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Abstract
Design of Experiments methods offer systematic tools for bioprocess development in Quality by Design, but their major 
drawback is the user-defined choice of factor boundary values. This can lead to several iterative rounds of time-consuming 
and costly experiments. In this study, a model-assisted Design of Experiments concept is introduced for the knowledge-based 
reduction of boundary values. First, the parameters of a mathematical process model are estimated. Second, the investigated 
factor combinations are simulated instead of experimentally derived and a constraint-based evaluation and optimization of 
the experimental space can be performed. The concept is discussed for the optimization of an antibody-producing Chinese 
hamster ovary batch and bolus fed-batch process. The same optimal process strategies were found if comparing the model-
assisted Design of Experiments (4 experiments each) and traditional Design of Experiments (16 experiments for batch and 
29 experiments for fed-batch). This approach significantly reduces the number of experiments needed for knowledge-based 
bioprocess development.
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Variable
�  Constant antibody production rate 

( mg cell−1 h−1)
�  Cell-specific growth rate ( h−1)
�d,max  Maximum death rate ( h−1)
�d,min  Minimum death rate ( h−1)
�max  Maximum growth rate ( h−1)
ci  Concentration of component i ( mmol l−1)
di  Desirability function (−)
D  Overall desirability function (−)
Fi  Feed concentration of component i 

( mmol l−1)
Frate  Feed rate ( ml d−1)
Feed-start  Time of feed-start ( h)
i  Index (Glc, Gln, Amm, Lac, mAb) (−)
j  Index (lactate, ammonium)

ki  Inhibitory constant ( mmol l−1)
Ki,Amm  Inhibitory constant of ammonia 

( mmol l−1)
KLys  Cell lysis constant ( h−1)
KS,i  Monod kinetic constant for component i 

( mmol l−1)
Li  Lower acceptable response (−)
qAmm  Ammonia formation rate 

( mmol cell−1 h−1)
qGlc  Glucose uptake rate ( mmol cell−1 h−1)
qGln  Glutamine uptake rate ( mmol cell−1 h−1)
qi,max  Maximum uptake rate (component i) 

( mmol cell−1 h−1)
qLac  Lactate formation rate ( mmol cell−1 h−1)
qLac,uptake  Uptake rate of lactate ( mmol cell−1 h−1)
qLac,uptake,max  Maximum uptake rate of lactate 

( mmol cell−1 h−1)
qmAb  Antibody formation rate ( mg cell−1 h−1)
R2  Coefficient of determination (−)
Ui  Upper acceptable response (−)
V  Volume (l)
Xd  Dead cell density ( cellsml−1)
Xt  Total cell density ( cellsml−1)
Xv  Viable cell density ( cellsml−1)
yi  Response (−)
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YAmm/Gln  Yield coefficient of ammonia formation 
to glutamine uptake (−)

YLac/Glc  Yield coefficient of lactate formation to 
glucose uptake (−)

Abbreviation
Amm  Ammonia
ANOVA  Analysis of variance
CHO  Chinese hamster ovary
DAPI  4,6-diamidin-2-phenylindol
DMEM/F12  Dulbecco’s Modified Eagle Medium/

Nutrient Mixture F-12
DNA  Deoxyribonucleic acid
DoE  Design of Experiments
FITC  Fluorescein isothiocyanate
FSC-A  Forward scatter area
FSC-H  Forward scatter height
Glc  Glucose
Gln  Glutamine
HPLC  High-performance liquid 

chromatographic
IgG  Immunoglobulin G
Lac  Lactate
Long R3 IGF-1  Long arginine 3-insulin-like growth 

factor-1
mAb  Antibody
max  Maximum
min  Minimum
mDoE  Model-assisted Design of Experiments
mRNA  Messenger ribonucleic acid
OFAT  One-factor-at-time
opt  Optimum
PBS  Phosphate-buffered saline
QbD  Quality by Design
RMSD  Root-mean-squared deviation
RSM  Response-surface model
SSC-A  Side scatter area
UV  Ultraviolet

Introduction

The development of mammalian cell culture processes for 
the production of stable and active drugs is still challenging 
due to the high number of relevant variables [1]. In con-
trast to one-factor-at-a-time (OFAT) approaches, Design 
of Experiments (DoE) tools offer a systematic method for 
the evaluation of multiple variables simultaneously and the 
description of these with empirical models. DoE methods 
are recommended within the Quality by Design (QbD) 
methodology to describe the interdependency of process 
variables on the final biopharmaceutical [2, 3]. Mostly, a 
screening design is chosen at first to statistically identify 

relevant process variables, e.g., medium compositions [4–6] 
or process parameters [7, 8]. Second, the experimental 
space, consisting of significant variables (factors) and user-
defined boundaries, is experimentally evaluated with respect 
to their impact on the targeted outcomes (responses, e.g., 
product yield) [9–11]. The obtained experimental results 
are further used to predict the parameters of an empirical 
response-surface model (RSM) to describe the effects and 
interactions of the process variables on the responses. A 
stable setpoint (e.g., medium concentrations) of the process 
variables is aimed to ensure the stability of the process and 
to define the space of stable operation, referred to as design 
space. The main advantages of DoE methods are the sys-
tematic planning of experiments and the description of the 
interactions between the variables [12, 13]. Disadvantages 
are the high number of time-consuming and cost-intensive 
experiments typically needed in bioprocess development 
[2, 14, 15]. Furthermore, DoE methods are based on user-
defined choices of the experimental design and the defini-
tion of factor boundary values, including the definition of 
variables and their evaluated levels [2, 16]. Mostly, expert 
knowledge (e.g., literature, heuristics, and experience) is 
required to define suitable boundary values for the develop-
ment and optimization of cell culture processes using DoE 
[17–19]. This is seen controversial, since the development of 
processes for the production of therapeutics should rely on 
sound process knowledge including a meaningful decision 
about the boundary values [3, 16]. Moreover, the heuristic 
restriction of the experimental space can lead to several iter-
ative rounds, each consisting of a re-estimated experimental 
space and new experimental settings [16, 20]. Even if single-
use high-throughput systems can perform the experiments in 
parallel, plenty of time and analytical support are required, 
which can increase the time a pharmaceutical takes to enter 
the market [21].

