bility distribution of the constraint function follows a Gaussian distribution. However,

models for pharmaceutical processes are complex and highly nonlinear, and thus, the

distribution of the constraint function is typically non-Gaussian [182]. Maussner[170]

provided candidate values for η based on expert guessing to update the η factor. In

this work, a more systematic and problem-specific procedure is proposed for updating η
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according to:

ηi = ηi−1
norminv(99%)

norminv(1− ec)
, (6.8)

where norminv means the inverse cumulative density function of a standard Gaussian

distribution, and ec is the probability of a constraint violation calculated in Step 7. As

fewer η values are tested as a result, the overall computational efficiency of the double-

loop back-off concept can be improved.

With the additional external loop, the double-loop back-off strategy is capable of han-

dling constraints with non-Gaussian distributions. However, the high computational

costs and the redundant structure might be critical for many practical problems in ro-

bust process design. Although the PEM is used to reduce the cost of the internal loop

considerably, the external loop still needs a vast number of Monte Carlo simulations to

validate the probability of a constraint violation. For this reason, the computational effi-

ciency of the double-loop back-off strategy deteriorates dramatically if the external loop

converges slowly. To circumvent the redundant structure and the heavy computational

burden for updating η, a novel, highly effective stochastic back-off strategy is proposed.

6.3 The stochastic back-off strategy

Before outlining the novel approach, as a motivation, it deserves to explain why Eq.

(6.3) is not an appropriate formulation for calculating the back-off terms first. In Fig.

6.2, the calculation of back-off terms is illustrated assuming a Gaussian distribution (A)

and a non-Gaussian distribution (B). In particular, the back-off term b is determined

with the distance between the nominal value of the inequality constraint and its 99%

quantile. In the case of a Gaussian distributed inequality constraint, the mean value is

equal to the nominal value, and the back-off term b is equal to the confidence interval;

i.e., b = η99%

√
V ar(h(x, θ)). However, in the case of a non-Gaussian distribution, these

two aspects do not hold, and thus, there is an external loop in the double-loop back-off

strategy to approximate the real value of the back-off terms by adapting the value of η

iteratively; see Eq. (6.8). As mentioned, the iterative update of η is inefficient and might

increase the computational cost dramatically. Alternatively, it is suggested to calculating

the back-off terms directly with the distance between its normal value and the empirical

quantile at 99% based on the probability distribution of inequality constraints. And the

stochastic back-off strategy is constructed based on the idea, which is explained in more

detail below.
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Figure 6.2: Calculation of the back-off terms for the cases where probability distribution
of constraint function h(x, θ) is Gaussian (A) and non-Gaussian (B), respec-
tively. hn = h(x, θn) and h99% indicate the value of constraint function at
nominal point and point with cumulative density equal to 99%.
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Figure 6.3: Workflow of the stochastic (single-loop) back-off strategy for robust process
design.
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In Fig. 6.3, the workflow diagram of the novel stochastic back-off strategy is illus-

trated. The structure of the stochastic back-off strategy is similar to the internal loop

of the double-loops back-off strategy in Fig. 6.1 but has significant differences for the

uncertainty quantification and the approximation of the back-off terms:

Step 1 (Loop start) Initialize of the stochastic back-off strategy.

Step 2 Optimize under inequality constraints; i.e., h(x, θ) + b0 ≤ 0. Note that

the optimization in the first iteration with b0 = 0 is actually equivalent to nominal

optimization, and thus, has the same computational complexity as nominal optimization.

Step 3 Propagate and quantify the constraint uncertainties with the optimal design

from Step 2. Instead of the variance, the exact shape of the probability distribution of

the constraints is approximated with KDE and PCE.

To avoid a repetitive evaluation of the original CPU-intensive model, the polyno-

mial chaos expansion (PCE) approach presented in Section 2.3 is used as an alternative

concept. Thus, the original process model is replaced by a surrogate model that can

be evaluated with low computational costs [1]. The number of samples for estimating

the PCE model depends on the complexity of the model and the number of uncertain

parameters but is typically negligible compared to the number of samples needed for

approximating the probability distribution.

Note that Monte Carlo simulations as a traditional sample-based method could also

be used here for the uncertainty quantification step. However, the deficiency of Monte

Carlo simulations, as was addressed in the double-loop approach [8], might be prohibitive

for the stochastic approach.

Step 4 Calculate of the back-off terms with the probability distribution of the con-

straints. As shown in Fig. 6.4, the sample evaluations from the PCE model are processed

to approximate the probability distribution of the constraint function making use of the

KDE in Step 3. The resulting probability distribution is subsequently used to calculate

the back-off terms. As illustrated in Fig.6.2, it is more appropriate to calculate the

back-off terms with the empirical quantile distance than just the standard deviation.

Therefore, the back-off terms for robust design with a probability of constraint violation

≤ 1% is determined by

b = D(hn, h99%) = F̂−1
h (99%)− hn, (6.9)

where D(·) means the distance function, and F̂−1
h (·) is the inverse cumulative density

function of the constraints adapted from Eq. (3.50).
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Figure 6.4: Calculation of the back-off term, b, for the stochastic back-off strategy.
D(hn, h99%) is the distance function that calculates the difference between
hn and h99%. hn and h99% indicate the values of the constraint function at
the nominal point and the point with a cumulative density equal to 99%,
respectively.

Step 5 (Loop end) Check if the back-off terms converge. If not, replace b0 with the

new back-off b and repeat steps 2 to 5 until the procedure converges.

To conclude, the novel concept of a stochastic back-off implementation has a simpler

structure in comparison to the double-loop back-off strategy while PCE ensures low

computational costs at the same time. More details about the performance of the novel

stochastic back-off concept are described in the following case study.

