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Abstract: Industry 4.0 has embraced process models in recent years, and the use of model-based
digital twins has become even more critical in process systems engineering, monitoring, and control.
However, the reliability of these models depends on the model parameters available. The accuracy of
the estimated parameters is, in turn, determined by the amount and quality of the measurement data
and the algorithm used for parameter identification. For the definition of the parameter identification
problem, the ordinary least squares framework is still state-of-the-art in the literature, and better
parameter estimates are only possible with additional data. In this work, we present an alternative
strategy to identify model parameters by incorporating differential flatness for model inversion
and neural ordinary differential equations for surrogate modeling. The novel concept results in an
input-least-squares-based parameter identification problem with significant parameter sensitivity
changes. To study these sensitivity effects, we use a classic one-dimensional diffusion-type problem,
i.e., an omnipresent equation in process systems engineering and transport phenomena. As shown,
the proposed concept ensures higher parameter sensitivities for two relevant scenarios. Based on the
results derived, we also discuss general implications for data-driven engineering concepts used to
identify process model parameters in the recent literature.

Keywords: process systems engineering; system identification; systems theory; partial differential
equations; differential flatness; data-driven engineering; neural ordinary differential equations;
physics-informed neural networks; parameter sensitivities; boundary and distributed control

1. Introduction

In process systems engineering (PSE), using a mathematical model allows prediction
and analysis of the characteristics, design, and optimal operating conditions of the process
under study, thus contributing to Industry 4.0 and process digitization [1–4]. However,
before a mathematical model can be implemented, decisions must be made about the
modeling strategy. For example, knowledge-based first-principles models (white-box mod-
els) allow extrapolation beyond the range of data available and, consequently, are highly
relevant for process analysis and system understanding [5]. Data-driven models (black-box
models), in turn, are interpolative in nature, with less insight into cause-effect relation-
ships. There are also the so-called hybrid models (gray-box models), which combine partial
process knowledge with data-driven surrogates that are constructed using experimental
data [5–10]. However, the use of surrogate models introduces new difficulties, e.g., im-
proper definitions of the surrogate model or biased training procedures, as well as their lack
of interpretability and explainability [11–14]. In addition to these individual advantages
and disadvantages, all of the modeling approaches mentioned also have fundamental
common challenges in terms of system identification, including the need for experimental
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data and parameter estimation, model validation, and model refinement, as well as nu-
merical implementation aspects [5]. In PSE, the dynamic process behavior is of utmost
interest and is typically described with ordinary differential equations (ODEs) or partial
differential equations (PDEs). However, the parameters of these first-principles models
are often unknown and must be estimated with a limited amount of noisy experimental
data [15–17]. In many parameter optimization routines, see [18] and references therein, for
the loss term, the sum of squared errors (SSE) is used to measure the difference between the
response of the model and the measured data [18], resulting in an ordinary least squares
(OLS) framework.

In engineering and science, uncertainties must be integrated for any meaningful
model prediction, including variations in the estimates of the derived model parameters.
Especially for OLS, it is well known that with parameter sensitivities and the inverse
of the so-called Fisher information matrix, parameter uncertainties can be inferred as
statistical measures, i.e., variances, correlations, and confidence regions, respectively [11,18].
In addition to parameter sensitivity studies and uncertainty quantification, if necessary,
model-based optimal experimental design (MBDoE) concepts can be applied to efficiently
improve the quantity and quality of experimental data, resulting in more precise parameter
estimates [19–21]. Note that MBDoE, in the case of non-linear parameter identification
problems, which are standard in PSE, may result in suboptimal experimental designs [22].
The same is true for hybrid models, where changes in parameter sensitivities are reported
that cannot be directly compared with their counterparts in first-principles models [23].
In addition to the problem-dependent shortcomings mentioned, MBDoE has a general
weakness; i.e., the need for additional experimental data, which is typically a considerable
investment in time and cost [19].

Alternatively, online MBDoE methods (e.g., based on Kalman Filtering [19,24]) try to
adjust experimental conditions in real-time and to improve model parameter estimates
during the experimental run. Moreover, instead of aiming for additional data at all, there
are strategies that focus entirely on revising the parameter identification problem definition.
For example, a so-called extent-based approach is proposed to identify the model parame-
ters that result in more precise parameter estimates and smaller confidence intervals [25],
respectively. Also, the iteratively refined principal differential analysis (iPDA) approach
defines the parameter identification problem differently. It involves fitting B-splines to
the measured data, from which time-derivative information can be obtained to define a
loss function solely on the ODE system of the process model. Thus, unlike the standard
OLS setting, the ODEs of the process model do not need to be solved numerically [26,27].
Advanced model inversion schemes, similarly, result in total least squares (TLS) loss func-
tions while recalculating the model inputs, i.e., the OLS framework is extended with an
input least squares (ILS) expression [28,29]. It is also based on the concept of differential
flatness originally introduced in control and systems theory [30]. In particular, so-called flat
outputs are obtained by fitting measurement data with empirical functions (e.g., B-splines),
and the inverse process model is derived subsequently for TLS-based parameter esti-
mates [29,31,32]. In data-driven engineering, instead, physics-informed neural networks
(PINNs) were first designed to replace numerical ODE/PDE solvers [33,34], but the recent
literature also shows promising PINN-based results in system identification and model
parameter estimates [35–38]. An equally successful technique in the field of data-driven
engineering, are so-called neural ODEs (nODEs) as a deep learning approach for empirical
process modeling [39,40]. With nODEs, it is possible to create surrogate models, i.e., black-
box dynamics, and ensure system identification of dynamic processes even with sparse and
noisy data [41–44].