Mathematical process modeling has gained rising impor-
tance in the last decades, since it can be applied to design 
[22–24], control [25–27], and optimize [28, 29] biopharma-
ceutical production processes. Furthermore, a mathematical 
process model is seen as a sustainable part of QbD, because 
it contributes to a scientific understanding of the process 
variables and their impact on the final product [14, 30–33]. 
Although the application of mathematical process models 
for the development of sophisticated processes has many 
advantages, it is still not commonly applied in bioprocess 
development. Reasons for this can be found in the variety 
and complexity of mathematical models including different 
assumed mechanistics and quality of predictions (recently 
reviewed in [34]).

In this study, a novel concept for the a priori evaluation 
of DoE designs using mathematical process models (model-
assisted DoE—mDoE) is discussed. The general structure 
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including mathematical process models and DoE is sche-
matically shown in Fig. 1.

Initial process development data from cultivation exper-
iments based on literature or prior knowledge (e.g., from 
medium suppliers, former studies) are generated. If no 
prior knowledge is available or the influencing factors are 
unknown, a traditional screening design is recommended 
[4, 14]. The first data are evaluated and used to model the 
growth, metabolic rates, and productivity of the bioprocess. 
Prior and expert knowledge are incorporated in the math-
ematical process model (modeling workflow see [33]), since 
it consists of mechanistic links describing the interactions of 
the culture dynamics [32]. However, mathematical process 
modeling could only be used if knowledge about the general 
relationships is known [34]. Otherwise, data-based modeling 
approaches need to be applied. For example, a hybrid mod-
eling concept was introduced by [20]. For the method of 
mDoE, typically, a low number of data are available (i.e., in 
the early process development) and the used model struc-
tures are simple and describing known mechanistic effects, 
but the model parameters can be estimated based on a few 
data. After modeling, a classical DoE is planned including 
the definition of factors and responses and the choice of an 
appropriate experimental design. The factor combinations 
are exported and the dynamics of the cell culture process 
are simulated based on the process model. The responses 
are treated like experimental data and the DoE is evaluated. 
A RSM is estimated and a constraint-based optimization 
of the experimental space is conducted. This loop can be 
repeated several times to reduce the boundary values for an 
experimental DoE and the number of experiments during 
process development.

This method is exemplary shown for (part A) the opti-
mization of the glucose and glutamine concentration of 
an antibody-producing Chinese hamster ovary (CHO) 
batch process and (part B) the development of a bolus fed-
batch feeding strategy. Furthermore, an experimental DoE 
was performed for each example and evaluated within the 
reduced experimental space and compared to the purely 
simulated responses.

Materials and methods

Mathematical process model

In this study, an unstructured, non-segregated saturation-
type model (see Table 1) was adapted and modified from 
literature to describe the dynamics of cell growth and metab-
olism of antibody-producing CHO DP-12 cells in batch and, 
with a few extensions, in fed-batch mode [25]. This model 
was chosen due to its simple model structure and the oppor-
tunity to estimate all the model parameters from just a few 
shaking flask cultivations. Furthermore, it has already been 
used successfully for the online control of feeding strategies 
for hybridoma cells and the optimization of seed trains for 
AGE1AAT and CHO-K1 cells [25, 28, 35].

Batch‑process model

The mathematical process model describes the growth ( Xt

—total cell density, Xd—dead cell density, and Xv—viable 
cell density) based on the main substrates glucose ( cGlc ) 
and glutamine ( cGln ). Glucose is taken up and subsequently 
high lactate ( cLac ) production rates are typically seen in 

Fig. 1  Workflow of mDoE consisting of the combination of mathematical process models and classical DoE
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CHO cell cultures due to the Warburg effect [36]. The 
uptake of glutamine leads to the formation of ammonium 
( cAmm ) during the glutaminolysis [37, 38]. No inhibi-
tory components were considered, because cell growth 
was not observed to be inhibited in batch mode in the 
experimental setting [28]. The growth is modeled with 
Monod-like structures including the kinetic parameters 
KS, i ( i = Glc, Gln ), a cell lysis constant ( KLys ) of dead cells 
and a minimal ( �d, min ), and a maximal death rate ( �d, max ). 
The cell-specific uptake rates of glucose and glutamine 
depend on the current glucose and glutamine concentra-
tion (Eqs.  5, 6, 12, 13). The used differential equation for 
the glucose uptake describes the following phenomena: 
First, glucose uptake is based on Monod-type equations, 
for which qGlc decreases with lower glucose concentration. 
Second, a growth-associated term describing the decrease 
of the glucose uptake at low growth rates (e.g. typically 
during inhibition) was added to Eq. 12. This term is 1 if 
� = �max and decreases if � decreases. The concentra-
tions of lactate and ammonium are proportional to the 
uptake rates of glucose (lactate) or glutamine (ammonium) 
(Eqs. 7, 8, 14, 15, 16) and are linked with the yield coef-
ficients ( YAmm/Gln and YLac/Glc ). The shift of lactate produc-
tion to lactate uptake under low glucose concentrations 
below 0.5mmol l−1 was implemented (Eqs. 14, 15). The 
antibody production (Eq. 17) was simulated according to 
Frahm [25], which describes the production proportional 

to the viable cell density. The modeling of antibody pro-
duction by mammalian cells was controversially discussed 
in the literature (reviewed in [34]). A constant cell-specific 
productivity was chosen, because it is the simplest struc-
ture for modeling without additional terms, which reduces 
the possibility of over-fitting. However, CHO DP-12 cells 
stop production when they enter the stationary growth 
phase. Therefore, lower boundary values for the antibody 
production were defined below 1mmol l−1 glucose (Eq. 18).

