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Abstract: Robust optimization of dynamical systems requires the proper uncertainty quantifi-
cation. Monte Carlo simulations and polynomial chaos expansion are frequently used methods
for uncertainty quantification and have been applied to a number of problems in process design
and optimization. Both methods, however, are either computationally prohibitive for robust
optimization or inappropriate for correlated random variables. The aim of this study is to
introduce the point estimate method for optimization of dynamical systems with correlated
random variables. The point estimate method requires only a few deterministic evaluations
of the analyzed process model and estimates the statistical moments for robust optimization.
The derived sample points can be adapted to random variables of arbitrary distributions and
correlations. The contribution of this paper consists of presenting the point estimate method for
correlated random variables in the field of model-based robust process design. The performance
of the method is demonstrated with a case study of a continuous tubular reactor.
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1. INTRODUCTION

Model-based optimization can be used to improve the per-
formance of complex technical systems. Different methods
are available and have been successfully applied to various
problems (Biegler, 2010; Moles et al., 2003). However,
uncertainties in the mathematical models decrease the
reliability and efficiency of the model-based process design.
Uncertainties can arise from the inherent randomness of
dynamical systems or are due to extraneous disturbances
from the environment and might be represented by un-
certain model parameters. The parameter uncertainties
lead to variations in the model output, and thus, the
results from such optimization can be suboptimal or even
misleading (Schuëller and Jensen, 2008). In addition, the
correlations among uncertain parameters are also consid-
ered an important factor in the variation of the model
outcome (Haaker and Verheijen, 2004). To confront this
problem, robust optimization ideas are presented in the
literature (Schuëller and Jensen, 2008; Telen et al., 2015).
The goal of this paper is to introduce an efficient method
for robust optimization in process design and to investigate
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the effect of correlations among the model parameters on
the results of robust design.

Two different approaches are frequently used for ro-
bust optimization: 1) the worst-case scenario and 2) the
probability-based scenario. In the worst-case scenario, op-
timization is conducted only for extreme situations, and
thus, non-extreme situations are also satisfied (Nagy and
Braatz, 2003). However, the worst-case scenario requires
solving a bi-level optimization problem which is nontrivial
and might result in designs that are too conservative. Al-
ternatively, the probability-based approach leads to single-
level optimization problems and can control the robustness
of constraints by changing the tolerance factors to prevent
too conservative solutions (Xie et al., 2017; Telen et al.,
2015). Due to these advantages, the probability-based ap-
proach is used in the current paper.

This approach requires the propagation of the parameter
uncertainties through the model and quantification of the
uncertainties on the model output. Traditional sample-
based methods for uncertainty quantification (UQ) are
Monte Carlo simulations, quasi-Monte Carlo simulations
and Latin Hypercube sampling (LHS; Singhee and Ruten-
bar (2010)). They require only repetitive model evalua-
tions at different sample points of the parameter space and
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are easy to implement. However, these techniques require
an extremely high-computational demand, especially for
systems that are computationally expensive, and thus,
they are not efficient for robust process design. Arbi-
trary polynomial chaos (aPC) proposed by Oladyshkin and
Nowak (2012) is more efficient than traditional sample-
based methods and can be used for correlated random
variables of arbitrary distributions. To construct the ba-
sis functions for arbitrarily correlated random variables,
aPC might be too cumbersome. Alternatively, to ensure
the efficiency and flexibility of robust optimization, this
paper presents a point estimate method (PEM) for un-
certainty quantification in robust optimization of dynam-
ical systems. This method requires a few model evalua-
tions to estimate the variation in the model output and
can be directly used for systems with correlated parame-
ters through a proper transformation step (Schenkendorf,
2014a; Lerner, 2002).

The remainder of this paper is organized as follows. Prob-
lems for robust optimization of a system with correlated
random variables are formulated in Sec. 2. The PEM and
the algorithm for the probability density transformation
are presented in Sec. 3. The performance of the proposed
method is demonstrated with a case study of a continuous
tubular reactor in Sec 4. In Sec. 5, the conclusions of the
paper are given.

