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A B S T R A C T

Parameter uncertainties affect model-based system reliability analysis and may lead to safety issues in model-
based process design. Global sensitivity analysis (GSA) is a valuable tool to quantify the influence of parameter
uncertainties in the variation of the model output. However, GSA has not been widely employed in the field of
chemical engineering, especially for processes with correlated model parameters. Parameter correlations, in
turn, are quite common when identifying model parameters with experimental data. Thus, we propose and
critically compare (co)variance-based and moment-independent GSA techniques for analyzing chemical pro-
cesses in the absence and presence of parameter correlations. Technically, polynomial chaos expansion is used to
reduce the computational burden for GSA. The proposed methods are demonstrated for a continuous synthesis
process. Here, the results show significant differences in the parameter sensitivity rankings when parameter
correlations are considered or not while the moment-independent technique provides a universal and easy-to-
interpret sensitivity measure.

1. Introduction

Engineers use optimization and control tools based on mathematical
models to design the structure and improve the reliability and safety of
chemical processes [2,14,28]. Mathematical models, which attempt to
mimic the chemical processes, are actually functions of parameters.
However, different types of uncertainties are present in the model
parameters, and thus, the model outputs deviate from reality and vary
within a certain range. The existence of uncertainties increases the
difficulty in model-based design of chemical processes [55,63] and may
lead to critical operation conditions. To achieve reliable model-based
results, methods for quantifying and analyzing the uncertainties of
chemical processes are required. The parameter uncertainties usually
result from either the imperfection of experimental measurements
(epistemic uncertainties) or the intrinsic randomness (aleatoric un-
certainties). The uncertainties can be decreased but not totally elimi-
nated by adding more information from experiments [3]. Many scholars
have investigated the design of chemical processes under the condition
of uncertain parameters [18,26,38,49]. These studies are based on
propagating all parameter uncertainties through the chemical processes
and quantifying the variation in the model response. The aim of the
works is to reduce the variation in the model response and robustify the

processes by using systematic design tools. However, as the computa-
tional demand for embedding uncertainty propagation and quantifica-
tion (UQ) into process design tools increases exponentially with the
number of uncertain parameters [3], their efficiency is not guaranteed
for large-scale problems. One solution for this is to screen out the
parameters that have significant impacts on the model responses and
reduce the scale of the problems by neglecting the rest of the para-
meters [40]. The method used to analyze the influence of uncertain
parameters on the model response is called sensitivity analysis (SA). In
practice, even in the recent past, SA has been falsely implemented and
misinterpreted in various disciplines, especially in the field of chemical
engineering [39]. As done in this work, it is necessary to demonstrate
the impact of critical factors, e.g., the existence of parameter correla-
tions, on the reliability of the results of SA and the way how to deal with
them appropriately.

SA plays an essential role in mathematical modeling and model-
based design, which allows us to have a deep insight into the relevance
of model parameters and model responses [6,10,44]. SA provides cru-
cial information for model reduction [52] and control strategy design
[20]. SA methods are categorized into two groups: local and global SA.
Local SA quantifies deviation of the model response with respect to a
step change in an individual parameter around its nominal value. The
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associated methods for local SA are the finite difference-based method
[6] and differential-based method [5]. The major advantage of local SA
methods is that they are simple and straightforward to implement
without cumbersome model evaluations. However, local SA methods
lead to the inevitable loss of information regarding the sensitivities and
interactions of the parameters because only the local and individual
effects of parameters are considered [41]. In contrast, global SA (GSA)
quantifies variations in model output on the entire domain of the
parameter space and comprehensively analyzes the interactions among
parameters. Different techniques for GSA are available, such as the
derivative-based methods [9,48], non-parametric methods [12,17],
variance-based methods [42,43], and moment-independent methods
[4]. A detailed review of those methods is provided by Saltelli et al.
[6,40]. Numerous works, which implement SA for chemical processes,
are based on local SA, such as [1,20,52]. However, [16,64] compared
the results from local SA and GSA for a chemical reactor design and
concluded that GSA is preferable, especially for chemical processes with
high nonlinearity. In this article, two highly promising methods for GSA
are compared: (i) Sobol’ sensitivity indices (SSI) representing the clas-
sical variance-based approach [46], and (ii) the moment-independent
sensitivity analysis (MISA) analyzing the entire model variation [4].

The SSI and MISA are commonly used for sensitivity analysis of
problems with independent model parameters [3,4,8]. However, pro-
blems with correlated model parameters, which arise from inherent
parameter dependences or parameter identification procedures, are the
standard in chemical processes and other industrial applications
[16,27,36,53]. The parameter space is restricted by the correlations and
is different from the one without correlations, which is illustrated in
Fig. 1. This could lead to a different impact onto the analyzed process
model. Thus, the sensitivity analysis and robust design under the hy-
pothesis of independent parameters might lead to unreliable results if
the correlations actually exist. As the SSI is defined under the as-
sumption of independent parameters, methods for variance-based sen-
sitivity analysis of systems with correlated random variables were in-
troduced in the literature, such as [24,29,30,54,62]. The covariance
decomposition-based sensitivity analysis (CoDSA) proposed by Li et al.
[24] and further explained by Sudret and Caniou [50] is a promising
tool for dealing with problems in the presence of correlations. In con-
trast to the SSI, MISA is not based on the assumption of independent
parameters, and thus can be directly extended to problems with cor-
related parameters [4].

The SSI, CoDSA and MISA are commonly computed by using Monte
Carlo simulation [4,24,47]. However, Monte Carlo simulations require
a large number of deterministic simulations and become computa-
tionally expensive especially for large-scale problems. In order to con-
front the problem, a surrogate model is used to substitute the compu-
tationally expensive model. To this end, a polynomial chaos expansion
(PCE) surrogate model is implemented [11]. The PCE model is esti-
mated by using least angle regression (LAR[13];). The sensitivity
measures are computed through the coefficients of the PCE model or
rapid PCE model evaluations [50].

In this article, we answer two questions: (1) How does the

performance of the (co)variance-based SA compare with that of the
MISA in chemical processes? (2) How do the correlations among
parameters impact the parameter sensitivities? To this end, we first
provide a deep insight into the different implemented methods for GSA;
i.e., the SSI, CoDSA and MISA approach. Second, we analyze the per-
formance of the proposed methods with an application to a continuous-
flow reactor in the absence and presence of parameter correlations by
following the framework shown in Fig. 2.

The remainder of this paper is organized as follows. Section 2 pre-
sents the method for describing and sampling independent/correlated
random variables. Section 3 describes the mathematical formulation
and properties of the SSI, CoDSA and MISA. Section 4 presents the PCE,
LAR and computational framework of these sensitivity measures. In
Section 5, the application to a continuous-flow reactor is illustrated and
discussed. The conclusion is given in Section 6.

2. Independent and correlated random model parameters

Before starting with the methods for sensitivity analysis, we briefly
explain some definitions for multivariate distribution and the difference
between independent and correlated model parameters.

In this article, the uncertainties are assigned to the model para-
meters and described with a specific type of probability distribution, for
example, normal and uniform distribution. Note that the model para-
meters could also be design variables, which depends on the type of the
problems we have.The model response Y is represented as the function
G:

Y G G X X XX( ) ( , , , ),n1 2= = … (1)

where X X X, , , n1 2 … are n random model parameters. The probability of
the random parameters on their entire domain are given by an n-di-
mensional joint probability distribution (fX(x)), while the probability of
Xi without reference to the value of the other parameters and with re-
ference to the values of the other parameters is given by the marginal
distribution ( f x( )X ii ) and the conditional distribution ( f x( )X X x ii i i=∼ ∼ ),
respectively. Samples for model parameters could be drawn from one of
these distributions based on the purpose. For example, a sample group
with a constant value for Xi is generated from the conditional dis-
tribution f x( )X X x ii i i= ∼∼ . Note that choosing the right distribution is ex-
tremely important because the conditional and marginal distributions
are completely different in the case of correlated model parameters.