Model extension: fed‑batch

The growth of CHO cells in fed-batch mode stops even if 
glucose and glutamine are in excess. This effect, in con-
trast to a batch process, is described based on the accumula-
tion of lactate and ammonium. High lactate concentrations 
(25–110 mmol l−1 ) [25, 39–41] can lead to an increase in 
osmolality with growth inhibition and reduced productivity 
[42–44]. Furthermore, [45] identified cell-cycle dependent 
and putative autocrine factor-dependent metabolic regula-
tions of the lactate production. The lactate concentration 
in fed-batch mode did not exceed approx. 30mmol l−1 dur-
ing 240 h cultivation and was comparable to batch cultiva-
tions. Therefore, lactate inhibition was not considered and 
not modeled in this study. The accumulation of ammonium 
(2–20 mmol l−1 ) [25, 39–41] results in growth diminution, 
decreasing productivity and changes in the product quality, 

Table 1  Mathematical process 
model in batch mode. Modified 
from [25, 35]

Balance equation Kinetic links

Biomass
dXv

dt
= (� − �d) × Xv

(1) � = �max ×
cGlc

cGlc+Ks, Glc

×
cGln

cGln+Ks, Gln

(10)

dXd

dt
= (�d) × Xv

(2) �d = �d, min + �d, max ×
Ks, Glc

cGlc+Ks, Glc

(11)

dXt

dt
= � × Xv − KLys × (Xt − Xv)

(3)

dVi

dt
=

dXv

dt

×Xt−
dXt

dt

×Xv

X2
t

(4)

Substrates and metabolites
dcGlc
dt

= −qGlc × Xv
(5) qGlc = qGlc, max ×

cGlc

cGlc+kGlc
× (

�

�+�max

+ 0.5) (12)

dcGln
dt

= −qGln × Xv
(6) qGln = qGln, max ×

cGln

cGln+kGln
(13)

dcLac
dt

= qLac × Xv
(7) qLac = YLac, Glc ×

cGlc

cLac
× qGlc − qLac, uptake (14)

dcAmm

dt
= qAmm × Xv

(8) cGlc < 0.5mmol l−1 ∶ qLac, uptake = qLac, uptake, max
(15)

qAmm = YAmm, Gln × qGln (16)
Antibody
dcmAb

dt
= qmAb × Xv

(9) qmAb = � (17)

cGlc < 1mmol l−1 ∶
dcmAb

dt
= 0

(18)
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including the glycosylation pattern [39, 42–44]. Various fac-
tors, such as pH or temperature, affect the chemical decom-
position of glutamine and the inhibitory effect of ammonium 
[39, 46, 47]. The concentration of ammonium increases 
during the fed-batch cultivations. The diminution of the 
growth could be linked to the ammonium concentration and 
the model structure of � and �d, max was extended with an 
ammonium inhibition based on the current ammonium con-
centration and an inhibitory constant Ki,Amm:

In addition, CHO DP-12 cells stop the production of anti-
bodies if the growth is inhibited. Therefore, the antibody 
production was modeled to stop if cAmm increases above 
Ki,Amm and if the current glutamine concentration decreases 
below 0.05mmol l−1:

The mathematical model was implemented as ordinary dif-
ferential equations. The fed-batch mode was modeled with 
the addition of the feed rate ( Frate ), the current volume V 
and the current concentration of a component (exemplary 
for component i) in the feed ( Fi ) to the balance equations in 
batch mode: [35]:

The sampling and the bolus feed were modeled as a constant 
feeding rate.

Estimation of model parameters

The model parameters were estimated (MATLAB R2018a, 
USA) based on only four modeling experiments for each 
example by minimizing the weighted root-mean-squared 
deviation (RMSD) using the Downhill Simplex algorithm 
introduced by Nelder and Mead [48]. All parameters were 
adapted simultaneously. The viable cell density and glu-
cose concentration were weighted with a factor of 100 and 
the glutamine concentration with a factor of 1000. Cell 

(19)

� = �max ×
cGlc

cGlc + Ks, Glc

×
cGln

cGln + Ks, Gln

×
Ki, Amm

cAmm + Ki, Amm

(20)
�d = �d, min + �d, max ×

Ks, Glc

cGlc + Ks, Glc

×
Ks, Gln

cGln + Ks, Gln

×
cAmm

cAmm + Ks, Amm

(21)cAmm ≥ KAmm ∶
dcmAb

dt
= 0

(22)cGln < 0.05mmol l−1 ∶
dcmAb

dt
= 0.

(23)
dci, fed-batch

dt
=

Frate

V
× (ci,F − ci) +

dci,batch

dt
.

concentrations were divided with 106 to transfer all the num-
bers to the same magnitude. The simulations were evaluated 
in comparison to the experimental data using the coefficient 
of determination ( R2 ) [49, 50].