2. PROBLEM FORMULATION

Nonlinear dynamical systems can be described by different
algebraic equations (DAEs) as

ẋd(t) = gd(x(t),u(t),p), xd(0) = x0, (1)

0 = ga(x(t),u(t),p) , (2)

where t ∈ [0, tf ] is the time, u ∈ Rnu denotes the control
input vector, and p ∈ Rnp denotes the time-invariant
parameter vector. x = [xd,xa] ∈ Rnx is the state vector,
in which xd ∈ Rnxd and xa ∈ Rnxa are the differential and
algebra states, respectively. x0 is the vector of the initial
conditions. gd and ga denote the differential and algebraic
vector fields of the system. Note that t could also be the
residence time which denotes the spatial coordinate related
to the flow velocity in continuous processes.

The dynamical system described in (1) and (2) is affected
by uncertainties in the time-invariant model parameters p
and initial conditions x0. The probability space (Ω,F , P )
is defined by the sample space Ω, σ-algebra F and prob-
ability measure P . θ = [p(ω), x0(ω)] is considered the
vector of random input variables, which are functions
of ω ∈ Ω on the probability space and associated with
continuous probability density functions (PDFs) f(θ) =
[f1(θ1), . . . , fnθ

(θnθ
)] and the correlation matrix Σ.

The first challenge of robust optimization is to incorporate
the stochastic properties of the random variables into
the dynamic optimization. The randomness of the system
results because of the random variables can lead to strong
deviations in the performance of the objective functions
and may cause violations of the target constraints. To solve
this problem, the objective function and constraints are
characterized by their mean values and variances (Telen
et al., 2015).

The approach leads to the following robust optimization
problem for nonlinear dynamical systems associated with
probabilistic uncertainties.

Problem 1 (Robust optimization with chance con-
straints for dynamical systems)

min
u(t)

E[M(xtf (ω))] + αVar[M(xtf (ω))], (3a)

subject to:

ẋd(t, ω) = gd(x(t, ω),u(t),p(ω)), (3b)

0 = ga(x(t, ω),u(t),p(ω)), (3c)

xd(0, ω) = x0(ω), (3d)

Pr[hnq(x(t, ω),u(t),p(ω)) ≥ 0] ≤ εnq, (3e)

|E[hq(x(t, ω),u(t),p(ω))]| ≤ εq,µ, (3f)

Var[hq(x(t, ω),u(t),p(ω))] ≤ εq,δ, (3g)

umin ≤ u ≤ umax, (3h)

where E[·] and Var[·] denote the mean and the variance
values of random variables, M is the objective function
of the states at tf , α denotes a scalar weight factor,
[umin,umax] are the upper and lower boundaries for the
control input vector, Pr denotes the probability of an
event, hnq and hq are functions for inequality and equal-
ity constraints, and εnq, εq,µ and εq,δ are tolerance fac-
tors (Rangavajhala et al., 2009). The individual chance
constraint in (3e) is approximated with the Cantelli-
Chebyshev inequality with a scalar weight factor β (Telen
et al., 2015) as

E[hnq] + βVar[hnq]
0.5 ≤ 0. (4)

The robust optimization framework can reduce the influ-
ence of the random variables on the optimization outcome.
This is because of the following reasons. First, by optimiz-
ing the mean and the variance of the objective function,
the average performance is increased, and its variation is
decreased. Second, by considering the chance constraints
in (4) and the approximated equality constraints in (3f)
and (3g), the constraint violation tolerance and the size of
design space is balanced properly.

