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Schenkendorfa,b,*

aInstitute of Energy and Process Systems Engineering, TU Braunschweig, Franz-Liszt-Straße 35,
38106 Braunschweig, Germany
bCenter of Pharmaceutical Engineering, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
r.schenkendorf@tu-braunschweig.de

Abstract
In this contribution, we propose estimating the means and variances required for calculating back-
off terms by using the point estimate method (PEM) as a highly efficient sampling strategy in
robust process design. As case studies, we consider an upstream pharmaceutical process which
involves the synthesis of 2-hydroxy-ketones via enzyme-catalyzed carboligation and a downstream
pharmaceutical process that includes the continuous crystallization of ibuprofen. We show that
the proposed PEM-based back-off approach is significantly faster than conventional Monte Carlo
brute-force sampling methods while maintaining robust solutions with low approximation errors.
In general, the efficient PEM-sampling strategy guarantees the analysis and the robust design of
complex (bio)pharmaceutical process chains.
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1. Introduction

The pharmaceutical industry has a substantial impact on the social and economic welfare of the
individual and society. For the industry to continue producing high-quality and effective drugs
even in the face of economic constraints, rising population and diseases, regulatory bodies and
industry leaders alike have stipulated Quality by Design (QbD) as an essential paradigm. At the
heart of QbD are mathematical models which are crucial for analyzing, optimizing, monitoring
and controlling pharmaceutical processes (Emenike et al., 2018a,b). These models need to be
properly calibrated to ensure that they reflect the physical processes they represent (Schenkendorf
et al., 2018). In calibrating these models, a crucial issue that has to be dealt with is the presence
of model and parameter uncertainties. A possible way to robustify processes under uncertainty
is by using the back-off approach. This approach involves tightening violated constraints and
shrinking the feasible region by introducing margins called back-offs. By so doing, the worst-case
realization of a given process will still be feasible despite variations in the constraints (Shi et al.,
2016). Moreover, these back-offs are usually calculated offline, and thus, do not lead to additional
complexity of the optimization problems. Typically, Monte Carlo simulations are used to estimate
the statistical moments (i.e., means and variances) required for calculating back-offs (Shi et al.,
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2016). However, for these means and variances to be accurately estimated, numerous Monte Carlo
simulations are usually required. Thus, this could lead to high computational costs especially when
a single Monte Carlo simulation of the process is computationally expensive.

Alternatively, these statistical moments can be approximated efficiently by using the point estimate
method (PEM). It has been shown that the PEM is a computationally efficient and relatively accu-
rate sampling strategy for estimating statistical moments (Schenkendorf, 2014; Xie et al., 2018b).
Recently, we proposed a systematic robust optimization framework that combines the elementary
process functions methodology, global sensitivity analysis, and the back-off approach (Emenike
et al., 2019). A key contribution in Emenike et al. (2019) was a new back-off algorithm that uses
the PEM instead of Monte Carlo simulations. We showed that the proposed PEM-based back-off
approach is at least 10 times faster than the conventional Monte Carlo-based back-off approach
while maintaining the quality of robust solutions. Maußner and Freund (2018) used cubature rules
in lieu of Monte Carlo simulations and came to similar conclusions.

In this contribution, we build upon our original work (Emenike et al., 2019) by applying the novel
algorithm in the presence of correlated parameter uncertainties and show that the robustification
algorithm is not limited to upstream processes but is a versatile tool for whole pharmaceutical
process chains. To this end, we apply the novel algorithm to an upstream pharmaceutical pro-
cess that involves the synthesis of 2-hydroxy-ketones via enzyme-catalyzed carboligation and a
downstream pharmaceutical process that includes the crystallization of ibuprofen. Details of the
algorithm and the results for the case studies are presented in sections 2 and 3, respectively.

2. Methodology

A major advantage of the back-off approach to dynamic optimization under uncertainty is that its
formulation is of similar complexity as the nominal dynamic optimization problem. The robust
optimization problem (Problem 1) with time-varying back-offs b(t) is given as:

minimize
x(·),u(·),z(·)

Φ(x(tf))) (1a)

subject to ẋ(t) = f(x(t),z(t),u(t), p̄), ∀t ∈T , (1b)
g(x(t),z(t),u(t), p̄) = 0, ∀t ∈T , (1c)
h(x(t),z(t),u(t), p̄)+b(t)≤ 0, ∀t ∈T , (1d)
x(t0) = x0, (1e)
u(t) ∈U , (1f)

on the time horizon T := [t0, tf] ⊂ R, where x, u, z represent states, controls, and algebraic vari-
ables, respectively. g and h represent the equality and inequality constraints, respectively. As we
can see from Problem 1, the dynamic optimization with back-offs is optimized at the nominal pa-
rameter vector p̄. Here, the time-varying back-offs b(t) in Eq. 1d are included as margins to shrink
the feasible region of the dynamic optimization problem and thus, making the optimal operating
conditions robust.