While reliable parameter estimate results, particularly for PINN, are reported in the
literature [37,38], a closer look at changes in parameter sensitivities in terms of loss functions
applied is missing. As mentioned, parameter sensitivities, in turn, have a significant impact
on the derived parameter precision and thus, are of fundamental interest. To the best of
the authors’ knowledge, this is the first work using a model inversion concept based on
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differential flatness in combination with nODEs studying changes in model parameter
sensitivities in ILS-based parameter identification problems. Note that the proposed concept
also helps to dissect particular PINN-oriented parameter identification problems in terms of
parameter sensitivities and to explain improved parameter estimate outcomes theoretically.

To this end, in this work, which is an extended version of our Electronic Conference on
Processes: Processes System Innovation (ECP) 2022 contribution [45], the differential flatness
concept and neural ordinary differential equations are explained in Section 2. The dynamics
of the diffusion model and the two assumed control scenarios, that is, the distributed control
problem and the boundary control, are discussed in Section 3. The simulation results that
include some discussion on the advantages of adapting the flatness concept and the findings
of the sensitivity analyzes are presented in Section 4. Finally, we provide some concluding
remarks in Section 5.

2. Problem Formulation

The standard iterative workflow used for system identification is shown in Figure 1.
The first requirement for determining any process model is the collection of data (or mea-
surements) from the process under study. Next, a model candidate is postulated or selected
from a set of model candidates. Then, for the chosen model candidate, the corresponding
model parameters are identified. The model with the estimated model parameters is vali-
dated in terms of residuals, parameter uncertainties, and model complexity. If the criteria
for this precision are not satisfied, an optimized experimental protocol is implemented, i.e.,
following a model-based Design of Experiment (MBDoE) strategy. Consequently, addi-
tional experimental data are gathered, and the parameter identification and uncertainty
quantification steps are repeated [18,19].
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Figure 1. Standard workflow of identifying model parameters in process modeling with n iterations.

As mentioned, the fundamental question is to what extent parameter sensitivities and
estimation accuracies can be improved without additional data by using systems theory
methods with data-driven engineering concepts. The required methods to tackle this open
problem are explained in more detail below.

2.1. Parameter Identification Strategies

For the sake of simplicity but without loss of generality, the proposed concept is
demonstrated with a common PDE problem. To this end, the parabolic equation for
diffusion problems and the unknown Φ(x, y, z, t) with x, y, z and t for space and time,
respectively, over a bounded domain Ω and a finite time interval 0 ≤ t ≤ T are studied
and represented by the following expression [46]:

∂Φ
∂t − κ∆Φ = u in Ω× (0, T]

Φ(x, 0) = Φ0(x) in Ω, for t = 0
boundary conditions on ∂Ω

(1)

where ∆ .
= ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 and ∂Ω is the boundary of Ω, κ is an unknown

time-invariant parameter, u is some known function (e.g., the system control affine input).
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When simulating a PDE model, all the involved parameters (coefficients or source
terms) are assumed to be known, and for this, these parameters have to be determined.
They are often hardly accessible to direct measurements, leading to the need for indirect
measurements, which amounts to a parameter identification problem. However, there are
two types of problems, namely well-posed and ill-posed problems. The former always has
a unique solution and depends on the given data, while the latter requires tedious efforts
for precise parameter estimates. Furthermore, when using techniques such as the Method
of Lines (MOL) [47–49] to solve the PDE system numerically, the resulting discretized
system along, for instance, the axis x at points x0 + i∆x, i = 1, 2, . . . , N reads as [31]:

∂Φi
∂t

=
κ

∆x2 Φi+1 −
2κ

∆x2 Φi +
κ

∆x2 Φi−1 + u. (2)

Consequently, these PDEs are approximated by an ODE system with the state vector
x> = (Φ1, Φ2, . . . , ΦN) according to:{