For independent model parameters, the conditional distribution for
Xi is not affected by the values of other parameters and is defined by its
marginal distribution. Their joint distribution is simplified to the pro-
duct of the marginal distributions of each parameter:

f f x f x f xx( ) ( ) ( ) ( )X X X nX 1 2 n1 2= … (2)

Note that the marginal distributions for each parameters are always
given in advance. An example of independent parameters is shown in
Fig. 1 (D) which illustrates independent bivariate normal distribution.

For the correlated model parameters, the equivalence between the
marginal and conditional distribution and the simplification of the joint

Fig. 1. Exemplary illustration of the parameter correlation
effect on sensitivity analysis: A correlated bivariate prob-
ability density function of two process parameters (A) results
into a proper parameter sensitivity ranking (B). Parameter θ1
has a high sensitivity (H), and the sensitivity of θ2 is low (L).
For the same process model (C) but ignoring parameter cor-
relations (D) the sensitivity ranking is misleading (E).
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distribution in Eq. (2) no longer hold. In order to obtain the joint dis-
tribution for correlation model parameters, copula formalism [33] de-
rived from Sklar’s theorem provides the link between the joint and
marginal distributions for all types of distributions no matter whether
they are independent or not [45]. The copula formalism is written as
follows:

f c F x F x f xx( ) ( ( ), , ( ))· ( ),X X n
i

n

X iX 1
1

n i1 ∏= …
= (3)

where F x( )X ii is the marginal cumulative density for random parameter
Xi. Here, c F x F x( ( ), , ( ))X X n1 n1 … is the copula density which can be de-
rived by transforming the copula function C F x F x( ( ), , ( ))X X n1 n1 … :

c F x F x
C F x F x

F X F x
( ( ), , ( ))

( ( ), , ( ))
( ) ( )X X n

n
X X n

X X n
1

1

1
n

n

n
1

1

1

… =
∂ …

∂ …∂ (4)

One frequently used copula function is the Gaussian copula which is
formulated as:

ρ ρC F x F x F F F x F F x( ( ), , ( ); ) ( ( ( )), , ( ( )); )X X n n X X n1
1

1
1

n n1 1… = …− − (5)

Here, Fn( · ) is the multivariate cumulative Gaussian distribution func-
tion with correlation matrix ρ, and F (·)1− is the inverse standard
Gaussian distribution function. The correlation matrix consists of
Pearson’s correlation coefficients (ρij), which quantifies the correlation
between Xi and Xj and is defined as:

ρ
cov X X

σ σ
( , )

,ij
i j

i j
=

(6)

where cov is the covariance function, and σi is the standard deviation of
Xi. The values of the correlation coefficient ρ are within the range−1 to
1, where 0 and 1(−1) represent independent and completely positive
(negative) correlated variables, respectively. The Gaussian copula is
available only for linear dependence which is shown in Fig. 1 (A). For
variables with non-linear correlations, other copulas are required. Ad-
ditional descriptions of other copulas are beyond the scope of this paper
and refer to [33]. For chemical engineering applications, the correlation
matrix is always used, and thus, the Gaussian copula is a proper option
for this paper.

Samples of correlated and independent bivariate distributions are
illustrated in Fig. 1 (A) and (D), respectively. Although the variables
have the same marginal distributions, but the shapes of the sample
spaces are completely different. The correlation between two para-
meters restricts the sampling space, which completely changes the in-
formation obtained from the sensitivity analysis.

3. Methods for global sensitivity analysis in the absence and
presence of correlation among the model parameters

In this section, we briefly review the mathematical formulation and
definition of the sensitivity measures for the methods used in the cur-
rent article for sensitivity analysis, i.e., the SSI, CoDSA and MISA.

3.1. Sobol’ Sensitivity indices (SSI) for independent model parameters

The SSI derived from the decomposition of the model output var-
iance [46] is widely used for global sensitivity analysis of problems
with independent model parameters.

For function Y G X( )= of finite variance, it can be uniquely de-
composed as follows:

G G G X G X X G X XX( ) ( ) ( , ) ( , , ),
i

n

i i
i j n

ij i j n n0
1 1

12 1∑ ∑= + + + ⋯+ …
= < < <

⋯

(7)

where the partial functions are defined as:

G E Y( ),0 = (8)

G E Y G GX X( ) ( ) ,u u X u
w u
w

w 0u ∑= − −
⊂
≠∅

∼

(9)

where E( · ) denotes the expectation operation. The uniqueness of the
function decomposition is ensured based upon the following properties
of the partial functions:

G f x dX iX u( ) ( ) 0 ,X i iu u i∫ = ∈ (10)
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Fig. 2. Framework for global sensitivity analysis, upper rectangle gives problems, middle rectangle presents the methods to solve the sensitivity analysis problems,
lower rectangle presents the results and their potential applications.

X. Xie et al. Reliability Engineering and System Safety xxx (xxxx) xxx–xxx

3



G G f dX X x X u v( ) ( ) ( ) 0u u v v X∫ = ≠ (11)

u and v are different subsets of the full index set n{1, , }… . Note that
G GX( )u u 0= if u is an empty set. Xu includes the variables marked with
the numbers in subset u.

Based on the orthogonal property of the component function de-
scribed in Eq. (11), the decomposition of the variance of function G(X)
can be deduced from Eq. (7) and is written as:

Var Y V V V( ) ,
i

n

i
i j n

ij n
1 1

12∑ ∑= + + ⋯+
= < < <

…
(12)

where

V V E Y VX( ( )) ,u X X u
w u
w

wu u ∑= −
⊂
≠∅

∼

(13)

and ∼u denoting the complementary subset of u. Var(Y) is the var-
iance of function G(X). V V, , ,i ij … and V n123… are partial variances which
describe the effect of individual parameters or parameter interactions
on Var(Y).

Based on the normalization of Eq. (12), [46] introduced the SSI as
follows:

S V
Var Y( )

,i
uc i=

(14)

S
V

Var Y( )
,ij

uc ij=
(15)

⋯

S V
Var Y( )n

uc n
12 ,

12=…
…

(16)

Si
uc are called the first-order sensitivity indices and S S, ,ij

uc
n

uc
12… … are

called interaction sensitivity indices. First-order sensitivity indices give
the percentage of the total variance of Y due to the uncertainty in each
input variable, whereas the interaction sensitivity indices measure the
interaction among input variables. Moreover, the total sensitivity in-
dices ST

uc
i are introduced to describe the contribution of single variables

Xi and their interactions with other model parameters, which is defined
as [40]:

S
V V V

Var Y( )T
uc i i j i n, 1
i =

+ +⋯+ … …

(17)

Practically, instead of calculating 2 1n − sensitivity indices, which are
the total number of the first-order and interaction terms and increase
dramatically with larger n, only the total sensitivity indices and the
first-order sensitivity indices (with a number of 2n) are calculated to
save computational costs.

The SSI performs satisfactorily and reflects the model structure for
functions with independent model parameters. However, a problem
arises in implementing the SSI for functions with correlated model
parameters as discussed in [34]. Therefore, other decomposition con-
cept and new sensitivity indices are required for problems with corre-
lated model parameters [24].

3.2. Covariance decomposition-based sensitivity analysis (CoDSA) for
correlated model parameters

As we described in Section 2, the entire sampling space for corre-
lated parameters is different from that for independent parameters. This
might result in the shift of the mean and the variance, or more generally
the entire distribution, of the model response as shown in Fig. 3.
Therefore, it is necessary to calculate the sensitivities in the presence of
parameter correlations.