As pointed out by Shi et al. (2016), the solution from Problem 1 is not guaranteed to be optimum,
unless the back-offs are insensitive to the decision variables. Therefore, an iterative approach is
proposed to update the back-offs with the optimal design from the last iteration. The solution
from Problem 1 and back-offs are consistently improved and can be exported once the back-offs
converge. We depict the details regarding the iterative algorithm in Fig. 1. Moreover, we use the
PEM instead of Monte Carlo simulations used by Shi et al. (2016) to derive the statistical moments
required to calculate the back-offs. The PEM utilizes a relatively small number of deterministic
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Figure 1: Computational scheme for the point estimate method-based back-off approach for robust optimiza-
tion, where m is the iteration index.

samples to compute the statistical moments of system states and thus, facilitates an efficient back-
off algorithm. For more details regarding the PEM, please refer to Xie et al. (2018b) and Emenike
et al. (2019).

3. Case studies

3.1. Enzyme-catalyzed carboligation

First, we consider an upstream pharmaceutical process that involves an enzyme-catalyzed carboli-
gation between propanal (A) and benzaldehyde (B) to form 2-hydroxy-ketones (BA) and benzoin
(BB). Here, we aim to maximize the formation of the target product BA under the correlated pa-
rameter uncertainties specified in Xie et al. (2018a). The mechanistic model for this reaction is
given as:

ẋ(t) = f(x(t),z(t),u(t),p) =



uA·Cin
A

V − CA
V (uA +uB)+ rA

uB·Cin
B

V − CB
V (uA +uB)+ rB

−CBA
V (uA +uB)+ rBA

−CBB
V (uA +uB)+ rBB

−CE
V (uA +uB)+ rE

uA +uB


, (2)

where Ci is the concentration of species i; rA,rB,rBA,rBB, and rE are the reaction rates for A, B,
BA, BB, and E, respectively; uA and uB are the controlled feed rates; and Cin

A and Cin
B are the inlet

feed concentrations of A and B, respectively. For details on the model and model parameters, we
refer to Emenike et al. (2019). First, forward simulations by using 10,000 Monte Carlo simulations
were performed on the nominal problem to determine which constraints were violated, and it was
found that only the inequality constraint bounding CBB was violated. Therefore, we focus on
robustifying only the CBB inequality constraint as shown in Eq. (3):

0≤CBB(t)≤ 2.78 mM−b(t), ∀t ∈T , (3)

where 2.78 mM is the solubility limit of BB, T := [t0, tf] ⊂ R, and final time, tf = 300 min. By
applying the robust optimization strategy presented in Section 2 and aiming to satisfy Eq. 3 at a
probability of 99.90%, we see in Table 1 that the PEM-based back-off algorithm is able to achieve
this after just one iteration of the algorithm.
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Table 1: Comparison of the point estimate method-based algorithm with the Monte Carlo-based back-off
algorithm for robust dynamic optimization in comparison to to the nominal case.

Scenarios CBA(tf) mM Violation probability [%] CPU time [s]
Nominal 3.60 57.65 4

PEM-based back-off 3.48 0.16 114
Monte Carlo-based back-off 3.49 0.13 2626
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Figure 2: Results for the upstream pharmaceutical process: enzyme-catalyzed carboligation. (a) robust con-
trols. (b) comparison between PEM and Monte Carlo simulations.

Moreover, this was achieved at a computation time that is 23 times faster than the conventional
Monte Carlo-based back-off algorithm which was used as a benchmark for our algorithm (see
Table 1). This speed-up is mainly due to the lower number of PEM sample points (2×132 +1 =
339) in comparison to the 10,000 Monte Carlo sample points. It is also possible to further reduce
the PEM points by using a global sensitivity analysis as shown in Emenike et al. (2019). It can
be seen in Fig. 2b that the time-varying back-offs calculated by both approaches are close with
a marginal root-mean-square prediction error (RMSE) of 0.0024. This low RMSE validates the
accuracy of our PEM-based approach. Furthermore, we note that the probability of violation and
the maximum CBA(tf) obtained are very close for both approaches, thus, suggesting that our PEM-
based back-off approach is very accurate for the case study considered. The robust controls (see
Fig 2a) lead to a maximum concentration of 3.48 mmolL−1 which is 3.33% lower than the nominal
value. This marginal decrease shows that the novel approach is not adversely conservative while
ensuring robustness. Therefore, these results demonstrate that the PEM-based back-off strategy is
very efficient and useful for the enzyme-catalyzed carboligation considered in this work.