ẋ(t) = f (x(t), u(t), p),
x(t0) = x0,

(3)

where t ∈ [t0, tend], with t0 as the initial time and tend as the time duration of the simula-
tion, u ∈ Rnu is the vector of the control variables, p ∈ Rnp is the unknown time-invariant
parameter, and x ∈ Rnx are the system states. The initial conditions for the differential
states are given by x0. Moreover, f : Rnx×nu×np → Rnx represents the corresponding vector
field. For this kind of mathematical representation, the standard approach of parameter
identification, i.e., the OLS-based method, following the notation given in [18], can be
defined as:

p̂OLS = arg min
p

K

∑
k=1
‖ydata(tk)− y(tk, p)‖2

2, (4)

where ‖.‖2 denotes the Euclidean norm, ydata(tk) represents the data vector at discrete time
points tk over all measurement samples K, and the output function of the model is defined
as follows:

y(tk, p) = h(x(tk, p)), (5)

with h : Rnx → Rny and y ∈ Rny as the output function and the model output, respectively.
Alternatively, when aiming to utilize the inverse model response [18], that is, applying a
model inversion strategy, an ILS-based parameter identification problem can be used:

p̂ILS = arg min
p

K

∑
k=1
‖udata(tk)− u(tk, p)‖2

2, (6)

Here, the control inputs, u(tk, p), have to be calculated to solve the parameter iden-
tification problem, and udata(tk) represents the physical input actions recorded. For this
purpose, in this work, we study the differential flatness concept as outlined in Section 2.2.
However, it is essential to note that parameter sensitivities are relevant for well-posed
parameter identification problems. When having the output function y(tk, p) and the in-
puts u(tk, p) (inverse model response), the sensitivity S of the parameter p, in accordance
to [50], as follows:

Syp(tk) =
∂y(tk, p)

∂p
, (7)

Sup(tk) =
∂u(tk, p)

∂p
. (8)
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Note, as mentioned previously, high parameter sensitivity values are expected to
ensure precise parameter estimates according to the Fisher information matrix and the
Cramér Rao inequality [18,19].

In this study, a generic one-dimensional diffusion-type problem is considered, i.e.,
an omnipresent equation in process systems engineering and transport phenomena. The
parameter identification results for the model under study are derived by the following
steps: (i) rearrangement of the model equations to solve for the model input, where these
equations contain the model’s flat outputs and their derivatives with respect to time, (ii) the
outputs and their derivatives are obtained from a neural ODE that was trained on a given
data set, (iii) minimization of the SSE between the predicted model and the data, referred
to as ordinary least squares (OLS), (iv) minimization of the SSE between prediction and
input values, referred to as input least squares (ILS), and (v) the estimated parameters are
compared for precision using the results of the sensitivity analysis.

The OLS and the ILS framework are summarized in Figure 2. As described previously,
OLS follows the classical forward simulation of the underlying process model (Equation (3))
strategy and thus needs numerical ODE solvers to derive the output function h(·) for loss
term evaluation, i.e., differences between measurements and the output function, and
model parameter p adaptation (Equation (4)). Note that for the parameter p adaptation
itself numerical optimization routines have to be used as well. Basically, these steps
of forward simulation, loss function evaluation, and model parameter adaptation are
reiterated until a good model-data fit is achieved. For the ILS setting, in turn, we see that
the numerical solution of the underlying process model is replaced with a transformation
step aiming to recalculate the corresponding model input. As the expressed model input,
in turn, is still based on the process model, it depends on the model parameter p, too.
On that note, the model input is used to define an input-based loss function followed
again by a model parameter adaptation step (Equation (6)) realized with a numerical
optimization routine. Both iterative parameter identification procedures might behave
differently for parameter sensitivities and result in different parameter estimates and
parameter uncertainties, respectively. The change in parameter sensitivities, however,
is difficult to predict and thus a central element of this work. Moreover, in the case
of ILS, the mandatory transformation step to calculate the model input, as well as the
mathematical representation of the model output (i.e., empirical output function) needed
for this particular transformation step, are the other two major contributions of this work
and are discussed in detail in the following subsections.

2.2. Transformation: Differential Flatness

The model inputs u(tk, p) in Equation (6) are determined using this concept of model
inversion. In the literature, a process model (Equation (3)) is called differentially flat if there
exists an output function [30]:

y f lat = h f lat(x, u, u̇, . . . , u(s), p), (9)

with a finite value S ∈ N and the smooth mapping function y f lat : Rnx × (Rnu)s+1×Rnp →
Rny that is called a flat output. With the flat output, the system states and control inputs
are expressed as [30]:

x = Ψx(y f lat, ẏ f lat, . . . , y f lat(r) , p), (10)

u = Ψu(y f lat, ẏ f lat, . . . , y f lat(r+1)
, p), (11)

with the mapping functions Ψx : (Rny)r+1 × Rnp → Rnx and Ψu : (Rny)r+2 × Rnp → Rnu ,
and assuming a quadratic system dim y f lat = dim u. When applying the flatness concept, it
was shown that parameter sensitivities and reliability of parameter estimates, respectively,
could be improved in the case of ILS [28], or when OLS was combined with ILS [29,32].
However, in process systems engineering, for instance, in addition to lumped-parameter
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systems (i.e., ordinary differential equations) [51], distributed-parameter systems described
via partial differential equations are frequently applied. In this case, the differential flatness
approach must be generalized [31,52–54].