Model‑assisted reduction of experimental space

The mathematical process model was used instead of labo-
ratory experiments to reduce the boundary values in DoE. 
Experiments were designed with suitable DoE Software (in 
this study: Design-Expert 9, Statcon, USA). Each experi-
mental factor combination of the experimental design was 
simulated (MATLAB), and the responses were calculated 
and exported to generate response surface plots (Design-
Expert 9). The simulated data were treated in the same way 
as data from experiments. For this purpose, no data transfor-
mation was applied, and after analysis of variance (ANOVA, 
all hierarchical design mode, quadratic process order), an 
internal RSM was set up with a maximal significance value 
of 0.05. After defining the RSM for each response ( yi ), user-
defined constraints were chosen and the desirability function 
was calculated for each response individually [51, 52]. The 
main advantage of the desirability function is the standardi-
zation of the multidimensional optimization problem to just 
one desirability function di(yi) value between 0 and 1. There-
fore, di(yi) is 0 if the optimization criteria is not fulfilled and 
di(yi) tends towards 1 if the optimization is highly desirable. 
It is calculated based on the user-defined lower acceptable 
response Li and the upper acceptable response Ui , which d 
is the optimization range (Ui − Li):

The multidimensional optimization problem is reduced with 
the multiplication of the different desirability function values 
di(yi) to one overall desirability D:

Cell line and media

The suspension growing anti interleukin-8 (IgG-1) anti-
body producing cell line CHO DP-12 (clone #1934, ATCC 
CRL-12445) was used in this study (kindly provided by 
Prof. Dr. T. Noll, Bielefeld University, Germany). CHO 
DP-12 cells were cultivated in TC-42 medium (chemically 
defined, animal component-free, Xell AG, Germany) which 
was supplemented with 0.1mg l−1 LONG R3 IGF-1, varying 

(24)di(yi) =

⎡⎢⎢⎢⎣

0 if yi < Li�
y

i
−Li

Ui−Li

�
if Li < yi < Ui

1 if yi > Ui

⎤⎥⎥⎥⎦
.

(25)D =

(
n∏
i=1

di(yi)

)
= d1(y1) × d2(y2) × d3(y3)[…]
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concentrations of glutamine and glucose and 200 nM Metho-
trexat (all Sigma-Aldrich).

Preculture

Cells were treated in similar fashion before each experi-
ment and no maintenance culture was used, because a loss 
in the productivity of CHO DP-12 cells has been described 
in the past [53]. Cryo-cultures ( 1 × 107 cellsml−1 ) were 
thawed and inoculated to a single-use Erlenmeyer baf-
fled flask working volume ( 40ml , Corning, USA). The 
incubator atmosphere (LT-XC, Kuhner, Switzerland) was 
controlled at 37 ◦C , 5%CO2 , and 85% humidity. Shaking 
speed was set at 250 rpm and 12.5mm shaking diameter. 
Cell expansion was performed using multiple 40ml and 
80ml working volume Erlenmeyer baffled flasks (Corn-
ing, Netherlands) until the required amount of cells was 
reached. Expansion was designed such that no limitation 
of substrates and no putative inhibition of metabolites took 
place. All cultivations were performed without antibiotics 
and serum.

A: Optimization of batch medium

The concept of mDoE was evaluated for the optimization 
of the initial concentrations of glucose and glutamine in a 
batch process.

Experiments for modeling: Four parallel 80ml shak-
ing flask cultures (Starting concentrations: 42 mmol l−1 
glucose, 8 mmol l−1 glutamine) were inoculated with 
0.3 × 106cellsml−1 and samples were taken every 12 h.

Experimental DoE: The suggested experimental design 
(based on mDoE) was performed in 16 parallel shaking 
flasks with different concentrations of glucose and glutamine 
using the same medium. The experimental set-up was as 
described in "Cell line and media". All shaking flasks were 
inoculated from the same preculture ( 0.3 × 106 cellsml−1 ) 
and samples were taken every 24 h.

B: Optimization of fed‑batch strategy

As a second example, the feed concentrations of glucose 
( FGlc ) and glutamine ( FGln ), the feeding rate ( Frate ), and the 
start of feeding (Feed-start) were optimized in a bolus fed-
batch process.

Experiments for modeling: Fed-batch experiments were 
performed in single-use Erlenmeyer (recommended working 
volume 40ml ) baffled flasks with a starting volume of 40ml . 
The incubator and the starting concentrations in batch mode 
were the same as above. The bolus feed (Chomacs basic 

feed, Xell AG) was supplemented with varying concentra-
tions of glutamine. The glucose concentration in the feed 
was not changed for the modeling experiments, since it was 
fixed in the feed supplement to 222mmol l−1 and feeding 
was started at different time points and with different (bolus) 
feeding rates (see Table 2). Therefore, the feed was freshly 
prepared each day, prewarmed for at least 45 min, and added 
daily as a bolus to the shaking flasks. The experiments were 
stopped if the viability decreased below 70%.

Experimental DoE: The cultivation protocol was slightly 
changed for the recommended experimental design (mDoE) 
as follows: the minimal working volume was 30 ml and feed-
ing was performed until the maximal working volume of 
50 ml was reached. After that, no further bolus feeding was 
applied.

Growth, substrate, and metabolite analysis

Total cell concentration and cell-size distribution were 
measured with the Z2 particle counter (Z2, Beckmann Coul-
ter, USA) as explained in [54]. The cell suspension was cen-
trifuged ( 300 g , 3min ), the supernatant was frozen ( −20◦C ) 
for metabolite analysis and the cells were suspended in 4◦C 
PBS. The viability was determined with DNA staining using 
the DAPI method. Therefore, cells were suspended in 4◦C 
PBS with 1 μgml−1 4,6-diamidin-2-phenylindol (DAPI) 
and immediately measured with flow cytometry (CytoFlex, 
Beckmann Coulter, Brea, CA, USA). The 405 nm laser and 
450∕50 nm (FITC-A) filter signal was used. Debris and dou-
blets were excluded with SSC-A/FSC-A and FSC-H/FSC-A 
gating and non-stained cells were gated as viable (30000 
recorded events, CyteExpert Software, Beckmann Coulter).