6.4 Case study: a continuous plug-flow crystallizer for

ibuprofen

The case study aims to design a continuous plug-flow crystallizer (PFC) for the API

ibuprofen. The PFC has the advantage of higher efficiency and narrower crystal dis-

tributions compared with the commonly used mixed suspension mixed product removal

crystallizer (MSMPRC) and has been used to crystallize various APIs [185, 186]. The

focus of this work is to optimize the steady-state operation of the PFC and to maximize

the mass-based mean crystal size (d43) under the condition of uncertainty.

6.4.1 Mathematical model

The scheme of a continuous PFC is illustrated in Fig. 6.5. The model for the PFC,

which is adapted from [186], consists of the population balance equation (Eq. (6.10))

that describes the evolution of the crystal size distribution (CSD) and the mass bal-

ance equation (Eq. (6.11)) that describes the mass balance between the liquid and solid

phases. Only the mass balance equation in liquid phase is shown in Eq. (6.11), since
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Inlet
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Outlet
slurry

Temperature controlling segments

Crystals

Figure 6.5: Schematic diagram of a continuous plug flow crystallizer for ibuprofen. The
temperature controlling segments are used to realize the cooling profile for
the crystallizer.

the mass balance equation in the solid phase is conjugated to that and it is not neces-

sary to show both of them in the governing equations. Note that the assumption here

is no dissolution, agglomeration, and breakage happening during the crystallization of

ibuprofen as discussed in [172]. Another assumption is that no mixing effect exists in

the PFC and that dispersion of the crystal density and the API concentration exist only

in the axis direction. The governing equations for the steady-state PFC model are:

0 =
∂(vn)

∂z
+
∂(Gn)

∂L
(6.10)

Liquid: 0 =
∂vC

∂z
+ kvρs(BL

3
0 + 3

∫ ∞
0

GL2ndL), (6.11)

where z is the axis coordinate of PFC, m; L is the characteristic crystal size, m; n is the

size density of crystals per kilogram of slurry, #/kg/m; B is the nucleation rate, #/kg/s;

G is the crystal growth rate, m/s; C is the mass of solute per kilogram slurry, kg/kg;

kv and ρs are the shape factor and the density of the crystals, kg/m3, respectively, and

v is the superficial velocity of the slurry along the PFC, m/s. The mass of the solution

and the solids is considered, and it is assumed that the formation of the solids does not

change the volume of the slurry [186]. Therefore, the superficial velocity v is considered

as constant for the entire PFC. Note that the mass equation for the solid phase is already

implicitly included in Eq. (6.10). The boundary conditions at z = 0 and L = L0, where
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L0 is the size of the nuclei, m, of the model are:

n(0, L) = nfeed(L) (6.12)

n(z, L0) =
B

G
(6.13)

C(0) = Cfeed. (6.14)

As it can be seen, the steady-state PFC model consists of partial differential equations

(PDEs) and has to be discretized or modified to be solved by a common ordinary differ-

ential equation (ODE) solver. The classical method of moments (MOM) can be used to

transfer the PDEs into several ODEs because the growth rates G are assumed to be size

independent [172, 186]. For the classical MOM, size density n is multiplied with the kth

order of crystal size L and subsequently integrated over the entire crystal size domain

to compute its kth moment, i.e, µk. Typically, the first six moments, k = 0, . . . , 5, are

used to represent the key information included in size density n [186]:

µk =

∫ ∞
0

LkndL, k = 0, . . . , 5. (6.15)

The resulting ODE systems reads as:

dµ0

dz
=
B

v
(6.16)

dµk
dz

=
BLk0
v

+
kGµk−1

v
k = 1, . . . , 5 (6.17)

Liquid:
∂C

∂z
= −kvρs

v
(BL3

0 + 3Gµ2). (6.18)

Alternatively, to calculate the probability density of the crystal number, a high-resolution

scheme based on the finite-volume method (FVM), proposed in [187], is used to solve

the PDEs with discretization of the characteristic crystal length L, as illustrated in Fig.

6.6. The resulting ODEs are given in Eq. (6.19) that could be solved directly with

Eq. (6.11) with standard ODE solvers to calculate the probability density of the crystal

number. The cell-face fluxes nLi±1/2
are computed with a robust upwind discretization

method [187]:

∂(ni)

∂z
+

G

v∆L
(nLi+1/2

− nLi−1/2
) = 0, i = 1, . . . , N. (6.19)

The classical MOM generates less complex ODE systems (= 7), and therefore, is more

suitable for the optimal (robust) crystallizer design regarding computational costs. In
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L1 L2 Li-2 Li-1 Li Li+1 LN-1 LNLi+2

n1 n2 ni-2 ni-1 ni ni+1 nN-1 nNni+2

L1/2 L3/2 Li-1/2 Li+/2 LN-1/2 LN+/2

Figure 6.6: Cell centered discretization scheme of finite-volume method for internal do-
main, i.e., crystal characteristic length L, adapted from [187]. Li refers the
cell centers, and Li−1/2, Li+1/2 represent cell faces. ni is the average value of
the number density of crystals in cell i.

contrast, the FVM needs a fine mesh (≥ 100) for the characteristic crystal length and

is too redundant to be embedded in the optimization algorithm. Therefore, the FVM

is used only to generate the reference probability density of the crystal number for

illustration and validation in what follows.

6.4.2 Crystallization kinetics of ibuprofen

The kinetics for the crystallization of ibuprofen in absolute ethanol are adapted from

[172]. The main driving force for crystallization is the degree of supersaturation S, which

is defined with the difference between solution concentration Csol and solubility C∗ as:

S(z) = Csol(z)− C∗(T (z)). (6.20)

The solubility of ibuprofen in absolute ethanol is a function of the temperature, and

thus, can be used to design the crystallization process [172]:

C∗ = 0.495 + 0.001026T 2. (6.21)

All the quantities above have the same unit kilogram of solute per kilogram of ethanol.