A model-based approach can also be described for a boundary control problem assum-
ing a linear diffusion-convection reaction system. Here, by exploiting the flatness property
of the PDE, the optimal control problem could be formulated in terms of the flat output
and its higher time derivatives, imposed by an integrator chain [55]. The method uses an
observer to estimate the states of the integrator chain from the PDE solution. Different
combinations of flatness and MPC control are proposed in the ODE case, which relies on
expressing the flat output as a sum of weighted, linearly independent functions, which are
then used as decision variables when formulating the optimal control problem as a state
optimization problem. The use of an integrator chain to determine a reference trajectory
and its derivatives for flat output is shown in [56]. Different extensions of the flatness
concept are available for PDE systems that rely on the Laplace transform, formal power
series, spectral analysis, and formal integration [54].

This work exploits the flatness property of the system’s flat output to solve distributed
and boundary control problems to perform the model inversion. The importance of bound-
ary control for distributed parameter systems described by non-linear PDEs and its elevated
difficulty are discussed for several applications [57–59]. When model inversion is achieved,
it initiates a possible use of the determined control input in parameter identification. Sensi-
tivity values provide useful information on how a variable could improve the precision of
parameter estimates within the framework of the Fisher information matrix based on local
parameter sensitivities and the Cramér Rao inequality [18].

Numerical
Optimizer

Ordinary Least Squares 

Loss Functions

Experimental
Data

Input Least Squares 

ODEs/PDEs ODE Solver/
Numerical
Solution

Model Output 

Numerical
Optimizer

Empirical Output
Function

Model Input 

Transformation

ODEs/PDEs

Parameter Sensitivities
(Equation 7)

(Equation 8)

Figure 2. Ordinary Least Squares (OLS) and Input Least Squares (ILS) workflow and their use of
experimental data in terms of loss function definitions, process model parameter identification, and
parameter sensitivities. For the ILS case, the two open problems, i.e., the definition of the empirical
output function and the transformation step for the model input calculation, are highlighted, too.

2.3. Empirical Output Function: Neural Ordinary Differential Equations

In data engineering, neural networks are often used to create surrogate models. The
first and last layers of a typical multilayer feedforward neural network are termed input
and output layers, respectively. Various hidden layers can be interposed, conducting the
transformation of the input to the output prediction according to the specific input-output
behavior of the process under study. This transformation is governed by the weights and
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biases of the hidden layers. These are the trainable hyperparameters of the neural network.
The activation of a single unit in a hidden layer, a neuron, is defined by the connections with
the neurons from the previous layer. This consists of a weighting factor and a threshold set
by the neuron-specific bias. In detail, the jth neural network layer, NNLj(x̂) : Rdj−1 → Rdj ,
is specified with the weight matrix, W j ∈ Rdj×dj−1 , and the bias vector, bj ∈ Rdj . Thus, for
instance, a feedforward neural network reads:

NNL0(x̂) = x̂ ∈ Rd0 ,

NNLj(x̂) = σ(W jNNLj−1(x̂) + bj) ∈ Rdj , ∀ 1 ≤ j ≤ I − 1, (12)

NNLI(x̂) = W I NNLI−1(x̂) + bI ∈ RdI ,

with the input layer NNL0, the hidden layer NNLj, and the output layer NNLI . The activa-
tion function σ(·) introduces non-linearity into the input-output-transformation [60].

Concerning the so-called neural ordinary differential equations, the system output
is not predicted directly by the neural network, but its derivatives with respect to the
independent variable in the ODE system, usually time. According to [39–41], this data-
driven dynamical systems representation can be expressed as follows:

˙̂x(t) = NN(x̂(t), u(t), θ), x̂(t0) = x̂0, (13)

where the x̂ notation already indicates that Equation (13) is used to approximate the system
states, and θ comprises all ANN hyperparameters. Then, an ODE solver is used to translate
the nODE system into the trajectory of the respective system output, ŷ. Since this step
enables the user to obtain the solution at any (time) point in the observation window
according to the specifications in the solver settings [61], a neural ODE resembles the pow-
erful residual networks [62], and thus provides a promising approach to hybrid modeling
and system identification [10,63–65]. Furthermore, the neural network architecture can be
optimized to represent the experimental data better. This could be done in conjunction with
optimal experimental design methods [19] to improve the accuracy of system identification
or by adding additional input and output layers [36].