Glucose, glutamine, and lactate concentrations were 
measured with the YSI 2900D (Yellow Springs Instruments, 
USA) biochemistry analyzer. Ammonium concentration was 
determined with an enzymatic test kit (AK00091, Nzytech, 
Portugal).

Antibody quantification

The antibody was measured in part A with an IgG quanti-
fication assay (PAIA biotech, Germany). In brief, 54 μl of 

Table 2  Performed experiments for fed-batch model parameter esti-
mation

Number FGlc ( mmol l−1) FGln 
( mmol l−1)

Frate ( ml d−1) Feed-start (h)

1 222 9 2.5 96
2 222 12 4 48
3 222 38 4 72
4 222 9 1 48
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the assay buffer and 6 μl of 1:10 diluted (PBS) crude super-
natant were added to the wells of a 384 well plate (PAIA). 
Rituximab (Mabthera, Roche, Switzerland) was used to cali-
brate the assay. All standards were prepared in cell culture 
medium diluted 1:10 with PBS. Assays were measured in 
technical triplicates (Tecan Safire, Austria; bottom reading, 
Exc. 640 nm, Em 670 nm).

As an alternative, a high-performance liquid chroma-
tographic system (HPLC, Knauer Smartline, Germany) 
equipped with a Poros-A column (Thermo Fisher Scien-
tific, USA; 0.1 ml) was used in Part B in accordance with 
the manufacturer’s protocol. Purified water containing 
150mmol l−1 NaCl and 50 mmol l−1 Na2HPO4 (pH 7) was 
used as the mobile phase. The samples were filtered (cel-
lulose filters, pore size: 0.45μm , Restek, Germany) before 
injection of 50μl . 100mmol l−1 glycine (pH 2.5, in purified 
water) was applied to elute the antibody and the UV signal 
(280 nm) was measured. The system was calibrated with a 
standard curve of diluted rituximab (Roche) and samples 
were measured in duplicates. Both measurements show com-
parable results (data not shown).

Results and discussion

The aim of this study was to introduce the concept of mDoE 
for the reduction of boundary values in the experimental 
DoE for process development. This is discussed for (part A) 
the optimization of the initial glucose and glutamine con-
centration of a CHO cell culture medium and (part B) the 
optimization of the feeding rate, start of feeding and glucose 
and glutamine concentration in the feed of a bolus fed-batch 
process. At first, model parameters of a process model were 
estimated and then used to simulate the responses in DoE 
plans. The boundary values in the experimental space were 
reduced using the simulations instead of experiments. Then, 
experimental DoEs were performed in the reduced experi-
mental space and compared to the predicted DoEs based on 
the process model. All experiments performed in this study 
are summarized in Table 3.

Estimation of model parameters

The data obtained in the model building experiments were 
used to estimate the model parameters (see "Estimation of 
model parameters" in section) of the batch and fed-batch-
process model. The initial values, estimated parameters, and 
statistical evaluation criteria are summarized in Supplemen-
tary Table 1.

Part A: medium optimization

The experiments for modeling in example A (medium opti-
mization) were based on the previous publications of [53] 
and [55] with the same medium and cell line. Biological 
fourfold experiments were performed, the data were aver-
aged and the model parameters were estimated. As shown 
in Fig.  2, exponential cell growth and the transition to the 
stationary phase and corresponding cell death (summarized 
in Xv , Fig. 2a) could be simulated with high accuracy.

The concentrations of glucose (Fig. 2b) and glutamine 
(Fig. 2e) were reflected by the model with a R2 > 0.9 . The 
metabolic waste product formation of lactate (Fig. 2c) and 
ammonium (Fig. 2f) were predicted well ( R2 = 0.78 and 
R2 = 0.89 ). The lactate concentration increases faster in the 
first 48 h compared to the concentrations predicted by the 
model. Secondary lactate and ammonium accumulation after 
120 h correspond to cell death which includes apoptosis, 
necrosis, and cell lysis [56]. The modeling of such effects 
was not aimed with the proposed simple model and available 
data. The antibody concentration (Fig. 2d) increases until Xv 
decreases after approx. 144 h and was estimated with a high 
accuracy of R2 = 0.98.

Part B: optimization of fed‑batch

The modeling of sophisticated fed-batch strategies is still 
challenging due to the complexity of the regulation of the 
cell metabolism in changing cultivation conditions such as 
changing pH, osmolality, or varying waste product concen-
trations [50]. A D-optimal DoE was used in the beginning 
to plan experiments suitable for modeling of the fed-batch 
process. Even if novel approaches for experimental design of 
experiments (model-based DoE) for the targeted estimation 
of model parameters are coming up, their application in the 

Table 3  Performed experiments 
in this study

Aim Number of cultivations Based on

Model building (medium optimization) 4 (parallel) Literature and 
supplier data

Recommended DoE (medium optimization) 16 (parallel) mDoE
Model building (design of fed-batch) 4 (parallel) Literature data
Recommended DoE (design of fed-batch) 29 (2 blocks) mDoE
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early process development for rather complex cell culture 
processes is under investigation [57] and so far not applica-
ble with low experimental effort. Therefore, the boundary 
values of this first DoE were generated based on the avail-
able feeding solutions and vendor data (see "B: Optimization 
of fed-batch strategy" in section). Concentrated feed with 
222mmol l−1 glucose and 9–38 mmol l−1 glutamine were fed 
in a daily bolus feed. The boundary conditions for the feed-
ing rate were 1–4 ml d−1 and were based on bolus feeding 
protocols described in the literature [58, 59]. The D-optimal 
design was evaluated based on the standard error of the sug-
gested experiments using a quadratic RSM fit. Four distrib-
uted experiments with a standard error of the design ≥ 0.6 
were randomly selected. The four performed experiments do 
not reflect the entire range of feeding strategies, but act as an 
initial point for modeling and evaluation of the experimental 
settings. The comparison of the simulated to experimental 
data is shown for the four different fed-batch shaking flask 
experiments in Fig. 3.