One idea for dealing with correlated random parameters is using
isoprobabilistic transformation concepts, such as the Rosenblatt

transformation [37,53] and the Nataf transformation [21]. By utilizing
those transformations, the original correlated variables are converted to
new independent variables. For instance, this approach has been ap-
plied in [29,30]. Here, some new sensitivity measures are given re-
garding parameter correlations. Alternatively, as proposed by Li et al.
[24], new sensitivity indices can be derived which are based on the
covariance decomposition of function G(X). As there is no need for an
isoprobabilistic transformation step, the covariance decomposition ap-
proach is of primary interest in this work.

3.2.1. Covariance decomposition
Let us consider the second-order function G(Xcor) again, but with

correlated model parameters. As pointed out by Li et al. [25], the same
functional decomposition of G( · ) is still available, as the additional
correlations among the model parameters do not affect the structure of
the model. Therefore, similar functional relationships between the
model parameters and the outputs can be derived as:

Y G G G X G X X

G X X

X( ) ( ) ( , )

( , , ),

cor

i

n

i i
cor

i j n
ij i

cor
j
cor

n
cor

n
cor

0
1 1

123 1

∑ ∑= = + +

+⋯
+ ⋯

= < < <

⋯ (18)

G E Y( ),0 = (19)

G E Y G E GX( ) ( ) [ ],cor

n
u u X

w u
w

u w
u w

X w
{1,2, , }

u u∑ ∑= − −
⊂ ¬⊇ ⊆ …

∩ ≠∅

∼ ∼

(20)

where E (·)X u∼ is the operator which calculates the (conditioned) mean
value of the output with the marginal distribution of X∼ u. After the
decomposed functions are constructed, the correlations among the
parameters should be considered for the sensitivity analysis. Note that
G X( )cor

u u is not mutually orthogonal for the correlated model para-
meters, and thus, the variance decomposition of model output Y in
Eq. (12) is no longer defined. Therefore, the covariance decomposition
of Var(Y) was introduced by Li et al. [24]:

Var Y Cov G G G

Cov G G

X X

X X

( ) ( ) , ( ) ,

[ ( ), ( )],

n

cor cor

k

cor cor

u
u

u u

u
u

u u

0
{1,2, , }

{1,2, , }

∑

∑

=

⎡

⎣

⎢
⎢
⎢
⎢

⎛

⎝

⎜
⎜⎜

+
⎞

⎠

⎟
⎟⎟

⎤

⎦

⎥
⎥
⎥
⎥

=

⊂ ⋯
≠∅

⊂ ⋯
≠∅ (21)

where Var(Y) is exactly partitioned by Cov G GX X[ ( ), ( )]cor cor
u u which

describes the total contribution of component function G X( )cor
u u to the

total variance of output Var(Y). Further decomposition of
Cov G GX X[ ( ), ( )]cor cor

u u can be used to separate the total contribution
into two parts similar to:
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Fig. 3. Exemplary illustration of probability distributions of the model response
(A) with independent (C) or correlated random parameters; i.e., Case 1 (B) and
Case 2 (D) are two different situations decided by the structure of the model and
dependency among the model parameters.

X. Xie et al. Reliability Engineering and System Safety xxx (xxxx) xxx–xxx

4



Cov G G

Cov G G G

Var G Cov G G

X X

X X

X X X

[ ( ), ( )]

( ), ( ) ,

[ ( )] [ ( ), ( )]

cor cor

cor

k

cor

cor cor cor

u u

u u
u

u

u u

u u
v u

u u v v

0
{1,2, , }

∑

∑

=
⎡

⎣

⎢
⎢
⎢

+
⎤

⎦

⎥
⎥
⎥

= +

⊂ ⋯
≠∅

≠ (22)

Var G X[ ( )]cor
u u denotes the contribution of the component function to

Var(Y), which depends on the function itself (structure) and the mar-
ginal pdf f X( )X uu only. Cov G GX X[ ( ), ( )]cor cor

v u u u v v∑ ≠ denotes the con-
tribution due to the correlation among the model parameters.

Obviously, the covariance decomposition has a completely different
structure compared to the variance decomposition for the independent
case. The major difference between them is that the component con-
tribution of the covariance decomposition (both covariance parts of
Eqs. (21) and (22)) could be negative, which can never happen in
variance-based decomposition. Due to the participation of correlations,
new sensitivity indices are required for the sensitivity analysis.

3.2.2. Covariance-based sensitivity indices
Li et al.[25] introduced three new sensitivity indices for CoDSA,

which are obtained by renormalizing Eqs. (21) and (22) with Var(Y)
and formulated as follows:

S Cov G G Var YX X[ ( ), ( )]/ ( ),u
cov cor cor

u u= (23)

S Var G Var YX[ ( )]/ ( ),u
U cor

u u= (24)

S Cov G G Var YX X[ ( ), ( )]/ ( )u
C cor cor

v u
u u v v∑=

≠ (25)

The new indices are called total covariance-based sensitivity indices
S ,u

cov structural sensitivity indices S ,u
U and correlative sensitivity indices

Su
C [25]. The structural and correlative sensitivity indices indicate, in

turn, the sensitivity of model structure and correlations among the
model parameters on model output Y. Su

cov is the sum of the two sen-
sitivity indices as shown in Eq. (26) and presents the total effect on
model output Y:

S S Su
cov

u
U

u
C= + (26)

Note that the sum of Su
cov for all possible subset u is equal to 1 no matter

whether the individual value of Su
cov is positive, negative or larger than

1. The three sensitivity indices could be the sensitivities for individual
parameters (first-order) or interactions among two or more variables
depending on subset u. The total sensitivity indices can be directly
extended for CoDSA similar to Eq. (17), and thus, we have the total
covariance-based total sensitivity indices S ,T

cov
i structural total sensi-

tivity indices S ,T
U
i and correlative total sensitivity indices ST

C
i . The

structure of all the indices used for CoDSA is illustrated in Fig. 4, where
the structural sensitivity indices are listed on the left hand side and the
correlative sensitivity are listed on the right hand side.

As mentioned previously, the assumption of mutual orthogonality of

the component functions in Eq. (18) fails for correlated parameters.
Thus, the decomposition in Eq. (18) is not unique and depends on the
applied method, respectively. This may affect the sensitivity results
derived from the covariance decomposition. Alternatively, [22] pro-
posed a general and unique decomposition for functions with correlated
parameters based on the relaxed vanishing condition, where the com-
ponent functions are hierarchically orthogonal. Such kind of decom-
position is more rigorous but requires sophisticated construction
methods. The interested reader is referred to [22,23] and references
therein.

3.3. Moment-independent sensitivity analysis (MISA)

In the previous subsections, we presented the SSI and CoDSA which
are defined based on the (co)variance of the model output. However,
using a single statistical moment for SA may lead to an apparent loss of
information from other statistical moments as skewness and kurtosis
[4]. Therefore, MISA, which is derived directly from the entire dis-
tribution of the model output, is introduced and used for sensitivity
studies [4]. MISA compares the difference between probability dis-
tribution fY(y) of output Y and conditional probability distributions
f y( )Y Xi of output Y to calculate the parameter sensitivities [4], which is
mathematically expressed as:

s X f y f y dy( ) ( ) ( )i Y Y Xi∫= − (27)

s(Xi) is also called the shift function, and the average of the shift
function on the entire distribution of Xi is then given by:

E s X f x f y f y dy dx[ ( )] ( ) ( ) ( ) ,X i X i Y Y X ii i i∫ ∫⎡
⎣

⎤
⎦

= −
(28)

where f x( )X ii is the marginal density of model parameter Xi. Based on
Eq. (28), [4] proposed a new indicator δi for global sensitivity analysis,
which is defined as follows:

δ E s X1
2

[ ( )]i X ii= (29)

The indicator can also be directly extended to a group of parameters
equal to:

E s f f y f y dy dX x x[ ( )] ( ) ( ) ( ) ,Y YX u X u X uu u u∫ ∫⎡
⎣

⎤
⎦

= −
(30)