Note that when using the PINN approach to solve ODEs/PDEs and to estimate model
parameters, the corresponding cost function also has at least two terms:

L(θ, p) = Ldata (θ) + Lode (θ, p), (14)

with Ldata defined for the measured states ydata:

Ldata (θ) =
K

∑
k=1
‖ydata(tk)− ŷ(tk, θ)‖2

2, (15)

and Lode relates to the governing equation as:

Lode (θ, p) =
nx

∑
l=1

Node

∑
n=1

(
dx̂l
dt

∣∣∣∣
τn

− fl(x̂l(τn, θ), p)− ul(τn)

)2
. (16)

First, an ANN has to fulfill the governing equation system, and second, the ANN
has to fit experimental data alike. Interestingly, when we assume that all system states
are measurable, solving the PINN problem has much in common with model inversion.
Technically, the PINN-based parameter identification problem follows a total least squares
(TLS) philosophy, i.e., the combination of OLS (e.g., fitting the data) and ILS (e.g., ful-
filling the equation system). The proposed concept of combining model inversion with
nODEs, in turn, where these two steps are solved sequentially, helps explain the observed
phenomenon of improved parameter estimates for PINN-based parameter identification



Processes 2022, 10, 1764 8 of 17

problems. Both concepts, PINN and the nODE with the inverse model, are summarized and
compared in Figure 3. Please note that for the sake of readability, the distinction between
the approximated system states x̂ for ANN/nODE-based predictions and the predictions
of the process model x is omitted, and the correct solution x is used exclusively. As also
indicated in Figure 3, in case of a control affine input problem:

dx
dt

= f (x, p) + u(t), (17)

with zero input, udata !
= 0, and assuming that all system states are measurable, y = h(x) !

= x,
the two loss terms, i.e., for the model input differences (Equation (6)) in ILS and Lode

(Equation (16)) for the PINN-based approach become equivalent:

‖udata − u(p)‖2
2 = ‖u(p)‖2

2
!
= ‖dx

dt
− f (x, p)‖2

2. (18)

To the best of the authors’ knowledge, this is the first study addressing the change
in parameter sensitivity from this point of view. In addition, for the two concepts, it
becomes clear that the adjustment of the model parameter p itself follows an iterative cycle
in which the corresponding loss functions are evaluated; however, the type of loss function
definitions and their processing differ. Moreover, the strategy to train the related neural
network realizations while adjusting their hyperparameters θ is inherently distinct.

ANN Setting
- Input Layer
- Discrete Layer(s)  
  Sequence
- Output Layer

ODEs/PDEs

Physics-Informed Neural Network

Neural ODE Inverse Model

Loss Functions

Experimental
Data

Recalculated Input

+

NODEs Setting
- Input Layer
- Continuous Layer 
  (Dynamics)
- Output Layer

Process Model

Figure 3. Comparative scheme of the physics-informed neural network (PINN) approach with the
proposed procedure combining neural ordinary differential equations (NODEs) and the inverse
model (recalculated model input via differential flatness), including needed loss function definitions
and the use of experimental data to identify unknown model parameters p and hyperparameters θ of
the two different neural network architectures.
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3. Case Study

Determining the kinetic parameters of diffusion-type parabolic PDEs (see Equation (19))
has been extensively studied, including chromatography and adsorption processes [24,66–69],
respectively.

∂Φ
∂t

= κ
∂2Φ
∂x2 + u(x, t), (19)

where Φ is the diffusing state, κ is the diffusion coefficient, u is the system input, x is the
spatial variable and t is time. Aiming for a numerical solution making use of the finite
difference method (Equation (20)) of the diffusion-type PDE problem, an ODE system is
obtained, which can be written in a state space form [31] as shown in Equation (21).

∂2Φ
∂x2 '

Φi+1 − 2Φi + Φi−1

∆x2 , (20)

∂Φ1

∂t
=

κ

∆x2 Φ2 −
2κ

∆x2 Φ1 +
κ

∆x2 Φ0 + u1(t),

∂Φ2

∂t
=

κ

∆x2 Φ3 −
2κ

∆x2 Φ2 +
κ

∆x2 Φ1 + u2(t),

∂Φ3

∂t
=

κ

∆x2 Φ4 −
2κ

∆x2 Φ3 +
κ

∆x2 Φ2 + u3(t),

... (21)
∂ΦN−1

∂t
=

κ

∆x2 ΦN −
2κ

∆x2 ΦN−1 +
κ

∆x2 ΦN−2 + uN−1(t),

∂ΦN
∂t

=
κ

∆x2 ΦN+1 −
2κ

∆x2 ΦN +
κ

∆x2 ΦN−1 + uN(t).

Practically, the parameter identification problem for this academic case study is to
determine the diffusion parameter κ in this system to represent the modeled process as
precisely as possible. This can be difficult, as even small changes in coefficient values can
lead to significant changes in system behavior or vice versa. Two possible scenarios could
be considered for parameter identification as described below.

3.1. Scenario 1: Distributed Control Problem

In this case, it is assumed that all states in Equation (21), i.e., yi = Φi, ∀ 1 ≤ i ≤ N, are
measurable and controllable, and that the output derivatives, i.e., ẏi, ∀ 1 ≤ i ≤ N, exist.
Then the corresponding equation system (Equation (22)) can be converted to express the
input variables, ui, ∀ 1 ≤ i ≤ N, analytically [31].