The concentration of the solution can be derived from the slurry mass solution and the

solid concentration C and Cs with the following relations:

Csol =
C

1− C − Cs
, (6.22)

Cs = kvρsµ3. (6.23)
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Table 6.1: Nominal values and units of the parameters for ibuprofen crystallization and
the plug-flow crystallizer [172].

Parameters Unit Nominal value

kb0 #/kg/s/(kg solute/kg ethanol) 1.73× 108

kg0 m/s/(kg solute/kg ethanol) 5.3
Tg

◦C 42
nb − 1
ng − 1
kv − π/6
ρs kg/m3 1100
v m/s 0.007
zf m 20.16

Technically, the solubility of ibuprofen changes not only with the temperature but also

with the composition of the solution. Water as an antisolvent can be added to decrease

the solubility of ibuprofen as investigated by [172]. However, ibuprofen induces phase

separation in the water-ethanol mixture especially at 40◦C [172]. Moreover, the informa-

tion about ibuprofen solubility in the water-ethanol mixture is not complete. Therefore,

the focus is about the crystallization of ibuprofen in absolute ethanol. The kinetics for

crystallization, i.e., the nucleation rate and the growth rate, in absolute ethanol are given

below, and the values for the kinetic parameters in Eqs. (6.24) and (6.25) are listed in

Table 6.1:

B = kb0S
nb (6.24)

G = kg0exp(
T

Tg
)Sng . (6.25)

6.4.3 Optimization problem

In this section, the structure of the nominal optimization problem of the PFC is intro-

duced in Eq. (6.26). The objective function in Eq. (6.26a) is to maximize the critical

quality attribute (CQA) of the crystallization process, i.e., the mass-based mean crystal

size d43 (see Eq. (6.26f)) at the outlet of the PFC. The MOM implementation of the PFC

model and the kinetics of ibuprofen crystallization are used in Eq. (6.26b) to calculate

the objective function and the constraints of the optimization problem. There are three

inequality constraints and one equality constraint included in the optimization problem.
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The first inequality constraint, Eq. (6.26c), ensures that supersaturation S is within the

metastable zone to avoid primary nucleation. This inequality constraint is important for

two reasons: i) only the kinetics of secondary nucleation is provided by [172], and ii) the

primary nucleation, which is a spontaneous process that happens in the region above the

primary nucleation threshold (PNT ) in the phase diagram as discussed by [172]. For in-

dustrial applications, engineers always attempt to avoid the unstable primary nucleation

to prevent the creation of enormous amount of fine crystals which restrains the growth

of crystals. Moreover, the PNT measured by [172] is used here. The second inequality

constraint, Eq. (6.26d), ensures the yield of the crystallization process is above 95%.

The third inequality constraint, Eq. (6.26e), avoids temperature increase as the kinetics

for dissolution is not included in the model. The equality constraint Eq. (6.26f), in turn,

calculates the value of d43 for the objective function. The PFC consists of 20 temperature

controlling segments, where each segment is almost 1 m long, and the temperature of

each segment is bounded within the range where the solubility information is available,

i.e.; Eq. (6.26g) is fulfilled.

min
T(·)

− d43(zf ), (6.26a)

subject to:

Mathemical model: Eqs.(6.16) to (6.18), (6.20) to (6.25) (6.26b)

Inequality constraints:
S(z)

C∗(T (z))
≤ PNT ∀z ∈ [0, zf ] (6.26c)

C(0)− C(zf )

C(0)− C∗(10◦C)
≥ 95% (6.26d)

dT (z)

dz
≤ 0 ∀z ∈ [0, zf ] (6.26e)

Equality constraints: d43(zf ) =
µ4(zf )

µ3(zf )
(6.26f)

Bounds: 10◦C ≤ T (z) ≤ 40◦C ∀z ∈ [0, zf ] (6.26g)

The case study is coded in MATLAB®(Version 2017b, The MathWorks Inc., Natick,

Massachusetts, USA). The PFC model and the optimization problem are solved by using

the functions ode15s and fmincon, respectively. The PCE model is built with UQLaB

(Version 1.0, ETH Zurich, Switzerland).
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6.5 Results and discussion

First, the results of the nominal design are discussed. Then, the adverse effects of the

parameter uncertainties, which are assumed based on the estimated value and CI from

experiments, on the nominal process design are shown. To alleviate the influence of pa-

rameter uncertainties, the stochastic back-off strategy is then used for the robust design

of the PFC. The double-loop back-off strategy and the stochastic back-off strategy using

Monte Carlo simulations are also implemented as references. Finally, the convergence

and computational demands of the different approaches are compared.

6.5.1 Nominal design

The saturated solution of ibuprofen in pure ethanol at 40◦C is fed into the PFC with

a total length of zf = 20.16 m. The optimal temperature profile for the PFC, which

includes 20 controlling segments, is derived by solving the nominal optimization problem

given in Eq. (6.26). Results derived from the nominal design are depicted in Fig. 6.7.

On the left side of Fig. 6.7, it is shown that the complete mass-based CSD at the reactor

position zf = 20.16 that was derived from Eq. (6.19) with N = 100. On the right side

of Fig. 6.7, the evolution profiles of d43, solution concentration C, and temperature T

along the axis of the crystallizer are illustrated. To gain a better understanding of the

results from the nominal design, the supersaturation profile is given in Fig. 6.8. The first

part of the PFC has a relatively high reactor temperature and low supersaturation; i.e.,

fewer nuclei are generated, and the growth rate is maintained at a comparatively high

value as indicated by the slope of the curve in Fig. 6.7B. Consequently, the consumption

of ibuprofen in solution is also low, and solute concentration C does not decrease too

much at the beginning. However, to achieve the desired yield at the end of the PFC, the

temperature decreases gradually at higher amplitudes, and the supersaturation increases

to its upper limit. As a result, the consumption of ibuprofen in the solution is increased.