δ E s X1
2

[ ( )],u X uu= (31)

in which u is a vector that includes the index of the parameters part of
the group, and f x( )X uu is the marginal distribution of the parameter
group. Borgonovo [4] also included 5 properties for the indicator: (1)
The δi (δu) varies in the range [0,1] and (2) it indicates independence
between Xi (group Xu) and output Y if δ δ( ) 0i u = . (3) The indicator of all
model parameters (δ n1,2, ,… ) equals unity, which is evident as the un-
certainty of the output vanishes once the uncertainties of all model
parameters are eliminated. (4) δij for parameters Xi and Xj is bounded as

Total covariance base total 
sensi�vity indices v

Structural total sensi�vity 
indices

Correla�ve total sensi�vity 
indices

Structurefirst-order
sensi�vity indices 

Structureinterac�on sensi�vity 
indices , , ⋯

Correla�ve first-order 
sensi�vity indices 
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Fig. 4. Topology of the covariance-based sensitivity indices.
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δ δ δ δ ,i ij i i j≤ ≤ + in which δi|j is the conditional δ. (5) The left equal
holds if the output is independent of Xj. The last two properties give the
boundary for the parameter sensitivity indicator. These properties make
the sensitivity indicator more representative and comparable. Further
descriptions and proofs are found in [4]. The method is also available
for problems with correlated model parameters, as the assumption of
independent parameters is not required for its definition.

In this section, we reviewed three different methods for SA.
However, the proposed concepts require the calculation of statistical
values for the model output, which results in high-order numerical in-
tegration problems. Therefore, highly efficient methods for uncertainty
quantification are required to lower the computational burden of ap-
plying SA to complex chemical processes.

4. Estimation of sensitivity measures using polynomial chaos
expansion

Numerical techniques are the standard in determining parameter
sensitivities because analytical solutions are not feasible, especially for
complex chemical processes [11,40]. The main groups of the numerical
methods for SA are as follows:

(i) Monte Carlo simulations or more efficient quasi-Monte Carlo si-
mulations. The implementation of these methods is straightforward
but requires an extensive evaluation of the original model.

(ii) The meta-model-based approach, e.g., polynomial meta-models,
kriging meta-models and neural network meta-models. In general,
the meta-model is used as a substitution of the original model to
ease the computational burden, but the estimation of the meta-
model requires some effort.

PCE is used in this article as PCE is tailored for SA [11]. The basics
of PCE and an efficient implementation strategy are introduced in the
following.

4.1. Polynomial chaos expansion

PCE was introduced in the 1930s by Wiener [58] and applied to the
engineering field for solving stochastic finite element problems by
Ghanem and Spanos [15]. It was available only for variables with
standard Gaussian distribution at the beginning and generalized to
other types of statistical distributions, e.g., uniform and beta distribu-
tion, by Xiu and Karniadakis [61].

In PCE, a function of finite variance ξG L( ) (Ω, , ),2∈ F P can be
represented as [58]:

ξG a a ξ a ξ ξ

a ξ ξ ξ

( ) Γ Γ ( ) Γ ( , )

Γ , , , ,

i

n

i i
i

n

i

i

i i i i

i
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i

i

i

i

i i i p i i i

0 0
1

1
1 1

, 2

1 1 1
, , ,

ξ ξ

ξ

p

p

p p

1
1 1

1 2

1

1 2 1 2

1 2

1 1

1 2 1 2

∑ ∑ ∑

∑ ∑ ∑ ⎜ ⎟

= + + +⋯

+ ⋯ ⎛
⎝

⋯ ⎞
⎠

+⋯

= = =

= = =
⋯

−

(32)

where Γp is the pth order multivariate polynomial for ξ ξ{ }i i
n

1
ξ= = . ξ are

independent random variables with standard normal distribution.
ai i, P1⋯ are the coefficients which quantify the relation between the
corresponding polynomial ΓP and the function G(ξ). PCE can also be
directly written as:

ξ ξG α( ) Ψ ( ),
k

k k
0

∑=
=

∞

(33)

where the ξ{Ψ ( )}k k 0=
∞ and a{ }k k 0=

∞ are multivariate polynomials and
corresponding coefficients of infinite degree, respectively. k is the
number of the polynomials. The multivariate polynomials Ψk(ξ) are
constructed by the product of the univariate polynomials [61]:

ξ ξ ξ ξΨ ( ) Φ ( )Φ ( ) Φ ,k
k k

n
k

n1 1 2 2 ξ
nξ

ξ
1 2

⎜ ⎟= ⋯ ⎛
⎝

⎞
⎠ (34)

where nonnegative integer k{ }i i
n

1
ξ

= indicates the individual order of the
univariate polynomials ξ{Φ ( )}i

k
i i

n
1

i ξ
= . The order of the multivariate poly-

nomials Ψk(ξ) is the sum according to p k k kn1 2 ξ= + + ⋯+ . The mul-
tivariate and univariate polynomials are orthogonal with respect to
their corresponding stochastic measure:

ξ ξ f ξ dξ r δΦ ( )Φ ( ) ( ) ,i
m

i i
n

i i i m mn∫ = (35)

ξ ξ ξ ξf d γ δΨ ( )Ψ ( ) ( ) ,m n m mn∫ = (36)

ξf f ξ f ξ f ξ dξ dξ dξ( ) ( ) ( ) ,n n1 2 1 2ξ ξ⎜ ⎟= ⋯ ⎛
⎝

⎞
⎠

⋯
(37)

where δmn is the Kronecker delta function which is 1 for identical values
of m and n and 0 for the others. rm and γm are the normalized constants
of Φm and Ψm, respectively.

The type of univariate polynomials depends on the probability
distributions of the random variables. Wiener [58] introduced Hermite
polynomials for Gaussian random variables. Although the model can be
used for other distributions through isoprobabilistic transformation, the
efficiency and accuracy of the model are decreased considerably [60].
Alternatively, the Askey scheme was used to construct orthogonal
polynomials for other types of statistical distribution, e.g., Jacobi
polynomials for beta distribution, as shown in [61]. Subsequently, PCE
has been further adapted to arbitrary distributions by Wan and Kar-
niadakis [35,56,59]. The general formulation of PCE works only for
independent variables, but we can also construct PCE for correlated
variables [32]. However, in this work, we include directly the para-
meter correlations in SA rather than in PCE model.

Practically, instead of using a set of an infinite number of poly-
nomials as in Eq. (33), a finite number of polynomials is retained to
approximate the random variable [51], e.g., polynomials with a total
order not exceeding p:

ξ ξG α( ) Ψ ( ),
k

P

k k
0

1

∑≈
=

−

(38)

where P is the dimension of the polynomials basis depending on max-
imum order p and nξ:

P
n p

p
n p

n p
( )!

! !
ξ ξ

ξ
⎜ ⎟= ⎛
⎝

+ ⎞
⎠

=
+

(39)

The dimension of the input variable (nξ) is fixed for certain problems.
The optimal order p is the minimum value we need to guarantee the
target accuracy.

4.2. PCE coefficient calculation

Estimation of the coefficients α{ }k k
P

0
1

=
− plays an essential role in PCE-

based calculations as the stochastic properties of PCE are mainly
characterized by them. Several methods are available for computing the
coefficients, and they are classified into two groups: intrusive methods
and non-intrusive methods. Intrusive methods, such as Galerkin pro-
jection, have optimal accuracy but require adaptation of the numerical
model, which might be challenging to implement for chemical pro-
cesses [60]. In contrast, non-intrusive methods require only model
evaluations for some realizations and can be applied for models of any
complexity. The number of required model evaluations, however, might
restrict the implementation, too. Alternatively, [3] proposed an adap-
tive procedure to estimate the PCE model by using the sparsity of its
coefficients. The procedure was developed from Least Angle Regression
(LAR) [3,13] and summarized in Algorithm 1.