The statistical moments required to solve Problem 1, i.e.,
E[·] and Var[·] for the state vector x, are calculated with

E[x] =

∫

Iθ
xf(θ)dθ, (5)

Var[x] =

∫

Iθ
(x−E[x])(x−E[x])T f(θ)dθ, (6)

where Iθ denotes the support of the random vector θ. Here,
we have the second challenge which is to derive the joint
distribution f(θ) from f(θ) and Σ. The Gaussian copula
that is based on the Sklars theorem (Nelsen, 2007) is used
to express f(θ) from f(θ) and Σ as follows

Problem 2 (Correlated random variables)

f(θ) =
∂nθFnθ

[F−1(µ1), · · · , F−1(µnθ
); Σ]

∂θ1 · · · θnθ

(7)

in which F−1 denotes the inverse cumulative distribution
function (CDF) of the standard normal distribution; Fnθ

denotes the joint CDF of nθ standard normal distribu-
tions with the correlation matrix Σ; and [µ1, · · · , µnθ

] =
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ẋd(t) = gd(x(t),u(t),p), xd(0) = x0, (1)

0 = ga(x(t),u(t),p) , (2)

where t ∈ [0, tf ] is the time, u ∈ Rnu denotes the control
input vector, and p ∈ Rnp denotes the time-invariant
parameter vector. x = [xd,xa] ∈ Rnx is the state vector,
in which xd ∈ Rnxd and xa ∈ Rnxa are the differential and
algebra states, respectively. x0 is the vector of the initial
conditions. gd and ga denote the differential and algebraic
vector fields of the system. Note that t could also be the
residence time which denotes the spatial coordinate related
to the flow velocity in continuous processes.

The dynamical system described in (1) and (2) is affected
by uncertainties in the time-invariant model parameters p
and initial conditions x0. The probability space (Ω,F , P )
is defined by the sample space Ω, σ-algebra F and prob-
ability measure P . θ = [p(ω), x0(ω)] is considered the
vector of random input variables, which are functions
of ω ∈ Ω on the probability space and associated with
continuous probability density functions (PDFs) f(θ) =
[f1(θ1), . . . , fnθ

(θnθ
)] and the correlation matrix Σ.

The first challenge of robust optimization is to incorporate
the stochastic properties of the random variables into
the dynamic optimization. The randomness of the system
results because of the random variables can lead to strong
deviations in the performance of the objective functions
and may cause violations of the target constraints. To solve
this problem, the objective function and constraints are
characterized by their mean values and variances (Telen
et al., 2015).

The approach leads to the following robust optimization
problem for nonlinear dynamical systems associated with
probabilistic uncertainties.

Problem 1 (Robust optimization with chance con-
straints for dynamical systems)

min
u(t)

E[M(xtf (ω))] + αVar[M(xtf (ω))], (3a)

subject to:
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event, hnq and hq are functions for inequality and equal-
ity constraints, and εnq, εq,µ and εq,δ are tolerance fac-
tors (Rangavajhala et al., 2009). The individual chance
constraint in (3e) is approximated with the Cantelli-
Chebyshev inequality with a scalar weight factor β (Telen
et al., 2015) as

E[hnq] + βVar[hnq]
0.5 ≤ 0. (4)

The robust optimization framework can reduce the influ-
ence of the random variables on the optimization outcome.
This is because of the following reasons. First, by optimiz-
ing the mean and the variance of the objective function,
the average performance is increased, and its variation is
decreased. Second, by considering the chance constraints
in (4) and the approximated equality constraints in (3f)
and (3g), the constraint violation tolerance and the size of
design space is balanced properly.

The statistical moments required to solve Problem 1, i.e.,
E[·] and Var[·] for the state vector x, are calculated with

E[x] =

∫

Iθ
xf(θ)dθ, (5)

Var[x] =

∫

Iθ
(x−E[x])(x−E[x])T f(θ)dθ, (6)

where Iθ denotes the support of the random vector θ. Here,
we have the second challenge which is to derive the joint
distribution f(θ) from f(θ) and Σ. The Gaussian copula
that is based on the Sklars theorem (Nelsen, 2007) is used
to express f(θ) from f(θ) and Σ as follows

Problem 2 (Correlated random variables)

f(θ) =
∂nθFnθ

[F−1(µ1), · · · , F−1(µnθ
); Σ]

∂θ1 · · · θnθ

(7)

in which F−1 denotes the inverse cumulative distribution
function (CDF) of the standard normal distribution; Fnθ

denotes the joint CDF of nθ standard normal distribu-
tions with the correlation matrix Σ; and [µ1, · · · , µnθ

] =
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[F1(θ1), . . . , Fnθ
(θnθ

)] is the CDF of θ which could be any
arbitrary distribution.