The time-dependent courses of each individual estima-
tion are shown in the Supplementary Figs.1–4. The viable 
(Fig. 3a) and total cell density (Fig. 3c) are experimentally 
measured and simulated from 0.3 × 106 cells ml−1 up to 
28 × 106 cells ml−1 with a R2 = 0.85 . The concentration of 
the dead cell density (Fig. 3b) was simulated higher than 
that measured and partially shifted. The modeling of the 
complexity of cell starvation and cell death was not aimed 

in this study and the achieved simulation was acceptable. 
Furthermore, the modeling of the bolus feed and sampling 
in shaking flasks were successfully modeled (Fig. 3d). The 
simulated concentrations of glucose (Fig. 3f) and glutamine 
(Fig. 3g) follow the experimental data and the corresponding 
metabolic waste product concentrations of lactate (Fig. 3h) 
and ammonium (Fig. 3i) are simulated satisfactory. The high 
lactate accumulation during the first 48 h could not be simu-
lated and the experimental and simulated data differ below 
20mmol l−1 . The dynamics of lactate metabolism in CHO 
culture is still controversially discussed in literature (sum-
marized in [60, 61]) and the intracellular mechanisms are 
not well understood. The modeling of such effects by the 
here applied simple modeling structures was not targeted and 
the simulation is, therefore, sufficient for process optimiza-
tion. The antibody concentration was estimated with an R2 
of 0.74 (Fig. 3e).

It was aimed to model the data of first experiments typi-
cally performed to evaluate feeding medias and strategies. 
Therefore, the modeling of 90-fold increase in the viable 
cell density in changing cultivation conditions in shaking 
flasks over 240 h cultivation time using the proposed sim-
ple unstructured and non-segregated model structure was 
considered as sufficient.

Fig. 2  Comparison of experimental data (symbols) and simulated data (solid line). Mean and one standard deviation of four parallel batch cul-
tivations, samples were measured as three technical replicates for each shaking flask, and R2 was calculated compared to the mean data points
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Model‑assisted reduction of boundary values

The concept of mDoE combines the model predictions 
with classical DoE. Simulations were used instead of 
laboratory experiments to predict the responses in a DoE 
plan. At first, widely distributed factor combinations are 
examined and a DoE is planned. Optimal DoE designs are 
commonly applied in bioprocess development [1, 2, 17] 
and an D-optimal design was, therefore, applied in Part A 
and an I-optimal design in Part B. The responses of each 
DoE were predicted with the mathematical process model 
and evaluated with RSM estimation as in a classical DoE. 
User defined constraints were chosen and the desirability 
function was calculated for the investigated responses. 

The experimental space was subsequently evaluated and 
boundary values of a fully experimental DoE were planned 
within the reduced experimental space. The suggested list 
of experiments, the simulated responses, the statistical 
evaluation of the responses, and the response surfaces are 
summarized in the Supplementary Tables 2–6 and 10.

Part A: medium optimization

Initial boundary values: The initial glucose concentra-
tion was varied in the simulated design between 20 and 
60mmol l−1 . This corresponds to a 50% increase/decrease 
of the glucose concentrations as reported in [53] and [55]. 
These studies did not focus on the optimization of the 

Fig. 3  Comparison of experimental (Exp:) and simulated data (Sim:) 
summarized for the four performed fed-batch experiments (see "B: 
Optimization of fed-batch strategy" in section). Error bars show one 

standard deviation of three technical measurements; R2 reflects good-
ness of fit against the optimal simulation ( x = y)
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batch-medium composition as aimed in this study. Glu-
tamine concentrations typically applied in batch media 
range from 2mmol l−1 up to 8mmol l−1 . The factor range 
of the initial glutamine concentration was, therefore, widely 
defined between 2 and 12mmol l−1.

An D-optimal design with 20 suggested experiments was 
planned within the defined boundary values, and the maxi-
mum concentrations of the viable cell density, antibody, lac-
tate, and ammonium were simulated as responses.

Constraints for desirability function: The constraints were 
chosen to maximize the viable cell density above a minimal 
viable cell density of 107 cellsml−1 . Furthermore, the anti-
body concentration should be maximized. The constraints 
for the metabolic waste products were defined based on the 
literature data with respect to cell growth and product qual-
ity. High lactate concentrations were shown to correlate with 
a reduced integral of viable cell density and a reduced prod-
uct titer at day 14 in pH controlled shaking flask cultivation 
with added sodium lactate [62]. Lactate concentration below 
20mmol l−1 are considered to not harm cell growth and pro-
ductivity and more than 40mmol l−1 lactate was shown to 
harm CHO cell growth [63]. Therefore, a maximal lactate 
concentration of 30mmol l−1 was defined as upper con-
straint and the lactate concentration was minimized below. 
[64] identified that the sialylation of a granulocyte colony-
stimulating factor was significantly reduced by ammonium 
concentrations over 2mmol l−1 . [65] investigated the mRNA 
expression levels of 52 N-glycosylation-related genes in 
recombinant CHO cells producing an Fc-fusion protein and 
observed a decrease of the protein production and the via-
ble cell density after an addition of 10mmol l−1 ammonium 
chloride. By the same time, the sialic acid content and the 

acidic isoforms were reduced after 5 days of cultivation. 
The ammonium concentration was, therefore, chosen to be 
minimized to take product quality into account, even if it 
was not measured.

Desirability function: The desirability function was calcu-
lated (see "Model-assisted reduction of experimental space" 
in section) and is shown in Fig. 4.