Here, let us consider a sample set ξ ξ{ , , }N1= …S generated for
random variables ξ. ξ ξG GY ( ( ), , ( ))N1= … is the vector of the model
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evaluations associated with the sample set S . The function G(ξ) is
approximated by ξα Ψ ( ),k

P
k k0

1∑ =
− where P is the number of polynomials

of the truncated scheme (Eq. (39)). Note that other truncated schemes
can be selected based on the information we have for the model
structure [3]. The algorithm is initialized by function evaluations Y and
of polynomials ξ{Ψ ( )}k k

P
0
1

=
− from the truncated scheme, which are eval-

uated for sample set S . Note that the size of the sample set can be
enlarged when the accuracy of the PCE is not satisfied. For each
iteration, the size of the multivariate polynomials is enlarged while the
maximum order of the polynomials increases from 1 to pmax , where
pmax is the maximum order of the multivariate polynomials allowed for
approximation. The most correlated polynomial is selected and moved
to the active set at step 6. The coefficients for the polynomials of the
active set are adapted in an optimal direction in step 9, using the cor-
rection term Δ [13]. All the possible active sets are validated, and the
optimal one is selected by using cross validation in steps 11 and 12.
Finally, the coefficients for the optimal PCE (step 18) are estimated
through ordinary least squares regression. Note that the size of the
active set, i.e., the number of multivariate polynomials used for the
final estimation, is typically much smaller than the size of the full PCE
model. This leads to a considerable reduction in the number of model
evaluations. In principle, the resulting sparsity of the PCE model can be
quantified by

Sparsity (Active set)
(Full set)

,= �

� (40)

where � means the cardinality of the set.

4.3. Computation of sensitivity indices using PCE

Suppose we have a function XY G ( ),= where X is the nX-dimen-
sional random model parameter vector with given distributions. With
the proposed procedures in the last section, the function XY G ( )= is
represented by the PCE truncated at order p:

X XY G α( ) Ψ ( )
k

P

k k
0

1

∑= ≈
=

−

(41)

For the sake of simplicity, we define index k k kk { , , , },n1 2 X= … where ki

is the order of univariate polynomials for individual input variable i. A
is a set of all possible index k truncated at order p:

A k k k pk{ }n
n1 2X

ξ= ∈ + +⋯+ ≤ (42)

Therefore, the PCE can be written compactly as:

X XY G α( ) Ψ ( )
Ak

k k∑= ≈
∈ (43)

4.3.1. Computation of the SSI using PCE
To calculate the SSI, function G(X) is decomposed as shown in

Eq. (7). Due to the orthogonality of the basis polynomials, the com-
ponent functions Gu in the Sobol’ decomposition in Eq. (7) are ap-
proximated by:

X XG α( ) Ψ ( ),u
A

u
k

k k
u

∑≈
∈ (44)

where Au⊂ A and is defined as:

A A kk u{ 0 if and only if i }iu = ∈ ≠ ∈ (45)

From the definition, it is clear that the PCE in Eq. (44) is only a function
of the variables included in Xu because the order of the univariate
polynomials of the other variables is zero. The statistical property of
function G(X), especially the mean and the variance, can be directly
obtained from the coefficients of their PCE coefficients as:

E α ,Y A, 0= (46)

V αY A
k A k 0

k,
,

2∑=
∈ ≠ (47)

The SSI (Eq. (14)) can easily be derived from the representation above:

S
V

α1 ,uc

Y A A
u

k
k

,

2

u

∑=
∈ (48)

where S uc
u could be 1) a first-order sensitivity if u contains only one

element or 2) an interaction sensitivity if it contains more than one. The
total sensitivity indices are then given by:

Initialization
1: Select the truncated scheme
2: Compute Y and {Ψk(ξ)}P−1

k=0 for S
Estimation of polynomial coefficients

3: for p← 1, pmax do
4: Set a = {α0, . . . , αP−1} = 0, R = Y, active set = {}, basic set = {Ψk(ξ)}P−1

k=0 , m = 0
5: while m ≤ min(N, P) do
6: k∗ = argmax

Ψk(ξ)∈basic set
|Corr(R,Ψk(ξ)|

7: Move basis polynomial Ψk∗(ξ) from the basic set to the active set
8: Calculate the correction term Δ [13]
9: Update the polynomial coefficients, a = a + Δ

10: Update the residual, R = Y −∑P−1
k=0 αkΨk(ξ)

11: Recalculate the coefficients for the active set with
12: ordinary least squares regression
13: Get mean approximation error ε(p)

m via the cross-validation procedure
14: m = m + 1
15: end while
16: Store ε∗ = min(ε(p)

1 , . . . , ε
(p)
m ) and the corresponding optimal active set

17: Stop if either ε∗ satisfies the target accuracy or increases for the last two iterations
18: end for
19: Estimate the relevant polynomial coefficients for the last optimal active set via ordinary least squares regression

Algorithm 1. Computing adaptive sparse PCE with LAR.
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S
V

α1 ,T
uc

Y A Ak
k

,

2
i

i

∑=
∈ (49)

where A Ai ⊂ and includes all the basis polynomials related to variable
ξi:

A A kk{ 0}i i= ∈ ≠ (50)

4.3.2. Computation of CoDSA using PCE
The construction of the sensitivity indices for function XY G ( )=

with correlated inputs is presented in Section 3.2.2, where three new
sensitivity indices S S,u

cov
u
U and Su

C are introduced. As we explained in
Section 3.2.2, a unique decomposition where the component functions
are hierarchically orthogonal is not easy to construct. Therefore, we use
the function decomposition approach, i.e., the PCE model, to compute
the sensitivity indices. The exclusive use of PCE models also makes the
computation more comparable for the three GSA techniques. The PCE
approximation, as shown in Eqs. (43) and (44), is constructed as if the
random variables are independent. However, the statistical moments in
covariance decomposition cannot be derived directly from the coeffi-
cients of PCE because the orthogonality between the basis polynomials
of PCE does not exist for the correlated variables. For this reason, Monte
Carlo simulation are used to estimate the mean, variance and

covariance of function G(X) and component function Gu(Xu) with
samples drawn from correlated distributions:

XE Y
N

α( ) 1 Ψ ( ),
i

N

A

i

k
k k

1
∑ ∑=
= ∈ (51)

XVar Y
N

α E Y( ) 1
1

Ψ ( ) ( ) ,
i

N

A

i

k
k k

1

2

∑ ∑=
−

⎛

⎝
⎜ − ⎞

⎠
⎟

= ∈ (52)

XE G
N

αξ( ( )) 1 Ψ ( )u u
i

N

A

i
u

k
k k

1 u

∑ ∑=
= ∈ (53)

Here, Xi is one sample vector for the random model parameter vector,
and n samples are drawn from the given distribution. Eqs. (54) and (55)
represent an evaluation of the functions approximated by PCE with the
sample Xi:

X XG α( ) Ψ ( ),i

A

i

k
k k∑=

∈ (54)

X XG α( ) Ψ ( )i

A

i
u u

k
k k

u

∑=
∈ (55)

The covariance-based sensitivity indices computed from the Monte

Fig. 5. The framework of the double-loop method for the calculation of indicator δ [57].
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Carlo estimation are formulated as:

X X X
S

G E G G E Y
N Var Y

( ( ) ( ( )))( ( ) ( ))
( 1) ( )

,u
u
cov i

N i i
u u u1=

∑ − −
−

=

(56)

X X
S

G E G
N Var Y

( ( ) ( ( )))
( 1) ( )

,u
u
U i

N i
u u u1

2

=
∑ −

−
=

(57)

S S Su
C

u
cov

u
U= − (58)

We should note that the computational cost is low as all the evaluations
are conducted on the PCE model. The computational effort for the
Monte Carlo simulation on the PCE model is negligible compared to
that for estimation of the coefficients for the PCE model.