The key issue for solving Problem 1 is to efficiently
calculate the statistical moments given in (5) and (6).
Thus, we introduce the PEM to estimate the mean and
the variance of the simulation results efficiently. To solve
Problem 2, we provide a sample-based algorithm that
incorporates parameter correlations in Problem 1.

3. POINT ESTIMATE METHOD FOR CORRELATED
RANDOM VARIABLES

Traditional sample-based methods, i.e., Monte Carlo simu-
lations and Gaussian quadrature, are used to calculate the
high-dimensional integral terms in (5) and (6). However,
their applicability is limited because of the so-called curse
of dimensionality. The PEM, which requires fewer sample
points in Rnθ , is a more efficient alternative method for
calculating these high-dimensional integral terms with a
manageable number of deterministic sample points.

3.1 Point Estimate Method

Fig. 1 illustrates the principle of the PEM applied to a
nonlinear function k(·) with two random inputs ξ and
output variables y. Assuming a bivariate Gaussian PDF
ξ ∼ N (0, I), which is symmetric and independent, the
nonlinear function is evaluated at 9 dedicated sample
points first, i.e., the cross, circle and star points in Fig.
1. Second, the integral term can be approximated by
a weighted superposition of these function evaluations
according to

∫

Iξ
k(ξ)f(ξ)dξ ≈

np∑
i=1

wik(ξ
s
i ), (8)

where ξsi denotes the sample points; nξ and np denote
the number of random inputs and sample points, which
are equal to 2 and 9 in this example; wi are the scalar
weight factors and f(ξ) is the PDF of the random inputs.
As we can see, the key problem in using the PEM is to
find the position of the dedicated sample points and their
corresponding weights.

 

𝜉𝜉1 

𝜉𝜉2 

y1 

y2 

Nonlinear function 
𝐲𝐲 = 𝐤𝐤(𝝃𝝃) 

Fig. 1. Illustration of the PEM with precision of 5 for
nonlinear function y = k(ξ) which has two random
inputs and two random outputs, adapted from Julier
and Uhlmann (1996).

Definition 1 (Lerner, 2002): The generator function
GF[±ϑ1, · · · ,±ϑr] in Rd presents the set of points which

can be obtained by permutations and sign changing of
point ϑ = (ϑ1, · · · , ϑr, 0, · · · , 0) ∈ Rd (r ≤ d)

The generator defined in Definition 1 describes how
sample points are determined deterministically. For in-
stance, the samples used in Fig. 1 are generated with
GF[0],GF[±ϑ],GF[±ϑ,±ϑ] in R2. Note that for GF[·] in
Rd, we get 1 point from GF[0], 2d points from GF[±ϑ]
and 2d(d − 1) points from GF[±ϑ,±ϑ], which sums up
to 2d2+1 points. Based on the derived sample points, the
general approximation scheme of the PEM reads as follows
(Lerner, 2002)∫

Iξ
k(ξ)f(ξ)dξ ≈

w0k(GF [0]) + w1

∑
k(GF [±ϑ]) + w2

∑
k(GF [±ϑ,±ϑ]).

(9)

The scaling value ϑ and scalar weight factors w0, w1 and
w2 can be determined by considering low-order monomials
k(ξ) = 1, k(ξ) = ξ2i , k(ξ) = ξ4i , k(ξ) = ξ2i ξ

2
j �=i (i, j ∈

{1, · · · , nξ}) as follows

w0 + 2dw1 + 2d(d− 1)w2 =

∫

Iξ
1f(ξ)dξ, (10)

2w1ϑ
2 + 4(d− 1)w2ϑ

2 =

∫

Iξ
ξ2i f(ξ)dξ, (11)

2w1ϑ
4 + 4(d− 1)w2ϑ

4 =

∫

Iξ
ξ4i f(ξ)dξ, (12)

4w2ϑ
4 =

∫

Iξ
ξ2i ξ

2
j �=if(ξ)dξ. (13)

Assuming a standard Gaussian distribution, ξ ∼ N (0, I),

(10) to (13) can be solved according to ϑ =
√
3, w0 = 1−

d2−7d
18 , w1 = 4−d

18 , w2 = 1
36 . We can apply these low-

order monomials because of the symmetric nature of the
distributions and sample points (Schenkendorf, 2014b).