ẏ1(t)
ẏ2(t)

. . .
ẏN−1(t)

ẏN(t)

 =



− 2κ
∆x2

κ
∆x2 0 0 . . . 0 0 0 0

κ
∆x2 − 2κ

∆x2
κ

∆x2 0 . . . 0 0 0 0
0 κ

∆x2 − 2κ
∆x2

κ
∆x2 . . . 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 0 κ

∆x2 − 2κ
∆x2

κ
∆x2

0 0 0 0 . . . 0 0 κ
∆x2 − 2κ

∆x2




y1(t)
y2(t)

. . .
yN−1(t)

yN(t)

+



1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0
0 0 0 . . . 0 1





u1(t)
u2(t)
u3(t)

. . .
uN−1(t)

uN(t)

. (22)
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Furthermore, when dealing with measurement data, instead of the full model system
(Equation (22)), the neural ODE framework (Equation (13)) is used as a surrogate model
to approximate the output functions and their derivatives. Specifically, the following
multi-layer perceptron (MLP) setting is applied: two hidden layers with 400 nodes each,
input and output layer with 198 nodes each, and tanh as activation function. In order
to train the neural ODE system, we use simulated data with ti+1 − ti = 0.1, ∆x = 0.01,
t ∈ [0, 2], x ∈ [0, 1], Φ(t0, x) = sin(2πx), Φ(t, x = 0) = 0, Φ(t, x = 1) = 0, and κ = 0.1 in
dimensionless form.

3.2. Scenario 2: Boundary Control Problem

Unlike the distributed control problem, in this scenario, the distributed system is
controlled by steering the right boundary (final) value towards the other end and using
it as the control model input. It is important to consider this because, for physical assets,
the states could be estimated using observers or filters with many techniques in control
theory. However, practically speaking, not all of the system states could be measured using
sensors with great precision. In such situations, the idea discussed above might not be very
reliable when it comes to a parameter identification problem or a control problem. Often,
only the boundary values could be accessed, depending on the measurement tools and
their installations. Firstly, MOL technique (see Equation (2)) is implemented to transform
the PDE system into a set of equivalent ODEs. These are then checked to satisfy the
conditions for differential flatness [31]. The boundary condition in the ODE subsystem
(usually comprising the last rows of the state space description) is the aggregate control
input. The boundary control input is computed from the last element of the system state
vector of the ODE subsystem to the first one.

However, in this study, it is assumed that the values of the right boundary are mea-
sured as accurately as possible. With this available data set, the flatness concept is also
used to estimate the internal states of the system, the necessary control input, and initial
values using backward calculation; see Equation (23).

Figure 4 shows the pictogram of a simple diffusion system. The input u, fed to the
system from the left boundary (LB), diffuses throughout the dimensional space x (ranging
from 0 to N). The only available measurement is y and the estimates (of the internal states)
are denoted as Φ̂0 to Φ̂N−1. The left and right boundaries are represented as φ0 and φN+1,
respectively.

Figure 4. A standard diffusion-type boundary control problem (LB: Left boundary φ0; RB: Right
boundary φN+1; u: system input; y: system’s measurable output; Φ̂: estimated states across x ∈ [0, N]:
internal dimensional space of the system).

For this boundary problem scenario, the objective is to obtain a linear increase in the
output values of the system at the right boundary φN+1, leading to a linear increase in the
input boundary. A simple constant output trajectory is not desired here because it might
lead to an ill-posed identification problem. Hence, this choice of a linear output profile is
desired, as it will simplify the model inversion process by using only the first derivative,
thereby avoiding the higher derivatives. This also has the advantage of not having a strong
noise amplification, thus minimizing the control challenge without any need for filters
and, consequently, their additional parameter tunings. The desired control input, initial
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values, and internal states could be determined using the following equation for backward
calculation:

y = φN+1,

Φ̂N−1 =
1
D
(m + 2DyN − DφN+1) =

m
D

+ φN+1,

Φ̂N−2 =
1
D
(m + 2DΦ̂N−1 − DyN) =

3m
D

+ φN+1,

Φ̂N−3 =
1
D
(m + 2DΦ̂N−2 − DΦ̂N−1) =

5m
D

+ φN+1, (23)

...

Φ̂1 =
1
D
(m + 2DΦ̂2 − DΦ̂3) =

(2n− 3)m
D

+ φN+1,

Φ̂0 =
1
D
(m + 2DΦ̂1 − DΦ̂2) =

(2n− 1)m
D

+ φN+1 = u(t),

where D = κ
∆x2 , m is the slope of the desired linearly increasing output, and n = N − i

with i ∈ [1, N]; see Equation (2). In this case, the boundary is assumed to be the same as
that of the first and last states.