The predicted yield at the end of the PFC is 99.31%. With the nominal design, the

final mass-based mean crystal size is maximized while all given constraints are satisfied.

Another important CQA for the crystallization process, i.e, the coefficient of variation

(CV ) of the crystal size distribution according to Eq. (6.27), is also calculated. CV is the

relation between the (mass-based) standard deviation and (mass-based) mean value of

crystal size [186]. It provides an indicator of the spread of the crystals size distribution.

It provides an indication about the consistence in the crystal size. The CV value for the

PFC is equal to 0.21, which is much smaller than 0.5 for a single-stage MSMPRC, and

reveals another important benefit of the PFC. In principle, the CV could also be used
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Figure 6.7: Results from nominal design of plug-flow crystallizer (PFC) for active phar-
maceutical ingredient ibuprofen. A is the mass-based crystal size distribution
(CSD), which is defined as ρsL

3n at the outlet of PFC. B , C and D are the
evolution profile of mass-based mean crystal size (d43), mass concentration
of solute ibuprofen (C) and operation temperature along the axis coordinate,
respectively.
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primary nucleation threshold PNT is the primary nucleation threshold.
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Table 6.2: Uncertainties and feasible ranges of the kinetic parameters based on [172].

Parameters Uncertainty Range

kb0 N (1.73× 108, 2.6× 107) [0,∞]
kg0 N (5.3, 0.69) [0,∞]
Tg N (42, 12.6) [20, 65]

directly as an objective function, but that is beyond the scope of this work.

CV =

√
µ5µ3

µ2
4

− 1 (6.27)

6.5.2 Effect of parameter uncertainties on the nominal design

According to [172], experimental data of the crystallization process are considerably

affected by measurement noise and environmental conditions. The resulting data un-

certainties lead to strong deviations in the estimation of the kinetic parameters for the

nucleation and growth rates. Based on the estimated kinetic parameters and their con-

fidence intervals (CIs) from [172], the parameter uncertainties of kb0 , kg0 , and Tg are

summarized in Table 6.2 and are assumed with Gaussian distributions. Samples of the

kinetic parameters are generated based on the assigned probability distributions, and

simulations of the PFC model with the generated samples and the nominal optimal

solution are conducted to analyze the influence of the parameter uncertainties on the

constraints. Note that only the soft constraints, i.e., the inequality constraints in Eqs.

(6.26c) and (6.26d), are affected by the parameter uncertainties as explained in Chapter

4. In Fig. 6.9(a), it is shown the evolution profile of the supersaturation and its 99%

CI along the PFC axis. When considering parameter uncertainties, the supersaturation

exceeds the PNT with a comparatively high probability. In other words, the inequality

constraint in Eq. (6.26c) might be violated, and thus, lead to undesired primary nu-

cleation. Fig. 6.9(b) presents the probability distribution of the yield of the PFC. The

value of the yield also varies due to the parameter uncertainties, but the corresponding

inequality constraint is still satisfied for all realizations. Thus, in the following, it is

focused on designing a PFC under the condition of parameter uncertainties, so that the

supersaturation does not exceed the PNT .
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Figure 6.9: (a) Profile of supersaturation (S) and its 99% confidence interval(CI) along
the axis of plug-flow crystallizer (PFC). PNT is the primary nucleation
threshold. (b) Probability density function (PDF) of the yield.

6.5.3 Robust design with the stochastic back-off strategy

Robust optimization has the same structure as the nominal optimization in Eq. (A.1),

except that the back-off terms are added to the inequality constraint in Eq. (6.26c) as:

S(z) + b(z) ≤ PNT × C∗(T (z)) ∀z ∈ [0, zf ], (6.28)

in which the value of back-off term b(z) depends on the position in the PFC. In doing

so, it is ensured that the supersaturation does not exceed the PNT in the presence of

parameter uncertainties. The stochastic back-off strategy introduced in Section 6.3 is

then used to solve the robust optimization problem. The maximum iteration number

mmax is set to 10, the desired violation probability of the inequality constraints is set to

1%, and the convergence criterion ε to calculate back-off terms is set to 0.02. For the

PCE model, the polynomial basis is constructed with the Stieltjes procedure integrated

in UQLAB [122], as the boundaries on the parameter uncertainties change the structure

of the distribution. The full set of the polynomial basis is truncated to the maximum

order of 7, and 100 samples are used to estimate the PCE coefficients. For the KDE,

a Gaussian kernel is assumed, an optimal bandwidth is determined [119], and 10,000

samples are used, respectively. Note that these 10,000 samples are evaluated with the

PCE model, and thus, the computational costs of the KDE are negligible. The optimized
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temperature profile is depicted and compared with the result from the nominal design in

Fig. 6.10. As it can be seen, the temperature profile from the robust design is lower than

that from the nominal design for the first half of the PFC and higher for the second half

of the PFC to compensate the effect of the parameter uncertainties on the inequality

constraint for supersaturation.
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Figure 6.10: The operation temperature profiles from the nominal and robust designs.

In Fig. 6.11, the results of the inequality constraints from the robust design are

further analyzed. By comparing the supersaturation profiles given in Fig. 6.11(a) and

6.9(a), it can be seen that the mean value of the supersaturation in the first half of

the PFC is a bit higher than that from the nominal case. The robust design attempts

to consume more ibuprofen solute and to generate more nuclei in the first half which

lowers the supersaturation in the second half of the crystallizer. By doing so, the 99%

CI of the supersaturation from the robust design is perfectly below the PNT . Moreover,

the corresponding back-off terms are illustrated in Fig. 6.11(b). The magnitude of the

back-off terms varies considerably along the PFC axis. Thus, the “time-varying” back-

off term is more preferable than the constant back-off terms as the time-varying term

provides more flexibility in the robust design.
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Figure 6.11: (a) Profile of supersaturation (S) and its 99% confidence interval(CI) and
(b) profile of back-off terms along the axis of plug-flow crystallizer (PFC).
PNT is the primary nucleation threshold. Results are from robust design
of PFC with the stochastic back-off strategy based on polynomial chaos
expansion.