In principle, we can also obtain the PEM with lower
or higher precision, but the proposed setting has the
best trade-off between precision and computational cost
(Schenkendorf, 2014a).

3.2 PEM for Correlated Random Inputs with Arbitrary
Distributions

The positions of the sample points and the weights for
the PEM are calculated under the assumption that the
random inputs follow an independent standard normal dis-
tribution. Thus, we cannot directly use them for random
inputs of arbitrary and correlated PDFs. We can solve this
problem by adding a transformation step between different
distributions.

Proposition 1. For two random inputs (θ, ξ) with arbi-
trary distributions and the function Φ(·) = F−1

θ (Fξ(·)),
the following relation for the integral of nonlinear function
k(θ) holds∫

Iθ

k(θ)f(θ)dθ =

∫

Iξ

k(Φ(ξ))f(ξ)dξ. (14)

Proof. Fθ(θ) and Fξ(ξ) are CDFs of the two random
inputs. According to the inverse transformation, we have
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∫

Iθ

k(θ)f(θ)dθ =

∫

Iθ

k(θ)dFθ(θ)

=

∫ 1

0

k(F−1
θ (u))du

=

∫

Iξ

k(F−1
θ (Fξ(ξ)))dFξ(ξ)

=

∫

Iξ

k(F−1
θ (Fξ(ξ)))f(ξ)dξ �

(15)

Here, ξ is an independent standard normal distribution,
and thus, the result from Proposition 1 can now be used
to transform the integral with arbitrary distribution to
that of the PEM.

An additional function, Φ(·) = F−1
θ (Fξ(·)), appears after

the transformation. It denotes the relation between the
random inputs (θ, ξ). It can also be interpreted as sample
points from the PEM for ξ are transformed via Φ(·) to the
corresponding points in θ which can be directly evaluated
with function k(·). However, F−1

θ (·) is the inverse joint
CDF of random variables θ derived from (7) which is
too complex to evaluate directly. Therefore, we introduce
Algorithm 1 adapted from Lebrun and Dutfoy (2009) to
transform the samples from ξ to θ. With Proposition 1
and Algorithm 1, the PEM is now available for correlated
inputs with arbitrary distributions.

Algorithm 1 Sampling for correlated random variables

Initialization: Random variables ξ ∼ N (0, I), I ∈ Rd×d;
θ have marginal CDFs [F1(θ1), . . . , Fd(θd)] and correlation
matrix Σ ∈ Rd×d;
1: Sample U = [ξ1, · · · , ξN ] with size of N = 2d2 +

1 from ξ and dimension d from Generator function
GF [·];

2: Cholesky decomposition of Σ = LLT , where L is a
lower triangular matrix;

3: Correlate the sample, V = LU;
4: Transform into the sample of the Gaussian copula,

W = [F (V1), · · · , F (Vd)];
5: Transform into the sample of θ, M =

[F−1
1 (W1), · · · , F−1

d (Wd)].

Technically, the mean and variance of the random variables
in (5) and (6) can be estimated as

E[x] = w0x0 + w1

2nθ∑
i=1

xi + w2

2n2
θ∑

i=2nθ+1

xi, (16)

Var[x] = w0(x0 −E[x])(x0 −E[x])T+

w1

2nθ∑
i=1

(xi −E[x])(xi −E[x])T+

w2

2n2
θ∑

i=2nθ+1

(xi −E[x])(xi −E[x])T ,

(17)

where xi is the state vector evaluated with θi. θi is the
ith deterministic point from the sample of θ. Note that
we have to solve (1) and (2) only once to get xi as point
θi is fixed for the same distribution. By this analogy, the
same formula in (16) and (17) can be derived for the

objective function and constraints, and thus, the robust
optimization problem can be solved efficiently.