Thus, the distributed and boundary controls of the considered diffusion system are
achieved using the flatness property of the measures. The generated control input is then
used for analyzing its sensitivity (uses ILS formulation w.r.t. the diffusion paramere κ),
which in turn, could be employed for parameter identification, consequently.

4. Results and Discussion

With the available measures, the internal states and the desired control inputs are
estimated for both scenarios using the flatness concept, as discussed in Section 3. The
results (with the assumed specifications) are presented, and the interpretations are analyzed
henceforth. Initially, backward calculations using the flatness concept are presented to
show the determined control inputs for both scenarios. This is followed by sensitivity
analyses of the diffusion parameter w.r.t. the output (OLS) and the calculated input (ILS),
and both are compared for efficacy.

4.1. Model Inversion via Differential Flatness

The diffusion dynamics (Equation (19)) is simulated forward to visualize the diffusion
output phenomenon for a chosen diffusion coefficient. The two scenarios, i.e., distributed
control and boundary control, are implemented based on Equations (22) and (23), and thus
the control inputs are determined. Relevant graphs are presented for further discussion in
terms of parameter sensitivity and parameter identifiability, respectively.

4.1.1. Scenario 1: Distributed Control Problem

For a simple diffusion dynamics (Equation (19)), forward simulation is done with the
following setting: distributed control action u(t) = 0, diffusion coefficient κ = 0.1, initial
condition u(x, 0) = sin 2πx, Dirichlet boundary conditions u(0, t) = 0 and u(N, t) = 0
with x ∈ [0, N]. The result of the simulation is shown in Figure 5a. The effect of diffusion
can be seen very clearly, i.e., the initial differences along the spatial axis x at the start
time, y(t0, x), decrease over the simulation time. Consequently, a variation of the diffusion
parameter κ would lead to a different diffusion profile based on the parameter sensitivity
effect. It should be noted that in principle, due to parameter sensitivity, it is possible to
identify the model parameter when applying OLS with experimental data and Equation (4).
Alternatively, the differential flatness approach can be used to impose the desired process
behavior. For this purpose, the parameter-dependent recalculated input variables allow
parameter estimation following the ILS concept mentioned; see Equation (6).
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Model response (Φ) / -

(a)

Model response (Φ) / -

(b)
Figure 5. Model response for Scenario 1 assuming a distributed control problem with (a) when a zero
input profile is applied (i.e., no control action that could counteract the diffusion effect) and with
(b) when a purpose designed input is used to cancel out the diffusion effect; adapted from [45].

In Figure 5b, for example, the output profile does not show changes over time. Please
note that the required control input was predicted by making use of the flatness concept,
the neural ODE system, and the given training scenario. Thus, in this case, the implementa-
tion of distributed control is shown by successfully controlling all measured states using
differential flatness.

4.1.2. Scenario 2: Boundary Control Problem

For the diffusion dynamics in Equation (19) the output could be measured only at the
right boundary φN+1 = y. For this study, the output is desired to be linearly increasing
at φN+1 from 20 to 30 units with a slope m = 10 over one time unit. No other information
about the system or its dynamics is available. However, the necessary control input is
determined using Equation (23), along with the initial values, which are required for
the forward simulation of the dynamics. Moreover, the estimated internal states of the
system, as calculated back using Equation (23), are initially shown in the spatial domain
at selected time instants t, in Figure 6a. The same estimated states are again plotted
(dotted lines) in the time domain at selected points in the dimensional space x, for better
interpretation, in Figure 6b. The forward simulation is then performed (Equation (19)),
to check if the data determined using Equation (23) are precise. The following setting
is adapted: diffusion coefficient κ = 0.1, control input u(t) and initial conditions u(x, 0)
are applied from the estimations, Robin boundary conditions u(0, t) = 0, u′(N, t) = 1
with x ∈ [0, N]. The output profiles are plotted over time in the same selected points over x
for better comprehension. The comparison can be found in Figure 6b.

The output (desired) at the measurable boundary increases linearly from 20 to 30 units
(the green dotted line at Φ̂ at x = 1.0) (see Figure 6b). Then, the necessary feed at the
input end should be 70 to 80 units (the red dotted line Φ̂ at x = 0.0) (see Figure 6b). The
initial condition at t = 0.0 is supposed to be diffusing from 70 to 20 units (the values of Φ̂
at t = 0.0), which could be visualized as the black solid line Φ̂ at t = 0.0 (see Figure 6a).
Thus, by feeding the estimated control input u to the left boundary φ0, the dynamics in
Equation (19) are simulated with the estimated initial conditions. The resulting output
profiles are presented as solid lines in Figure 6b, denoted by y at the same selective points
across the dimensional space x. It can be seen that the estimations Φ̂ at given x values
match pretty closely with the output profiles y from the forward simulation. The model
in Equation (19) is thus shown to be validated for the control input and initial conditions,
which were determined from the boundary (flat) output by backward calculation using the
flatness concept.
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(a) (b)
Figure 6. Model response for Scenario 2 assuming a boundary control problem with (a) for the
recalculated diffusion profiles using the measured boundary value and (b) for the calculated diffusion
profiles with the forward simulation output profiles.