6.5.4 Comparison of the different back-off strategies

In what follows, three different back-off strategies are compared in terms of their per-

formance and efficiency. For the sake of readability, the double-loop back-off strategy

is labeled dlboPEM as the PEM is used to calculate the back-off terms. The proposed

stochastic back-off strategy is labeled sboPCE. The stochastic back-off strategy, in turn,

where Monte Carlo simulations are used for calculating the back-off terms is labeled

sboMCs and serves as the reference. The general setting of the optimization problem

has not been changed; i.e., mmax, the desired violation probability, and the convergence

criteria are the same as in the previous section.

First, the convergence results are depicted and compared in Fig. 6.12. The conver-

gence of the internal and external loops for dlboPEM is shown in Fig. 6.12(a). The

back-off terms converge after the first external iteration, but the desired probability of

the constraint violations is not satisfied. Thus a second external iteration is required.

Within the second external iteration, Eq. (6.8) is used to update the η value which leads

to the specified performance of the robust PFC design. The proposed update concept

(Eq. (6.8)) ensures a target-oriented and systematic correction of the η value, which is

much more efficient than in those studies where different values for η are tested heuristi-
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Figure 6.12: The convergence rates of the back-off values for (a) dlboPEM, (b) sboMCs,
and (c) sboPCE.
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cally [170, 181]. For stochastic back-off strategies, there is only one iteration loop. The

convergence results for the single loop of sboMCs and sboPCE are shown in Fig. 6.12(b)

and 6.12(c), respectively. sboMCs and sboPCE converge with a similar trend as they

differ only in the detail of uncertainty propagation, i.e., the use Monte Carlo simulations

or the PCE. sboMCs requires more iteration steps than sboPCE, which might be due

to the randomness of the samples. The convergence plots in Fig. 6.12 reveal that all

three approaches can ultimately converge to a robust solution. The operation tempera-

ture profiles obtained from the three back-off strategies are compared in Fig. 6.13. The

temperature profiles are almost identical. Thus, all three robustification concepts that

make use of the back-off strategy to converge to the same robust solution. Table 6.3

0 5 10 15 20
Tube length, z / m

10

15

20

25

30

35

40

T
 / 
° 

C

sboPCE
sboMCs
dlboPEM

Figure 6.13: The operation temperature profiles from the nominal and robust designs.

lists more details about the PFC performance, i.e., the E(d43)), the violation probability,

and the computational costs for the different back-off strategies. The same quantities

for the nominal design are also listed for the sake of completeness. Please note that the

violation probability in Table 6.3 is only for the inequality constraint in Eq. (6.26c), and

the computational costs is reflected by the number of evaluations of the original crystal-

lizer model to calculate the back-off terms. The data in Table 6.3 are derived based on

10,000 realizations with the original PFC model. Results from the nominal design have

the maximum E(d43) value, but the violation probability, i.e., 48%, is much higher than

the given specification of 1%. In contrast, the results from the robust designs have much

137



Chapter 6 Stochastic Back-off Robust Process Design

Table 6.3: Results of the mean value of mass-based mean crystal size (E(d43) ), violation
probability from 10000 realizations and computational cost with respect to
the number of model evaluations.

Approaches E(d43) Violation probability
Needed reference

simulations

Nominal 109.3 48% 0
dlboPEM (1st iter) 108.8 3% 10190
dlboPEM (2nd iter) 108.6 1.1% 20342

sboMCs 108.7 1.2% 100000
sboPCE 108.7 0.9% 700

lower violation probabilities, which are close to the desired value of 1%, while there is

only a slight performance loss of E(d43). For the dlboPEM implementation, the violation

probability is almost three times higher than the desired value after the first external

iteration and reduces to almost 1% after the second external iteration. The violation

probabilities from the robust design with sboMCs and sboPCE are close to 1% after

the ”first external iteration”. This indicates that the simpler structure of the proposed

stochastic back-off strategy does not need additional CPU-intensive loop iterations to

ensure the desired robustness in the inequality constraints. Moreover, sboPCE has the

highest efficiency, which is more than 20 times faster than dlboPEM and sboMCs. In

summary, all three back-off strategies can guarantee the robustness of the inequality

constraints in the design of a PFC under parameter uncertainties. However, the PCE-

based stochastic back-off strategy (sboPCE ) has the best computational efficiency, and

thus, it shows the perfect balance of process performance, robustness, and computational

demand.

6.6 Chapter Summary

To guarantee reliable results in model-based process design, effective robustification con-

cepts must be applied. For instance, the iterative back-off strategy proposed by [154]

has received keen interests in academia and industry and has been implemented in var-

ious studies in robust optimization. In this chapter, the original procedure is improved

and, especially, a novel stochastic back-off strategy is proposed with two key benefits:

1) a simpler structure and 2) higher efficiency. The stochastic back-off strategy calcu-

lates back-off terms with a distance function based on the probability distribution of

the constraints. The performance of the adapted conventional back-off approach and
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the stochastic back-off approach are studied for the crystallization of ibuprofen within

a plug-flow crystallizer. To this end, the nominal process design is implemented, with

which the adverse effects of the parameter uncertainties is illustrated. If the param-

eter uncertainties are ignored in the design phase aiming for the highest mass-based

mean crystal size, an optimized temperature profile is derived which, most likely, causes

extreme supersaturation constraint violations. Alternatively, it is successfully demon-

strated that the stochastic back-off approach results in a temperature profile that shows

the perfect balance of process performance and robustness, i.e., a high mass-based mean

crystal size and constraint violations within the given specification. As the novel stochas-

tic back-off concept takes the full information of the density function into account, the

optimization needs only a single iteration loop to converge. Thus, the simpler struc-

ture of the stochastic back-off approach results in lower computational demands than

the adapted conventional back-off approach. Moreover, it is also demonstrated that

polynomial chaos expansion in combination with the kernel density estimator is essen-

tial for deriving meaningful probability density functions at low computational costs.