4.4. Computation of MISA using PCE

According to the definition of MISA in Section 3.3, the density
functions fY(y) and f y( )Y Xi for the model output are required for cal-
culating the shift function and the indicator, and therefore, the kernel
density estimator (KDE) is used to estimate the distributions [7].
Moreover, the double-loop Monte Carlo method illustrated in Fig. 5 is
used to calculate the indicator δ [57].

The double-loop method starts with two groups of samples gener-
ated from the distribution of the random model parameters. The un-
conditioned density function fY(y) is estimated from the model eva-
luations associated with the samples in A. For loop 2, the conditioned
density function f y( )Y Xi is estimated by ni samples, and the shift func-
tion s(Xi) is calculated at a given value xi

j. Note that the samples are
different for the independent and correlated model parameters. For the
independent case, the samples are generated directly by replacing the
ith column of sample B with the (i, j)th element xij in sample A.
However, this does not work for the correlated case as the conditioned
density f x( )X X x ii i i

j= ∼∼ is different for different values of Xi. Therefore,
the samples should be updated for each iteration according to the
conditioned density with parameter Xi specified to the value xi

j in
sample A. In loop 1, loop 2 is repeated for different values of Xi from
sample A, and the indicator δi is calculated with the values for the shift
function. Note that the calculation formula for shift function s(Xi) and δi
is the Monte Carlo estimation of Eqs. (27) and (29). The total number
(nt) of model evaluations for the double-loop Monte Carlo method is
n n n( 1) ,i o× + × where n, no and ni are the number of model para-
meters, the size of samples A and B, respectively. The number nt could
be prohibitively high as the KDE requires a large sample size to ensure
the accuracy of the estimated density function. Thus, the PCE model
derived above is used for the model evaluations to ensure low com-
putational costs.

5. Case study: A continuous synthesis of an API–scaffold

5.1. Problem statement

In this study, we consider a model of a continuous-flow reactor
processing the synthesis of aminopyrimidine as an API–scaffold [36].
The mechanism of the reactions is described as follow:

A B C
r1+ ⟶ (59)

A B D
r2+ ⟶ (60)

C B E
r3+ ⟶ (61)

D B E
r4+ ⟶ (62)

Eq. (59) to Eq. (62) describe the nucleophilic aromatic substitution
reactions (SNAr) of 2,4-dichloropyrimidine (A) and morpholine (B) in
ethanol which produce the desired product 2-substituted

aminopyrimidine (D), the less-desired product 4-substituted (C) and
side product 2,4-substituted (E). A complete description of the reactions
and their potential application in the pharmaceutical field can be found
in [36]. The governing equations of the continuous-flow reactor are
formulated as follows:

dC
dt

k C C k C CA
A B A B1 2= − −

(63)

dC
dt

k C C k C C k C C k C CB
A B A B B C B D1 2 3 4= − − − −

(64)

dC
dt

k C C k C CC
A B B C1 3= −

(65)

dC
dt

k C C k C CD
A B B D2 4= −

(66)

dC
dt

k C C k C C ,E
B C B D3 4= +

(67)

where

k A exp E
RT

i, {1, 2, 3, 4}i i
Ai= ⎛

⎝
− ⎞

⎠
∈

(68)

in which Cj with j∈ {A, B, C, D, E} are the concentrations, ki are the
reaction constants, Ai and EAi are pre-exponential factors and activation
energies, and ri are the reaction rates determined by the corresponding
reaction constant and concentration of reactants. According to [36] an
isothermal reactor is assumed, i.e., the temperature T is constant along
the reactor. Residence time t is defined as the position in the tubular
reactor divided by the flow rate of the substance on the supposition that
an ideal fluid is inside the reactor. The values for the initial conditions
and parameters are listed in Table 1, where tend is the final residence
time which decides the length of the tubular reactor. The kinetic
parameters Ai and EAi estimated from the experiments are not accurate
and their uncertainties are characterized by normal distributions as
shown in Table 1. For the first part of the sensitivity analysis, the eight
parameters are assumed to be independent. However, the data provided
by Reizman and Jensen [36] reveal strong correlations among the
parameters measured by the correlation matrix in Table 2. This corre-
lation matrix is used in the second part of the sensitivity analysis. The
model output we are interested in is the final concentration of product
D (CDf). Therefore, we construct the surrogate model for the eight ki-
netic parameters and CDf before starting the sensitivity analysis. The
PCE model is constructed and estimated in UQLAB© [31], software for
UQ and surrogate modeling. Sensitivity analysis performed later are
conducted in MATLAB® where function ode15s is used to solve the dy-
namic equations of the reactor.

Table 1
Parameters and uncertainties for the continuous-flow reactor [36].

Parameters Nominal value Uncertainty

CA0(M) 0.150 –
CB0(M) 0.375 –
CC0(M) 0 –
CD0(M) 0 –
CE0(M) 0 –
T(K) 373.15 –
tend(s) 1200 –
R(J/mol · k) 8.314 –
log10(A1)(M-1s-1) (θ1) 3.4 N (3.4 , 0.1)
EA1(kJ/mol) (θ2) 27.0 N (27.0 , 0.6)
log10(A2)(M-1s-1) (θ3) 3.5 N (3.5 , 0.1)
EA2(kJ/mol) (θ4) 32.1 N (32.1 , 0.6)
log10(A3)(M-1s-1) (θ5) 4.9 N (4.9 , 0.2)
EA3(kJ/mol) (θ6) 60.0 N (60.0 , 1.6)
log10(A4)(M-1s-1) (θ7) 3.0 N (3.0 , 0.2)
EA4(kJ/mol) (θ8) 45.0 N (45.0 , 1.7)
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5.2. Construction of the PCE model

The PCE model for CDf (model output) and eight kinetic parameters
(inputs) is constructed based on the probability distribution assigned to
the parameters. Table 3 lists the information for the PCE model. Ac-
cording to Table 3, the coefficients of the PCE model are estimated with
200 random evaluations of the original model by using Algorithm 1,
and only 40% of the full basis which have maximum order of 3 are
activated here. Please note that the maximum order of the polynomials
is determined by the desired estimation error and the complexity of the
reactor model. The accuracy of the PCE model is indicated by the es-
timation error in Table 3, and further analyzed by comparing with the
results from direct Monte Carlo simulations in Fig. 6. The probability
density function estimated by the PCE model with 200 model evalua-
tions is as good as the one from Monte Carlo simulations with 10,000
model evaluations but much better than the one from Monte Carlo si-
mulations with 200 model evaluations; i.e., using the original process
model given in Eqs. (63) to (67). Based on the PCE model, we can then
calculate different sensitivity measures in the absence and presence of
correlations as in the following.

5.3. Sensitivity measures in the absence of correlation

This section presents the results for the first part of the sensitivity
analysis where the correlations among the parameters are neglected.
The SSI and MISA for the independent parameters on CDf are calculated
by using the sparse PCE model.

The SSI is obtained directly from the coefficients of the preceding
PCE model by using Eqs. (48) and (49). The first-order and total sen-
sitivities of the eight kinetic parameters for the final product con-
centration CDf are summarized in Table 4. Evident differences exist
among the magnitude of the sensitivities for different parameters. The
first four parameters, θ θ, , ,1 4… have the strongest impact on the final
product concentration and its variance Var(CDf), while the parameters
θ θ, ,5 8… are less relevant. Moreover, the small deviation between the
first-order, S ,i

uc and total sensitivities, S ,T
uc
i indicate that the interaction

among the parameters is low, i.e, the sum of first-order sensitivities is
close to 1.

Unlike the SSI calculated directly from the coefficients of the PCE
model, MISA is computed by the method described in Section 4.4. The
samples in the outer loop (no) and the inner loop (ni) are set to 1000.
Thus, a total number of 8×106 evaluations of the PCE model are re-
quired for calculating the indicators. Fig. 7 shows the comparison be-
tween the unconditioned and conditioned distributions of CDf, where
the effect of eliminating the uncertainty of one parameter can be di-
rectly observed in the corresponding sub-figures. The quantitative
measures for independent parameters, i.e., indicator δ i( 1 8),i

uc = … are
illustrated in Fig. 8a.