Glutamine concentrations higher than approx. 
10.5mmol l−1 result in a too high ammonium concentration 
( DMed-opt = 0 ) and glucose concentrations above 52 result in 
too high lactate concentrations and DMed-opt = 0 . The mini-
mal criteria of 10 × 106 cells ml−1 were not reached below 
4mmol l−1 glutamine and 21mmol l−1 glucose. In this way, 
multiple constraints were considered and only a small area 
results as suggested experimental space with DMed-opt > 0 . 
The desirability function tends towards DMed-opt = 0 outside 
of this area, where no experiments can fulfill the optimiza-
tion criteria.

Reduced experimental design: Only 5 of the 20 evalu-
ated factor combinations lay in an area with DMed-opt > 0 and 
would increase the process understanding. The remaining 
15 experiments lay on the boundaries of the experimental 
space with DMed-opt = 0 . The performance of these experi-
ments would be time- and cost-intensive, without provid-
ing sufficient knowledge. The usage of mDoE allows the 
a priori evaluation and reduction of the boundary values 
if mechanistic links could be formulated beforehand. The 
reduced experimental space was selected within the esti-
mated desirability function (Fig. 4, dashed line) between 
52.5mmol l−1 ≥ cGlc ≥ 32.5mmol l−1 . A new D-optimal 
design was chosen to be performed within the reduced 
design and 16 experiments are suggested to be performed 
(see Supplementary Table 6).

Part B: optimization of fed‑batch

The optimization of feeding strategies was widely discussed 
in literature [25, 66, 67]. In this study, a bolus feeding strat-
egy was considered as starting point for the development of 
advanced control strategies [68, 69]. Broad boundary values 
were first defined for the optimization of the fed-batch strat-
egy. The (bolus) feeding rate was evaluated at the beginning 
between 1 and 10 ml d−1 corresponding to 3.3–33.3% of the 
initial working volume. The time points for the start of the 
feed were defined at 48 h, 72 h, and 96 h, as in the modeling 
part ("B: Optimization of fed-batch strategy" in section).

Initial boundary values: The glutamine concentration in 
the feed was varied between the initial batch concentration 
( 6mmol l−1 ) and the recommended maximal concentration 
in the available feed ( 38mmol l−1 ). The glucose concentra-
tion in the feed was varied between the batch concentra-
tion of 46mmol l−1 and the maximal recommended feed 
concentrations of 222mmol l−1 ( 40 g l−1 ). These correspond 

Fig. 4  Contour plot of desirability function for the optimization of 
the initial glucose and glutamine concentration of a batch process, 
symbols are the factor combinations in a D-optimal design, responses 
were simulated ("Model-assisted reduction of experimental space" in 
section), and dashed line represents the reduced boundary values (see 
"Performed experimental designs" in section)
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to typical described ranges of the glucose and glutamine 
concentrations in fed-batch processes of CHO cells using 
different media. Exemplary, [70] formulated a feed based 
on 10× DMEM/F12 Media ( FGlc = 55mmol l−1 ) to evalu-
ate different CHO fed-batch strategies. [71] developed a 
dynamic high-throughput system for the optimization of 
fed-batch strategies and used a platform feed ranging from 
FGlc = 278 − 444mmol l−1 . Glutamine was not considered 
in this study.

Constraints for desirability function: Twenty-nine experi-
ments in an I-optimal design were planned, the factor com-
binations were exported, and the maximal viable cell den-
sity, the maximal antibody, and ammonium concentrations 
were simulated, and the desirability function was calculated 
based on the following constraints for the optimization of the 
feeding strategy: the lower maximal achievable viable cell 
density was defined to be at least 20 × 106 cellsml−1 and 
the antibody titer was aimed to be maximized. The ammo-
nium concentration was minimized, but not limited due to 
the longer process time and higher measured ammonium 

concentrations ("Part B: optimization of fed-batch" in sec-
tion) during fed-batch cultures. Furthermore, the lactate con-
centration was not considered during the fed-batch, because 
the lactate formation during the experiments for the estima-
tion of the model parameters ("Part B: optimization of fed-
batch" in section) does not exceed critical concentrations.

Desirability function: The desirability function was calcu-
lated and the corresponding plots are shown in Fig. 5.

Multiple 3D-plots were generated due to the four-
dimensional optimization problem with three variable 
factors ( FGlc,FGln,Frate ) and one categorical factor (Feed-
start). The desirability function for an average FGlc , a vari-
able FGln , and variable Frate are DFed-batch opt. > 0.5 for the 
start of feeding after 48 h (Fig. 5a) with an optimal area 
within the evaluated factors. This optimal area and the 
corresponding 0.6 ≥ DFed-batch opt. ≥ 0 decrease for a start of 
feeding after 72 h (Fig. 5d) and shrinks to a small band for 
a start of feeding after 96 h (Fig. 5g) with DFed-batch opt. = 0 
in the upper part and lower part. Experiments within 
these regions are undesired. A comparable shape is shown 
for an average FGln and a variable FGlc and variable Frate 
for the evaluated feeding start times (Fig. 5b, e, h). No 

Fig. 5  Contour plot of desirability function for the optimization of the 
glucose and glutamine concentration in the feed, the feeding rate, and 
the start of feeding in a (bolus) fed-batch process (I-optimal design), 

responses were simulated ("Model-assisted reduction of experimental 
space" in section), and dashed line represents the reduced boundary 
values "Performed experimental designs" in section
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DFed-batch opt. = 0 were identified for an average Frate and 
variable FGlc and FGln with 0.8 ≥ DFed-batch opt. ≥ 0.3 (Fig 
5c, f, i). The interactions in a four-dimensional DoE can 
hardly be known beforehand and the evaluation of the 
boundary values based only on experiments can be time-
consuming and cost-intensive.