Compared with standard Monte Carlo simulations, the overall need for CPU-intensive

reference simulations is reduced considerably, i.e., the stochastic back-off strategy is at

least 20 times faster. In general, this strategy also scales well with large-scale process

design problems with many uncertain model parameters based on the recent progress in

highly efficient PCE routines.
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Conclusions and Future Works

This thesis reveals the significance of parameter uncertainties in the process development

of pharmaceutical manufacturing. Thereby, efficient and effective approaches have been

proposed for analysis and design of the pharmaceutical processes with incorporating the

information from parameter uncertainties. Moreover, the application studies considered

in this thesis consists of (bio)chemical reactors, crystallization process and drying pro-

cess, which cover the entire process chain of pharmaceutical manufacturing. Presented

results show that ...

1) ... heterogeneity in the information from parameter uncertainties and process

model can be quantitatively analyzed with global sensitivity analysis. The sensitiv-

ity results could provide decision-makers an in-depth understanding of interaction

between parameters and process outputs to make proper decisions.

2) ... interferences from parameter uncertainties on process performance and criti-

cal constraints could be properly handled with robust process design to meet the

requirements on product quality and process safety in pharmaceutical manufac-

turing.

3) ... the novel approaches proposed in this thesis provide efficient solution strategies

for both process analysis and design. Moreover, the proposed approaches provide

the possibility of incorporating more statistical information of parameter uncer-

tainties, e.g., mutual dependencies and arbitrary probability distributions, which

in turn also result in more reliable solutions for process analysis and design.

7.1 Summary

Performance of designs from model-based tools is hindered with the existence of param-

eter uncertainties in industrial applications. This necessitates the further development
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on the methods in process engineering field, which are implemented for analysis and

design of process units, in the presence of parameter uncertainties. Moreover, fierce

market competition in pharmaceutical manufacturing is the main driving-force for them

to modernize their current production process and follow the QbD initiative proposed

by regulatory agencies. Thereby, the target of this thesis is to investigate and develop

proper methods for sensitivity analysis and robust process design, and implement them

in the development of pharmaceutical processes, as described in chapter 1. The structure

of the thesis is outlined in Fig. 7.1 and the details are summarized as follows.

In order to be able to incorporate the information of parameter uncertainties in the

process analysis and design, efficient methods for uncertainty propagation and quantifi-

cation (UQ) are needed. In chapter 2, methods for UQ are presented and compared,

in which the Point Estimate Method (PEM) and Polynomial Chaos Expansion (PCE)

manifest their superiority in terms of computational load and are used in this thesis. The

basics of PEM and PCE are addressed. Transformation technique is proposed to gen-

eralize the PEM to non-Gaussian distributions and parameter dependencies. Moreover,

techniques for generalization of PCE and efficient algorithm for estimating the coeffi-

cients were also presented. The computational load for PEM is the lowest among these

methods and scales quadratically with the problem size. It is implemented in chapter 4,

5 and 6 for UQ. PCE has moderate efficiency but could approximate the exact shape of

probability distributions of process outputs, and is used in chapter 3 and 6.

Global sensitivity analysis (GSA) aims to quantitatively measure the influence of

parameter uncertainties on process outputs. Two GSA techniques with desired fea-

tures were introduced in chapter 3, i.e., (co)variance-based and moment-independent

approaches. The impact of parameter dependencies is also investigated, which are de-

scribed by the Gaussian copula. PCE is used here for UQ, as information about the

entire probability distributions of model outputs are required for moment-independent

approach. The approaches are demonstrated with a continuous synthesis of API-Scaffold.

The results show that both approaches are able to identify the heterogeneity in the infor-

mation about the influence of parameter uncertainties on process outputs. Additionally,

parameter dependencies are crucial for identifying the most relevant parameter uncer-

tainties and also affect the variation in the process outputs. The obtained sensitivity

measures enhance process understanding and could be used to assist process design.

After evaluating the influence of parameter uncertainties, the ones with appreciable

sensitivities have to be considered in robust process design. In chapter 4, a comprehensive

and efficient framework for robust process design is introduced. Robust formulation for

both inequality and equality constraints are discussed and approximated with statistical
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moments. Especially, the robust equality constraints, which are ill-posed in nature, are

reformulated. Here, the statistical moments are approximated with PEM given in chap-

ter 2 in the absence and presented of parameter dependencies. Two application studies,

which are related to the synthesis block in pharmaceutical manufacturing, are investi-

gated. The proposed framework provides solutions with the right trade-off between the

process performance and robustness, especially the constraints on reactor temperature,

biomass and substrate concentration are satisfied in most realizations. The results show

that second-order moment method is more preferable for approximating the robust con-

straints, as the accuracy of higher-order moments is not guaranteed with PEM. However,

the violation probability of inequality constraints in both studies are still higher than the

expected values. This is because the variation in model outputs are approximated only

with the first two moments and assumed to distributed symmetrically. One straightfor-

ward solution for this problem is adapting the tolerance factors. More rigorous solution

strategies are introduced in chapter 5 and chapter 6. The impact of parameter depen-

dencies manifest also significance on the results from robust process design. Moreover, in

the first case study, the proposed formulation for robust inequality constraints is used for

reducing the variation in outlet temperature. Dramatical decrease in the final product

concentration is observed with narrowing down the relaxed boundaries. In the second

study, GSA is implemented and reduces the computational demand of robust design

about 80%, which reflects the importance of GSA introduced in chapter 3.