4. CASE STUDY: A CONTINUOUS JACKET
TUBULAR REACTOR

In this section, we apply the proposed methods to the
robust optimization of a continuous jacket tubular reactor.

4.1 Model Description

Considering a tubular reactor, where an irreversible
exothermic first-order reaction with reactant A and prod-
ucts B and C takes place according to

A −→ B + C. (18)

In order to control the temperature of the reactor, we sup-
ply or remove the heat by a surrounding jacket. Assuming
steady state operation, a plug flow reactor model with
variation only along the horizontal coordinate is adapted
to describe the system. The model consists of two cou-
pled ordinary differential equations (ODEs) which describe
mass and energy conversations (Logist et al., 2008)

dCn

dz
=

αkin

v
(1− Cn)e

γTn
1+Tn (19)

dTn

dz
=

αkinδ

v
(1− Cn)e

γTn
1+Tn +

βh

v
(u− Tn). (20)

Equations (19) and (20) are given in dimensionless form
with boundary conditions of [Cn(0), Tn(0)] = [0, 0]. z is a
dimensionless coordinate. Cn is the conversion of reactant
A. αkin

, γ, δ, βh and v are the model parameters related
to the kinetic and thermodynamic constants. Tn = (Tr −
Tin)/Tin and u = (Tj −Tin)/Tin are dimensionless expres-
sions of reactor temperature Tr and jacket temperature Tj .
Tin is the temperature of the inlet flow. Details regarding
the model and its parameters can be found in Logist et al.
(2008).

Reactor temperature Tr is bounded with an upper limit
of 400K. As the control variable, we use the jacket tem-
perature bounded between 280K and 400K. For the sake
of simplicity, we consider the uncertainties of two model
parameters which are described by a bivariate normal
distribution with αkin

∼ N (0.0581, 0.005812) and βh ∼

N (0.2, 0.022) and the correlation matrix Σ =

(
1 ρ
ρ 1

)
.

The robust process design strategy aims to make a trade-
off between maximizing the conversion of reactant A while
minimizing its variation because of the uncertain model
parameters. The robustness of the inequality constraint
of the reactor temperature is controlled by the scaling
parameter β of (4). Here, β is set to 2.58 which, assuming
a normal distribution, satisfies 99% of the realizations.
The jacket temperature is discretized into 25 equidistant
control elements. To investigate the effect of the parameter
correlation, different scenarios are analyzed. The param-
eter correlation ρ is set to be 0, 0.8 and -0.8, which
presents independent, positive and negative correlated pa-
rameters. For each correlation scenario, 9 deterministic
sample points are generated according to the PEM and
Algorithm 1 and are evaluated for the robust process
design. All simulations are carried out in Matlab R2016a.

Proceedings of the 9th MATHMOD
Vienna, Austria, February 21-23, 2018

4



	 Xiangzhong Xie  et al. / IFAC PapersOnLine 51-2 (2018) 427–432	 431

∫

Iθ

k(θ)f(θ)dθ =

∫

Iθ

k(θ)dFθ(θ)

=

∫ 1

0

k(F−1
θ (u))du

=

∫

Iξ

k(F−1
θ (Fξ(ξ)))dFξ(ξ)

=

∫

Iξ

k(F−1
θ (Fξ(ξ)))f(ξ)dξ �

(15)

Here, ξ is an independent standard normal distribution,
and thus, the result from Proposition 1 can now be used
to transform the integral with arbitrary distribution to
that of the PEM.

An additional function, Φ(·) = F−1
θ (Fξ(·)), appears after

the transformation. It denotes the relation between the
random inputs (θ, ξ). It can also be interpreted as sample
points from the PEM for ξ are transformed via Φ(·) to the
corresponding points in θ which can be directly evaluated
with function k(·). However, F−1

θ (·) is the inverse joint
CDF of random variables θ derived from (7) which is
too complex to evaluate directly. Therefore, we introduce
Algorithm 1 adapted from Lebrun and Dutfoy (2009) to
transform the samples from ξ to θ. With Proposition 1
and Algorithm 1, the PEM is now available for correlated
inputs with arbitrary distributions.