Reduced experimental boundaries: The reduced experimen-
tal design is shown in Fig. 5 (dashed line) and was selected 
based on the desirability function. Frate was chosen between 
3ml d−1 ≤ Frate ≤ 6ml d−1 based on the band-shaped areas of 
Fig. 5g, h and the limitation that the feed rate should not exceed 
20% of the initial working volume. In general, no areas with 
DFed-batch opt. = 0 were identified for FGlc and FGln and experi-
ments with DFed-batch opt. > 0 could be evaluated over the fully 
evaluated initial concentration ranges. In this study, the bound-
ary values of FGlc were chosen based on the available feed sup-
plements within 222mmol l−1 ≥ FGlc ≥ 111mmol l−1 . FGln 
was ranged between the maximal FGln in the evaluated feeds 
of 38mmol l−1 , which reflects the standard feed concentration 
and a minimal FGln of 9mmol l−1.

Performed experimental designs

The mDoE concept was used to reduce the boundary val-
ues of an experimentally performed DoE using the model 
predictions. This incorporates prior knowledge based on 
the mathematical process model. In this part, experiments 
within the reduced experimental boundary values were per-
formed and compared to the simulated DoE. The performed 
list of experiments, the simulated and measured responses, 
the statistical evaluation of the responses, and the response 
surfaces are summarized in Supplementary Tables 6–13.

Part A: medium optimization

Sixteen parallel shaking flask cultivations in an D-optimal 
design were planned and experimentally performed. The 
maximal concentrations of antibody and ammonium were 
implemented as responses. The lactate and viable cell con-
centration were not considered as responses, because the 
lactate concentration was ensured to be below 30mmol l−1 
and the viable cell density above 10 × 106 cellsml−1 , based 
on the modeled reduction of the boundary values ("Part A: 
medium optimization" in section). In addition, the responses 
were simulated and both designs (experimental performed 
and simulated) were statistically evaluated and the response 
surfaces were estimated. Both desirability functions were 
calculated due to the maximization of the antibody concen-
tration and the minimization of the ammonium concentra-
tion, and are shown in Fig. 6.

The desirability function of the simulated design (Fig. 6a) 
recommends optimal starting concentrations in the upper 
right corner with high glucose as well as low glutamine 

concentrations with DMed-opt = 0.87 . By the same time, the 
experimentally performed design (Fig. 6b) recommends the 
same optimal initial concentrations with a slightly lower 
DMed-opt = 0.70 . These small differences are typical when 
comparing the simulated results with uncertainty-based 
experimental results. No further experimental design needs 
to be performed outside of this area, since the outer experi-
mental space was evaluated beforehand using the process 
model and the experiments were performed with reduced 
boundaries. This decreases the experimental effort and 
simultaneously increases the process understanding.

Part B: optimization of fed‑batch

Twenty-nine experiments in two blocks with 15 and 14 
parallel fed-batch cultivations were performed for the 
reduced experimental space for the optimization of the 
fed-batch strategy. As can be seen in Fig.  7, the responses 
(maximal cmAb and maximal cAmm ) were either simulated 
( DFed-batch opt.,a ∶ Fig.  7a) or experimentally determined 
( DFed-batch opt.,b ∶ Fig. 7b). Both desirability functions were 
calculated based on the maximization of the antibody 

Fig. 6  Reduced simulated (a) and experimentally (b) performed 
DoEs for part A: optimization of medium composition; points are the 
considered factor combinations
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concentration and the minimization of the ammonium 
concentration.

The gradient of the desirability was higher in the sim-
ulated than in the experimental performed design. Both 
designs recommended an optimal feeding strategy with 
DFed-batch opt,a = 0.88 and DFed-batch opt,b = 0.63 for a start of 
feeding after 96 h , FGlc = 222mmol l−1 , FGln = 9mmol l−1 
and a feeding rate of 3ml d−1 . However, the shape and 
qualitative range of the simulated desirability (0.0–0.9) 
was higher than in the experimentally derived desirabil-
ity (0.2–0.6). These variations are based on experimental 
variations in the experimental desirability with 29 experi-
ments over up to 10 days. Furthermore, the fed-batch model 
parameters (see "Model extension: fed-batch" in section) are 
based on only four experiments and model parameters are 
uncertainty-based, in general, which was not considered in 
the simulated desirability.

The development and optimization of fed-batch strategies 
based on DoE requires many experiments (e.g., 29 for the 
shown example) including multidimensional optimization 
challenges. Only four experiments are needed for mDoE for 
the model-assisted reduction of the experimental space and 

a comparable prediction quality. No iterative re-estimations 
of the experimental space are necessary, which results in 
a reduction in the time needed for knowledge-based bio-
process development.

Conclusions

In this contribution, a novel concept for the combination of 
mathematical process models with DoE was applied to a 
medium optimization and the optimization of a bolus fed-
batch strategy. A mathematical process model was estimated 
based on four experiments for each example and widely dis-
tributed boundary values for a DoE were evaluated using 
model predictions instead of laboratory experiments. The 
reduced experimental spaces were experimentally performed 
(DoE) and compared to the simulated DoE. The same opti-
mal conditions were found for both examples (simulated and 
experimentally performed). No heuristic restrictions with 
several iterative rounds were necessary, because the math-
ematical process model incorporates the known factors and 
interactions and their dynamics in DoE. Furthermore, DoEs 
are typically based only on endpoints and different responses 
and endpoints can be tested using the kinetic model [7, 8]. 
mDoE can be applied if an understanding of the mechanis-
tic relationships is known and this is seen as a meaningful 
decision making for process development and optimiza-
tion using DoE in QbD. Further studies will focus on the 
model-assisted comparison of experimental designs and the 
combination of simulated and experimental data to further 
decrease the experimental effort in bioprocess development.
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