In chapter 5, the proposed framework is further extended to the design of a downstream

process, i.e., the freeze-drying process (lyophilization), in which non-Gaussian parameter

uncertainties are involved. The isoprobabilistic transformation based PEM presented in

chapter 2 is used to generate associated PEM samples for the non-Gaussian parameter

uncertainties. However, the additional complexity introduced by the nonlinear transfor-

mation step as well as the Gaussian approximation of model output distribution, which

is also mentioned in the preview paragraph, deteriorate its approximation accuracy of

the variation in process outputs. Alternatively, another approach, in which the Gaussian

mixture distribution (GMD) is combined with PEM for UQ, is proposed for the first time

for robust process design with non-Gaussian distribution. The non-Gaussian distribution

could be decomposed into several Gaussian distributions, for which the PEM samples

can be generated with linear transformation. The component distributions are then

propagated through the process model individually and the model outputs are gathered

and used for robust process design. Both approaches are implemented on the case study

and compared with a reference approach, in which the the parameter uncertainties are

simplified and approximated with single multivariate Gaussian distribution. The results
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reveal that GMD-PEM has the best accuracy among the three approaches in approxi-

mating the variation in model outputs for robust process design. It provides the solution,

which is neither too conservative nor too risky in this case study. With the proposed

GMD-PEM approach, robust profiles for the shelf temperature and chamber pressure

are obtained. With the profiles, the efficiency of the drying process is maximized, while

the temperature Ti and its 99% confidence intervals are constrained in its appropriate

region to avoid irreversible product damage.

In chapter 6, a major limitation on the robust design framework used in chapter 4

and 5 is addressed. That is conducting UQ at each optimization iteration could be still

computationally burdensome if the optimization problem is inappropriately formulated.

Therefore, the iterative back-off strategy proposed in [154] is used to develop novel robust

design framework, which is independent of the formulation of the optimization problem.

The double-loop back-off strategy is proposed firstly, in which the PEM is used in the

internal loop to calculate the value of back-off terms, and the tolerance factor is adjusted

systematically in the external loop to meet the required robustness of inequality con-

straints. However, the double loops could be troublesome for the convergence of back-off

terms and updating the tolerance factor is also non-trivial. Therefore, a novel stochastic

back-off strategy is proposed for the first time for robust process design. It has only

one iteration loop, in which the PCE is used to calculate the back-off terms with low

computational expense. The advantage of using PCE is that the exact shape of proba-

bility distributions of process outputs can be approximated and used for determination

of back-off terms. These two back-off strategies are demonstrated on the robust design of

continuous crystallization process of Ibuprofen, which is an essential separation process

for drug production. The results show that both approaches are able to determine the

robust profile of cooling temperature for the continuous crystallization process. With

this, the mass-based mean crystal size is maximized, while the supersaturation and its

99% confidence interval are ensured to be lower than the primary nucleation threshold.

But, the computational efficient of the novel stochastic approach is at least 20 times

higher than others.

7.2 Further Works

In future work, the following aspects could be further investigated.

1) The model-based process development is classified to 3 stages, as shown in Fig.

1.3. The focus of the thesis is about stage 2 and 3. That is analysis and design
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of various unit operations in the presence of parameter uncertainties. It will be

also interesting and important to extend the GSA techniques and robust design

frameworks to stage 1, in which the structure of the holistic process is designed

and mutual interactions between the unit operations are incorporated.

2) The parameter dependencies considered in this work are described with Gaussian

copula, which is available for the dependence structure without tail dependence.

For more complex dependence structure between parameter uncertainties, other

types of copula might be interesting, such as Archimedean copulas [112], and could

be straightforwardly incorporated with the frameworks proposed in this thesis.

3) In this thesis, the parameter uncertainties are described with well-defined prob-

ability distributions. However, there could exist ambiguities on the probability

distribution itself due to some reasons, such as the degradation of equipment.

Therefore, it is interesting to include the information heterogeneity about the un-

certainty itself in process analysis and design. Moreover, the concept of parametric

probability-boxes (p-boxes) introduced in [188] for describing imprecise uncertain-

ties might be interesting and could be incorporated with the proposed frameworks.

4) The concepts and ideas implemented to GSA techniques and robust design frame-

works could also be extended to other process engineer techniques, such as control

strategy design, optimal experimental design [6] and active fault detection and

diagnose [5]. Moreover, they could also be straightforwardly extended to other

industrial sectors.
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Appendix A

A.1 Additional Results for Sensitivity Analysis with Different

Correlation Coefficients 7

The results of additional four cases with fictitious correlation coefficients are presented

here, where the case 1,2,3, and 4 listed in Table A.1 are the same with the cases depicted

in Fig. 3.10 and Fig. A.1.

Table A.1: Sensitivity results for cases with different correlation coefficients. The corre-
lation coefficients for θ1, θ2, θ3, θ4, θ7, θ8 are assigned with 0.5 and 0.9 for case
1 and 2, respectively. The correlation coefficients for θ1, θ2, θ3, θ4 and θ7, θ8

are assigned with 0.5 and 0.9 for the case 3, and with 0.9 and 0.2 for the case
4.