3.2. Crystallization of ibuprofen

Second, we consider the continuous crystallization of ibuprofen in a plug-flow crystallizer (PFC)
as a representative downstream pharmaceutical process. The crystal size distribution (CSD) n
was chosen as an important key performance indicator for QbD. A population balance equation
in combination with mass balance equations in liquid and solid phase was used to predict the
evolution of the CSD along the PFC. To reduce the computational complexity, we discretized the
PFC model to ordinary differential equations by using the classical method of moments. The
resulting moment-based model for PFC is given in Eqs. (4) to (6):

dµ0

dz
=

B
v

(4)

dµl

dz
=

BLl
0

v
+

kGµl−1

v
l = 1, . . . ,5 (5)



A point estimate method-based back-off approach to robust optimization 5

Table 2: The mean value of mass-based mean crystal size d43 and the probability of a constraint violation
(supersaturation) from the nominal design and the robust design with the PEM-based back-offs.

Scenarios E(d43) Violation probability [%]
Nominal 109.3 48

PEM-based back-off 108.8 3

Liquid:
∂C
∂ z

=−kvρs

v
(BL3

0 +3Gµ2), (6)

where z is the axis coordinate of the PFC, m; L0 is the nuclei size, m; v is the superficial velocity
of slurry along the PFC, ms−1; kv and ρs are the shape factor and the crystal density, kgm−3, and
C is the mass of solute per kg slurry, kgkg−1. µk is the kth moment which is used to describe the
major information in CSD and defined with Eq. (7). B and G are the nucleation rate, #kg−1 s−1,
and the growth rate, ms−1, which describe the kinetics of the crystallization of ibuprofen and are
determined by the degree of supersaturation S, as shown in Eqs. (8) and (9):

µl =
∫

∞

0
LlndL, l = 0, . . . ,5 (7)

B = kb0S(T ) (8)

G = kg0exp
(

T
Tg

)
S(T ) (9)

This case study aims to maximize the mass-based mean crystal size d43 (i.e., the ratio between µ4
and µ3) by manipulating the temperature along the PFC. There is an inequality constraint in the
design which restricts the supersaturation of ibuprofen in the solution below the primary nucleation
threshold to ensure no primary nucleation occurs. Several other inequality constraints on the yield
of product and temperature gradient are also satisfied but not discussed in what follows, as they are
not violated even in the presence of parameter uncertainties. Rashid (2011) estimated the values of
the kinetic parameters kb0 , kg0 , and Tg with designed experiments and showed the estimated values
are not accurate and associated with uncertainty. The parameter uncertainties are then described
by Gaussian distributions and thus, are taken into account in the robust design of the PFC in this
work.

For the nominal design, the parameter uncertainties are neglected. The obtained d43 is 109.3 µm
(see Table 2). However, the inequality constraint on supersaturation is violated with a probabil-
ity of 48% due to parameter uncertainties. The violation probability of inequality constraint is
determined with 10,000 evaluations of the PFC model with the random samples generated from
the probability distributions of kinetic parameters. The PEM-based back-off strategy introduced
in Section 2 is then implemented to design a robust PFC tolerant to the parameter uncertainties,
where the target violation probability of the inequality constraint is set to smaller than 1%. Results
from the iterative back-off approach are depicted in Fig. 3. As we can see in Fig. 3a, the tolerance
factor εtol , which represents the difference between the back-offs in the adjacent iterations, con-
verges within 10 iterations. The resulting time-varying back-offs are plotted in Fig. 3b, in which
the supersaturation is shrunk more in the middle and less on both sides of the PFC to mitigate the
effect of parameter uncertainties. According to the results listed in Table 2, the d43 from the robust
design decreases slightly when compared to the value from nominal design. The probability of
constraint violation decreases to 3%. Thus, the process robustness is increased at the cost of a
deteriorated performance. Although the back-off approach increases the robustness of the process
significantly, the obtained violation probability 3% is still three times larger than the target value
of 1%. The reason for this is that the back-offs calculated with the variances of system states are
actually not accurate when their probability distributions are asymmetric, as shown in Fig. 3c.
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Figure 3: Results for the downstream pharmaceutical process: continuous crystallization of ibuprofen. (a)
Convergence plot of the back-off terms. (b) value of the time-varying back-off terms at the last iteration. (c)
probability distribution of supersaturation S at location z = 11m of the PFC.

4. Conclusions
In this work, we proposed a PEM-based back-off approach for the robust design of upstream and
downstream pharmaceutical processes. First, the approach was implemented for the design of a
fed-batch reactor for enzyme-catalyzed carboligation in the presence of parameter correlations and
uncertainty. The results showed that the proposed PEM-based back-off approach is significantly
faster than the conventional Monte Carlo-based back-off approach while achieving high accuracy
of the robust solutions. The method was also applied to the design of continuous crystallization of
ibuprofen in the presence of uncertainties in the kinetic parameters. This approach also lowered the
value of constraint violation and significantly improved the robustness of the process. However,
the probability of a constraint violation is still three times higher than the given target value due to
the asymmetric probability distribution of system states. Future work will include non-Gaussian
probability distributions for robust process design.
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