The sensitivity measures from the SSI and MISA reveal the influence
of parameter uncertainties on the variation of CDf. According to the
results, we observe that the trends of the measures from the SSI and
MISA are analogous. The kinetic parameters of reactions 1 and 2, i.e.,
θ1, θ2, θ3 and θ4, have higher influence than the others. This makes
sense from a physical point of view as reactions 1 and 2 are faster than
the other reactions and have a direct or indirect relation with product
D. We can also observe that θ1 and θ3 have similar importance, which is
also true for θ2 and θ4. The reason is that reactions 1 and 2 are parallel
and have similar competitiveness. In contrast, the kinetic parameters of
reactions 3 and 4, i.e.,θ5, θ6, θ7 and θ8, have lower influence, because

Table 2
Correlation coefficients for the eight parameters from [36].

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

θ1 1.000 0.997 0.976 0.968 −0.002 −0.003 0.000 0.000
θ2 0.997 1.000 0.976 0.973 −0.003 −0.003 0.000 0.000
θ3 0.976 0.976 1.000 0.997 −0.006 −0.006 0.000 0.000
θ4 0.968 0.973 0.997 1.000 −0.007 −0.007 0.000 0.000
θ5 −0.002 −0.003 −0.006 −0.007 1.000 1.000 −0.008 −0.008
θ6 −0.003 −0.003 −0.006 −0.007 1.000 1.000 −0.008 −0.008
θ7 0.000 0.000 0.000 0.000 −0.008 −0.008 1.000 1.000
θ8 0.000 0.000 0.000 0.000 −0.008 −0.008 1.000 1.000

Table 3
PCE model settings and characteristics.

Number of random inputs 8

Polynomial basis Hermite
Maximum order of polynomials 3
Number of model evaluations 200
Estimation error 0.001
Sparsity 40%

Fig. 6. Probability density function of component D (CDf) evaluated with 200
and 10,000 Monte Carlo simulations and with PCE from 200 simulations. KDE
is used to estimate the probability density functions with the model evaluations.

Table 4
First-order and total Sobol’ sensitivity indices of the kinetic parameters for the
final product concentration CD.

Parameters Si
uc STi

uc

θ1 0.2547 0.2684
θ2 0.1790 0.1896
θ3 0.2535 0.2673
θ4 0.1786 0.1893
θ5 2.3011 × 10-5 4.3189 × 10-5

θ6 3.7996 × 10-5 7.7143 × 10-5

θ7 0.0400 0.0514
θ8 0.0577 0.0710

Sum 0.9637 –
Var(CDf) 8.5989 ×10-5
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reactions 3 and 4 are slow. However, θ7 and θ8 are more important than
θ5 and θ6 because they have a direct impact on product D. As we can
see, results from both methods are consistent with the structure of the
model when the correlations among the parameters are neglected. In
the following, the effect of the correlations on the results of the sensi-
tivity analysis is presented.

5.4. Sensitivity measures in the presence of correlations

We investigate the effect of parameter correlations given in Table 2
on the results of the sensitivity analysis. According to the correlation
matrix, the parameters are divided into three subgroups: (1) θ1, θ2, θ3
and θ4, (2) θ5 and θ6, and (3) θ7 and θ8. The parameters from the same

Fig. 7. Comparison of unconditioned distributions (blue line) and conditioned distributions (red lines) of concentrations of component D representing different
parameter realizations in the absence of correlations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 8. MISA sensitivity values of moment-independent measure δuc for the eight kinetic parameters when ignoring parameter correlations (a), and when parameter
correlations are considered properly (b).
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subgroup have a strong correlation, while the parameters from different
subgroups have a weak or even no correlation. The samples used in the
following calculations are generated with Gaussian copula as Eq. (3).

Due to the presence of correlations among the parameters, the SSI is
not well defined and, therefore, cannot be used in this situation. In
contrast, CoDSA is still available to observe the effect of the parameters,
as well as their correlations. The method presented in Section 4.3.2 is
used to compute CoDSA with a sample size of 10,000. The calculated
sensitivity indices are listed in Table 5, where S S,i

U
i
C and Si

cov are the
first-order sensitivity indices and S S,T

U
T
C

i i and ST
cov
i are the total sensi-

tivity indices for the corresponding parameters, respectively. When
comparing the first-order and total sensitivity indices, we observe that
the interaction term is not relevant to describe the parameter influence
on the model output. Moreover, Si

U has the same trend as the SSI result

but with different magnitudes. The large magnitudes of Si
U mean the

parameter uncertainties have a stronger influence on the model output
if they are independent. This can also be observed from Si

C which re-
presents the effect of correlations and is negative in this case. It turns
out the correlations reduce the importance of the parameters and the
variance of the model output. The total impact of the parameters on the
model output is indicated by the total covariance-based sensitivity in-
dices Si

cov. Please note that the existence of negative values for Si
cov is

due to the covariance function formulation and the importance of the
parameter is quantified by the absolute value of Si

cov.
In contrast to the variance-based SA methods, MISA is well posed in

the presence of correlations among parameters, as its formulation is not
based on the assumption of independent parameters. A similar structure
for computation as for the independent case is used. Here, however, the
correlation matrix of the joint density distribution of the parameters is
added. In Fig. A.12a, we show the indicators δi

cor which are obtained for
the given parameter correlations. Here, the most sensible parameters for
CDf are the kinetic parameters θ7 and θ8 for reaction 4, which is different
from the case with independent parameters. A detailed analysis of the
related probability distributions, see Fig. 9, explains the new parameter
ranking. Here, in Fig. 9g and 9 h, the probability distribution of CDf shifts
dramatically if θ7 and θ8 are given. θ1, θ2, θ3 and θ4 still have a non-
ignorable impact on the model response but are impaired by the correla-
tion between the parameters. θ5 and θ6 have the weakest impact.

In this case study, we can conclude that the outcome of the para-
meter importance ranking is severely affected by the sensitivity mea-
sure we use; i.e., when applying the (co)variance-based or the moment-
independent approach the parameter sensitivities are qualitatively si-
milar. In contrast, the consideration of parameter correlations is crucial

Table 5
Covariance-based sensitivity indices estimated with sparse PCE.

Parameters Si
U Si

C Si
cov STi

U STi
C STi

cov

θ1 131.80 −132.98 −1.18 136.23 −137.47 −1.24
θ2 92.72 −91.55 1.17 99.35 −98.15 1.19
θ3 131.91 −129.88 2.03 141.63 −139.52 2.11
θ4 93.09 −94.76 −1.67 96.30 −97.96 −1.66
θ5 0.01 −0.01 −0.00 0.03 −0.03 0.00
θ6 0.02 −0.02 0.00 0.02 −0.02 0.00
θ7 20.68 −24.16 −3.48 20.73 −24.23 −3.50
θ8 29.87 −25.57 4.30 26.27 −22.26 4.01
Sum – – 1.17 – – –
Var(Y) 1.65 × 10-7

Fig. 9. Comparison of unconditioned distributions (blue line) and conditioned distributions (red lines) of concentrations of component D considering different
parameters in the presence of correlations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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for the parameter importance ranking. Thus, the impact of parameter
correlations are further discussed in the next section.

5.5. Comparison of the results in the absence and presence of correlations

To compare the resulting variation of CDf in the absence and presence of
correlations, the corresponding probability distributions are illustrated in
Fig. 10. To further demonstrate the effect of parameter correlation which
are different from one and less dominating, two additional scenarios are
shown in Fig. 10. As expected, the correlation has a considerable impact on
the resulting distributions. Here, the spread of the shown distribution in-
creases for lower correlation values but is still different compared to the
nominal case, i.e., assuming no correlation. It turns out that the uncertainty
of the model output, CDf, which is estimated under the assumption of in-
dependent parameters for this study is magnified and, therefore, may render
a model-based robust design strategy too conservative.