Algorithm 1 Sampling for correlated random variables

Initialization: Random variables ξ ∼ N (0, I), I ∈ Rd×d;
θ have marginal CDFs [F1(θ1), . . . , Fd(θd)] and correlation
matrix Σ ∈ Rd×d;
1: Sample U = [ξ1, · · · , ξN ] with size of N = 2d2 +

1 from ξ and dimension d from Generator function
GF [·];

2: Cholesky decomposition of Σ = LLT , where L is a
lower triangular matrix;

3: Correlate the sample, V = LU;
4: Transform into the sample of the Gaussian copula,

W = [F (V1), · · · , F (Vd)];
5: Transform into the sample of θ, M =

[F−1
1 (W1), · · · , F−1

d (Wd)].

Technically, the mean and variance of the random variables
in (5) and (6) can be estimated as

E[x] = w0x0 + w1

2nθ∑
i=1

xi + w2

2n2
θ∑

i=2nθ+1

xi, (16)

Var[x] = w0(x0 −E[x])(x0 −E[x])T+

w1

2nθ∑
i=1

(xi −E[x])(xi −E[x])T+

w2

2n2
θ∑

i=2nθ+1

(xi −E[x])(xi −E[x])T ,

(17)

where xi is the state vector evaluated with θi. θi is the
ith deterministic point from the sample of θ. Note that
we have to solve (1) and (2) only once to get xi as point
θi is fixed for the same distribution. By this analogy, the
same formula in (16) and (17) can be derived for the

objective function and constraints, and thus, the robust
optimization problem can be solved efficiently.

4. CASE STUDY: A CONTINUOUS JACKET
TUBULAR REACTOR

In this section, we apply the proposed methods to the
robust optimization of a continuous jacket tubular reactor.

4.1 Model Description

Considering a tubular reactor, where an irreversible
exothermic first-order reaction with reactant A and prod-
ucts B and C takes place according to

A −→ B + C. (18)

In order to control the temperature of the reactor, we sup-
ply or remove the heat by a surrounding jacket. Assuming
steady state operation, a plug flow reactor model with
variation only along the horizontal coordinate is adapted
to describe the system. The model consists of two cou-
pled ordinary differential equations (ODEs) which describe
mass and energy conversations (Logist et al., 2008)

dCn

dz
=

αkin

v
(1− Cn)e

γTn
1+Tn (19)

dTn

dz
=

αkinδ

v
(1− Cn)e

γTn
1+Tn +

βh

v
(u− Tn). (20)

Equations (19) and (20) are given in dimensionless form
with boundary conditions of [Cn(0), Tn(0)] = [0, 0]. z is a
dimensionless coordinate. Cn is the conversion of reactant
A. αkin

, γ, δ, βh and v are the model parameters related
to the kinetic and thermodynamic constants. Tn = (Tr −
Tin)/Tin and u = (Tj −Tin)/Tin are dimensionless expres-
sions of reactor temperature Tr and jacket temperature Tj .
Tin is the temperature of the inlet flow. Details regarding
the model and its parameters can be found in Logist et al.
(2008).

Reactor temperature Tr is bounded with an upper limit
of 400K. As the control variable, we use the jacket tem-
perature bounded between 280K and 400K. For the sake
of simplicity, we consider the uncertainties of two model
parameters which are described by a bivariate normal
distribution with αkin

∼ N (0.0581, 0.005812) and βh ∼

N (0.2, 0.022) and the correlation matrix Σ =

(
1 ρ
ρ 1

)
.