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

Scov

1 0.258 0.184 0.260 0.182 0 0 0.030 0.062
2 0.242 0.201 0.280 0.168 0 0 -0.026 0.124
3 0.276 0.197 0.278 0.195 0 0 -0.005 0.026
4 0.143 0.121 0.168 0.099 0 0 0.175 0.279

δcor

1 0.126 0.105 0.127 0.104 0.015 0.015 0.036 0.061
2 0.054 0.048 0.058 0.045 0.016 0.014 0.021 0.057
3 0.132 0.110 0.133 0.108 0.015 0.014 0.016 0.029
4 0.045 0.042 0.047 0.038 0.016 0.017 0.117 0.161

As we mentioned in Section 3.5.5, the output variances depend considerably on the

parameter correlation values. Although our primary focus was on correlation coefficients

derived with experimental data, it might be still interesting to demonstrate the effect of

parameter correlations which are less dominating; i.e., not that close to one. Here, we

consider two additional test cases with fictitious correlation values: 0.5 and 0.9. CoDSA

7Part of this appendix has been published in (Xie et al., Reliab. Eng. Syst. Safe., 187, 159–173, 2019
[9])
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Figure A.1: Comparison of the resulting probability density functions of CDf in the
absence and presence of parameter correlations. The correlation coefficients
for θ1, θ2, θ3, θ4 and θ7, θ8 are assigned with 0.5 and 0.9 for case 4, and with
0.9 and 0.2 for case 5.

and MISA results are listed in Table A.1. Obviously, for both sensitivity measures the

importance of parameters θ7 and θ8 increases gradually with higher correlation coeffi-

cients. The overall effect of θ1,θ2,θ3, and θ4 still dominates the output variation but

recedes if the correlation coefficients increase further as the case with experimentally

derived correlations. Furthermore, we include two additional cases 3 and 4, where the

correlation coefficients for θ1, θ2, θ3, θ4 and θ7, θ8 are allocated with different values. The

shapes of the output distribution are similar, see Fig. A.1. The sensitivity results,

however, are completely different, especially for the most significant parameter. The

sensitivity measure from CoDSA and MISA are analogue with minor differences. For

instance, the sensitivity of θ3 and θ7 for case 5 are similar for CoDSA, while the sensitiv-

ity of θ7 is twice as large compared to θ3 for MISA. The reason is that MISA takes into

account not only the output variance but also higher statistical moments, i.e., the entire

output distribution. In Fig. A.2, we see that the shift of the conditional distributions is

mainly due to the change of other moments, e.g., kurtosis, but not the variance which

supports our conclusions considering MISA as a valuable tool in sensitivity analysis.
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(a) (b)

Figure A.2: Comparison of unconditioned distributions (blue line) and conditioned dis-
tributions (red lines) of concentrations of component D considering param-
eters θ3 and θ7 in case 5.

A.2 Structure of Nominal Optimization of the Primary Drying

Process 8

The structure of the nominal optimization of the primary drying process is given below.

Chamber pressure Pc and shelf temperature Ts are manipulated to minimize final drying

time tf (A.1a), with which the frozen product can be completely dried (A.1g), and satisfy

the constraints for the CQA (A.1e) and the technical limitation (A.1f):

min
Ti(·),msub(·),Ts(·),Pc(·)

tf , (A.1a)

subject to:

Mathemical model: Eqs.(5.22) to (5.28) (A.1b)

Bounds: PLc ≤ Pc(t) ≤ PUc (A.1c)

TLs ≤ Ts(t) ≤ TUs (A.1d)

Inequality constraints: Ti(t) ≤ Tc (A.1e)

ṁsub(t) ≤ ṁsub,choke,vial (A.1f)

Equality constraints: msub(tf ) = ρIεApLtotal (A.1g)

8Part of this appendix has been published in (Xie et al., Chem. Eng. Sci., 207, 805-819, 2019 [10])
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[14] René Schenkendorf, Xiangzhong Xie, and Ulrike Krewer. An efficient polynomial

chaos expansion strategy for active fault identification of chemical processes. In

10th World Congress of Chemical Engineering (WCCE10) & 27th European Sym-

posium on Computer Aided Process Engineering (ESCAPE 27), Barcelona, Spain,

1 - 5 October, 2017.

[15] Xiangzhong Xie, Ulrike Krewer, and René Schenkendorf. Robust optimization
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[16] Xiangzhong Xie, Rüdiger Ohs, Antje Spieß, Ulrike Krewer, and René Schenk-
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Jahrestagung und 33. DECHEMA Jahrestagung der Biotechnologen, Aachen, Ger-

many, 10 - 13 September, 2018.

[20] Yongkui Liu and Xun Xu. Industry 4.0 and cloud manufacturing: A comparative

analysis. Journal of Manufacturing Science and Engineering, 139(3):034701, 2017.

[21] Thomas F Edgar, David Mautner Himmelblau, Leon S Lasdon, et al. Optimization

of chemical processes. McGraw-Hill, New York, NY, USA, 2001.

[22] Lorenz T Biegler. Nonlinear programming: concepts, algorithms, and applications

to chemical processes. SIAM, 2010.

[23] William L Luyben. Process modeling, simulation and control for chemical engi-

neers. McGraw-Hill, New York, NY, USA, 1989.

[24] Brian Roffel and Ben Betlem. Process dynamics and control: modeling for control

and prediction. John Wiley & Sons, Chichester (UK), 2007.

[25] Brahim Benyahia, Richard Lakerveld, and Paul I Barton. A plant-wide dynamic

model of a continuous pharmaceutical process. Industrial & engineering chemistry

research, 51(47):15393–15412, 2012.

[26] Ashley F Emery and Aleksey V Nenarokomov. Optimal experiment design. Mea-

surement Science and Technology, 9(6):864, 1998.
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[54] René Schenkendorf. A General Framework for Uncertainty Propagation Based on

Point Estimate Methods. In Second European Conference of the Prognostics and

Health Management Society, PHME14, Nantes, France, 2014.

[55] Emanuele Borgonovo and Elmar Plischke. Sensitivity analysis: a review of recent

advances. European Journal of Operational Research, 248(3):869–887, 2016.
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