In this section, we compare the importance ranking for the different
sensitivity measures neglecting the parameter correlation, as well as
including parameter correlations based on experimental data; see

Table 6. For the sake of completeness, results for fictitious correlation
coefficients can be found in the Appendix A. The ranking from the first
(third) and second (fourth) rows are transposed, while the rankings
from first (second) and third (fourth) rows are analogous. To get a more
quantitative comparison of the ranking, we compute the Savage score
correlation coefficient (SSCC, [19]) for comparing the four sensitivity
measures, see Table 7. The SSCC has a value range from -1 to 1, where 1
and -1 indicate identical and transposed rankings, respectively. As we
can see from Table 7, the values of SSCC(Suc, δuc) and SSCC(Scov, δcor)
are high and close to 1. However, the values of SSCC(Suc, Scov) and
SSCC(δuc, δcor) are low and negative as the most relevant variables for
them are different. According to this, we see that the discrepancy in the
ranking of the most relevant parameters emerges due to the existence of
parameter correlations and is less affected by the particular method
used for the global sensitivity analysis.

6. Conclusion

In this paper, we presented different methods for global sensitivity
analysis in the absence and presence of parameter correlations and
compared them critically for the continuous synthesis of an active
pharmaceutical ingredient scaffold. Sparse polynomial chaos expansion
(PCE) was introduced for calculating these sensitivity measures effi-
ciently. Gaussian copulas were utilized to sample from joint and con-
ditional distributions, representing independent and correlated model
parameters. In the case study, a continuous-flow reactor model was
implemented and analyzed. PCE surrogate model was generated for this
reactor model. Here, we saw that the presented least angle regression
(LAR) algorithm improves the efficiency in PCE modeling. We also
observed that the PCE model can approximate relevant statistics of si-
mulation results at low computational cost. After performing the sen-
sitivity analysis on the PCE model, the obtained results were compared
between (co)variance-based methods (SSI and CoDSA) and the mo-
ment-independent method (MISA), assuming uncorrelated parameters.
We observed a similar parameter sensitivity ranking for the analyzed
metrics; that is, the parameters with a high impact on the model var-
iation influence the output variance considerably, too. Moreover, we
compared the results for independent and correlated parameters and
saw that the parameter sensitivity ranking was quite different. For in-
dependent parameters, the kinetics of reactions 1 and 2 influenced the
simulation outcome the most. For the correlated parameters, however,
their impact was reduced significantly, and the kinetics of reaction 4
dominated. Moreover, we noticed that the variance and the width of the
distribution of the model output were decreased once parameter cor-
relations were considered. In summary, global sensitivities provide
useful information for analysis and design in the field of chemical en-
gineering and can be derived at acceptable computational cost even for
complex problems when using PCE in combination with the LAR al-
gorithm. MISA might be preferable because it is available for problems
with independent and correlated model parameters. In addition, MISA
is also more rigorous and precise than the (co)variance-based method as
MISA considers the entire distribution instead of a single moment of the
model output. However, independent of the metrics used for global
parameter sensitivity, parameter correlations should always be con-
sidered, i.e., utilizing the full information of the parameter (co)variance
matrix for process analysis and design. Further research for robust de-
sign of chemical processes under uncertainty reflecting parameter
correlation will be conducted in the future.
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Fig. 10. Comparison of the resulting probability density functions of CDf in the
absence and presence of parameter correlations. The correlation coefficients for
θ1, θ2, θ3, θ4, θ7, θ8 are assigned with 0.5 and 0.9 assuming factitious, equal
correlations for two cases. The result based on a correlation matrix derived from
experimental data is illustrated in addition.

Table 6
Parameter ranking from (co)variance-based and moment-independent sensi-
tivity analysis in the presence and absence of correlations.

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

Si
uc 1 3 2 4 8 7 6 5

Si
cor 5 6 3 4 8 7 2 1

δi
uc 1 4 2 3 8 7 6 5

δi
cor 6 5 4 3 8 7 1 2

Table 7
Savage score correlation coefficients on importance ranking from variance-
based and moment-independent sensitivity in the absence and presence of
correlations.

SSCC Suc Scov δuc δcor

Suc 1
Scov −0.06 1
δuc 0.98 −0.03 1
δcor −0.21 0.78 −0.17 1

X. Xie et al. Reliability Engineering and System Safety xxx (xxxx) xxx–xxx

13



Appendix A. Additional results for sensitivity analysis with different correlation coefficients

The results of additional four cases with fictitious correlation coefficients are presented here, where the case 1,2,3, and 4 listed in Table A.8 are
the same with the cases depicted in Figs. 10 andA.11.

As we mentioned in Section 5.5, the output variances depend considerably on the parameter correlation values. Although our primary focus was
on correlation coefficients derived with experimental data, it might be still interesting to demonstrate the effect of parameter correlations which are
less dominating; i.e., not that close to one. Here, we consider two additional test cases with fictitious correlation values: 0.5 and 0.9. CoDSA and
MISA results are listed in Table A.8. Obviously, for both sensitivity measures the importance of parameters θ7 and θ8 increases gradually with higher
correlation coefficients. The overall effect of θ1, θ2, θ3, and θ4 still dominates the output variation but recedes if the correlation coefficients increase
further as the case with experimentally derived correlations. Furthermore, we include two additional cases 3 and 4, where the correlation coefficients
for θ1, θ2, θ3, θ4 and θ7, θ8 are allocated with different values. The shapes of the output distribution are similar, see Fig. A.11. The sensitivity results,

Table A1
Sensitivity results for cases with different correlation coefficients. The correlation coefficients for θ1, θ2, θ3, θ4, θ7, θ8 are assigned with 0.5 and 0.9 for case 1 and 2,
respectively. The correlation coefficients for θ1, θ2, θ3, θ4 and θ7, θ8 are assigned with 0.5 and 0.9 for the case 3, and with 0.9 and 0.2 for the case 4.

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

Scov 1 0.258 0.184 0.260 0.182 0 0 0.030 0.062
2 0.242 0.201 0.280 0.168 0 0 −0.026 0.124
3 0.276 0.197 0.278 0.195 0 0 −0.005 0.026
4 0.143 0.121 0.168 0.099 0 0 0.175 0.279

δcor 1 0.126 0.105 0.127 0.104 0.015 0.015 0.036 0.061
2 0.054 0.048 0.058 0.045 0.016 0.014 0.021 0.057
3 0.132 0.110 0.133 0.108 0.015 0.014 0.016 0.029
4 0.045 0.042 0.047 0.038 0.016 0.017 0.117 0.161

Fig. A1. Comparison of the resulting probability density functions of CDf in the absence and presence of parameter correlations. The correlation coefficients for θ1, θ2,
θ3, θ4 and θ7, θ8 are assigned with 0.5 and 0.9 for case 4, and with 0.9 and 0.2 for case 5.

Fig. A2. Comparison of unconditioned distributions (blue line) and conditioned distributions (red lines) of concentrations of component D considering parameters θ3
and θ7 in case 5. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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however, are completely different, especially for the most significant parameter. The sensitivity measure from CoDSA and MISA are analogue with
minor differences. For instance, the sensitivity of θ3 and θ7 for case 5 are similar for CoDSA, while the sensitivity of θ7 is twice as large compared to
θ3 for MISA. The reason is that MISA takes into account not only the output variance but also higher statistical moments, i.e., the entire output
distribution. In Fig. A.12, we see that the shift of the conditional distributions is mainly due to the change of other moments, e.g., kurtosis, but not
the variance which supports our conclusions considering MISA as a valuable tool in sensitivity analysis.
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