The robust process design strategy aims to make a trade-
off between maximizing the conversion of reactant A while
minimizing its variation because of the uncertain model
parameters. The robustness of the inequality constraint
of the reactor temperature is controlled by the scaling
parameter β of (4). Here, β is set to 2.58 which, assuming
a normal distribution, satisfies 99% of the realizations.
The jacket temperature is discretized into 25 equidistant
control elements. To investigate the effect of the parameter
correlation, different scenarios are analyzed. The param-
eter correlation ρ is set to be 0, 0.8 and -0.8, which
presents independent, positive and negative correlated pa-
rameters. For each correlation scenario, 9 deterministic
sample points are generated according to the PEM and
Algorithm 1 and are evaluated for the robust process
design. All simulations are carried out in Matlab R2016a.
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4.2 Results of Robust Process Design

First, the underlying robust optimization problem is solved
for independent random parameters with ρ = 0. The
control profiles are implemented for the three correlation
scenarios (ρ = 0, 0.8,−0.8) on the reactor. The resulting
PDFs of the conversion of reactant A are shown in Fig. 2.
Depending on the parameter correlation, we can see some
variation in the distributions. In Fig. 3, we summarize
the corresponding temperature profiles. The blue thick
lines denote the predicted mean, and the blue dashed
lines represent the 99% confidence intervals of the reactor
temperature. The gray curves are 5,000 realizations of the
temperature profiles depending on 5,000 parameter real-
izations. In Fig. 3a, the predicted 99% confidence interval
perfectly satisfies the constraint, and thus, the majority of
the realizations remain in the safe region. The statistics
derived with the PEM are sufficient for the robust process
design. However, the performance of the robust process
design decreases when parameter correlations are present
but are ignored during the process design phase. In this
case, the target constraint is not fulfilled for a number
of temperature profiles as indicated in Figs. 3b and 3c
illustrating the effect of positive and negative parame-
ter correlation. The parameter correlations have a strong
impact on UQ and robust process design, respectively.
To address the parameter correlations, they have to be
directly considered in the process design step. In doing
so, the robust optimization is solved for the reactor with
ρ = 0.8 and ρ = −0.8 , respectively. In Fig. 4, we show
the resulting temperature profiles. In this case, the target
constraint is fulfilled reliably. The corresponding control
profiles of the three correlation scenarios are presented
in Fig. 5. Depending on the parameter correlation, the
control profiles have significant differences especially in the
range z = [0.2, 0.8].
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Fig. 2. Probability distribution functions of the conversion
of reactant A at z = 1 for ρ = 0, 0.8 and −0.8. The
control profile designed for ρ = 0 is used for the three
parameter correlation scenarios.

5. CONCLUSION

In this paper, we demonstrated the effect of parameter cor-
relation on the results of robust optimization and process
design, respectively. The point estimated method in com-
bination with an additional transformation step are intro-
duced to address correlated model parameter uncertain-
ties efficiently. We analyzed the correlation effect on the

(a) ρ = 0

(b) ρ = 0.8

(c) ρ = −0.8

Fig. 3. Different temperature profiles with the mean values
and the 99% confidence intervals for 3 parameter
correlations ρ = 0, 0.8 and −0.8. The gray lines
are 5,000 random realizations at different parameter
combinations. The same control profile is used for all
the three cases, i.e., ignoring parameter correlations.

process design outcome and concluded that neglecting pa-
rameter correlations leads to non-robust designs. The case
study of the tubular reactor successfully demonstrated the
efficiency of the proposed concept of robust process design
in the presence of parameter correlations. As a result,
control profiles accounting for parameter correlations ful-
filled the given process constraints reliably. Therefore, it is
necessary to consider the parameter correlations for robust
optimization of dynamical systems. This work also reveals
prospect of the PEM as an efficient and accurate method
for robust process design or other UQ-based analysis. In
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(a) ρ = 0.8

(b) ρ = −0.8

Fig. 4. Correlation corrected temperature profiles with the
mean values and the 99% confidence intervals for 2
parameter correlations ρ = 0.8 and −0.8 for the jacket
tubular reactor. The gray lines are 5,000 random
realizations at different parameter combinations.
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Fig. 5. Control profiles designed for random variables with
correlation factors of 0, 0.8 and -0.8.

future work, we are interested in applying the methods
to more complex problems and analyzing the effect of
parameter correlations on robust process design in more
detail.
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