4.2. Sensitivity Analyses

The reconstructed input and output data generated from Figure 5b are used for the
sensitivity analysis. The derived input function, like the output profile, depends on the
diffusion parameter κ and is thus sensitive to parameter changes. In the case of the output
function and the generated control input, the sensitivities corresponding to a variation of
the diffusion parameter κ are studied using Equations (7) and (8). The study is done for
both scenarios, and the corresponding interpretations are shown individually.

4.2.1. Scenarion 1: Distributed Control Problem

The sensitivities of the system output and the distributed control input (determined by
model inversion) are analyzed for the diffusion parameter κ. In Figure 7, the corresponding
sensitivity graphs are illustrated. Here, the output parameter sensitivity (Figure 7a) is zero
for the starting point, and its absolute range is gradually rising at x = 0.25 and x = 0.75,
respectively. In the case of the input parameter sensitivity (see Figure 7b), these sensitivities
are at their peak from the very start, and their absolute values are 3–4 times higher than the
sensitivities of the output parameter. This implies that the distributed control input is more
informative than the system output for the diffusion parameter κ estimation.

Output parameter sensitivity / -

(a)

Input parameter sensitivity / -

(b)
Figure 7. Parameter sensitivity of the diffusion parameter κ for Scenario 1 assuming a distributed
control problem with (a) using OLS to define the parameter identification problem and (b) where ILS
is used to define the parameter identification problem instead.

4.2.2. Scenario 2: Boundary Control Problem

The sensitivities of the desired boundary output and the boundary control input
(backpropagation using differential flatness) for the diffusion parameter κ are analyzed by
comparing the sensitivity graphs in Figure 8. In Figure 8a, when parameter identification
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is to be defined using OLS (based on output), the absolute sensitivity values start from as
low as 0 to a maximum of 10 over a time span of 1 unit. However, on the other hand, the
boundary control input derived based on the flatness property is used to frame the cost
function as ILS. Figure 8b shows that, while using ILS to define the parameter identification
problem, the absolute values start immediately from a significantly higher value, around
70, and increase to 82 during the same simulation time span. Similar to the distributed
control problem, this signifies that the boundary control input is more informative for the
diffusion parameter κ estimation than the boundary output.

(a) (b)
Figure 8. Parameter sensitivity of the diffusion parameter κ for Scenario 2 assuming a boundary
control problem with (a) using OLS to define the parameter identification problem and (b) where ILS
is used to define the parameter identification problem instead.

In both scenarios, the model control inputs’ parameter sensitivities were much higher
than those of the system outputs. As discussed in Section 2, higher parameter sensitivi-
ties, in turn, mean expected improvements in parameter accuracy. Therefore, parameter
identification using the ILS scheme might be beneficial compared to the OLS scheme in
terms of parameter reliability. This effect can also be physically explained. Most technical
systems show smoothing behavior and thus act as a kind of low-pass filter for system
excitations and system changes, i.e., disturbances are mitigated, which includes parameter
variations. The model inversion, in turn, uses the opposite effect and thus clearly shows a
more significant response with respect to parameter changes. However, this is also true
for measurement noise when these methods are used for parameter estimation. The time
derivatives of the model output functions (flat outputs) that are necessary for the model
inversion lead to an amplification of the measurement noise. To what extent the amplifica-
tion of the measurement noise compensates for the more favorable parameter sensitivity
properties of the ILS or TLS methods is out of the scope of this work. The obtained results
also allow a further explanation of the favorable parameter estimation properties of the
PINN method, i.e., just by evaluating the governing equation mismatch Lode (Equation
(16)) higher parameter sensitivities are likely because of the very same reasons as for the
proposed model inversion concept.

5. Conclusions

Identifying model parameters is a fundamental problem in control and systems theory.
This work demonstrates that the input least squares (ILS) and ordinary least squares (OLS)
strategies for parameter identification result in different parameter sensitivities. Here, an
improved parameter sensitivity range is observed for ILS. The original contribution is the
meaningful combination of the differential flatness concept with neural ordinary differ-
ential equations and, in terms of model inversion, its general implication for data-driven
engineering problems. We successfully applied our method for two relevant scenarios
of a one-dimensional diffusion-type problem using synthetic data. Due to a maximized
parameter sensitivity range, the loss function based on ILS might lead to a more precise
estimation of the model parameter compared to the OLS-based parameter identification
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framework. The ILS implementation and the underlying neural ODE system are specifically
designed for the considered problem and thus not yet efficiently transferable for new tasks
- an aspect addressed in ongoing research. Future work will also focus on advanced model
inversion schemes, not limited to differentially flat systems, and their robustness under
relevant uncertainties, i.e., process and measurement noise.
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