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a b s t r a c t 

This paper is concerned with a highly efficient active fault detection and isolation (FDI) framework. An 

auxiliary, fault-revealing input is derived by solving an optimization problem. As we implement a model- 

based approach, the active FDI framework is robustified against model parameter uncertainties, includ- 

ing parameter correlations which are common for experimentally derived parameters. Moreover, critical 

safety limits are considered, and an optimal process performance is fulfilled in parallel. In this work, 

which is an extension to our ESCAPE-2017 contribution, a novel highly effective polynomial chaos expan- 

sion (PCE) approach is used to address parameter uncertainties and to include process design parameters 

directly. To reduce the computational load, we combined the PCE with a least angle regression (LAR) 

strategy. The overall effectiveness of the novel one-shot sparse polynomial chaos expansion (OS 2 -PCE) 

concept is demonstrated by analyzing a tubular plug flow reactor illustrating the need for uncertainty 

and parameter correlation analysis in FDI while ensuring an optimal and safe process operation, respec- 

tively. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Chemical processes have to be operated efficiently and moni-

ored reliability to meet the standard of a profitable and growing

ndustry. In the literature mathematical models have been proven

eneficial for computer-aided process design, process control, and

ondition-monitoring ( Downs and Vogel, 1993; Kameswaran and

iegler, 20 06; Venkatasubramanian et al., 20 03 ). In this work, the

ocus is on condition monitoring primarily, as well as optimal

rocess performance. For an improved detection and isolation of

aults, mathematical models are used to calculate axillary control

nputs to stimulate the monitored process deliberately. To provide

eliable inferences, mathematical imperfections caused by model

implifications and uncertain model parameters have to be consid-

red ( Braatz et al., 1996; Pistikopoulos, 1995; Schenkendorf, 2016 ).

 model imperfection study, in turn, requires advanced methods

n uncertainty quantification at manageable computational costs

 Telen et al., 2014a ). Uncertain model parameters result in model

utput variations, and thus, model-based inferences can be subop-

imal or even misleading ( Schuëller and Jensen, 2008 ) when they

re not part of the model-based process design. In addition, pa-
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ameter correlations are a relevant factor in model output varia-

ions ( Haaker and Verheijen, 2004 ) but are frequently ignored in

odel-based fault identification and process design concepts. For

ost chemical engineering problems, model parameters cannot be

easured directly. Instead, numerical parameter identification rou-

ines processing experimental data have to be applied. Parameter

dentification routines, in turn, may lead to significant parameter

orrelations of the parameter estimates ( Telen et al., 2014b ). The

tate-of-the-art tools for uncertainty propagation, e.g., Monte Carlo

imulations or Gaussian quadrature approaches, are prohibitive for

omplex problems in terms of computational costs ( Smith, 2013 ).

n the other side, CPU-friendly implementations based on lin-

arization suffer in terms of precision and credibility, and they typ-

cally ignore parameter correlations ( Telen et al., 2015 ). In this con-

ext, polynomial chaos expansion (PCE) provides a promising alter-

ative: low computational costs, good approximation results, and a

traightforward option to include relevant parameter correlations.

he fundamental idea is to replace the original but CPU-intensive

odel with a PCE surrogate model that – once derived – is light

n computational costs ( Xiu and Karniadakis, 2002 ). Please note

hat different approaches of surrogate modeling (e.g., Kriging and

onlinear regression models) can be applied to lower the compu-

ational cost in optimization ( Bhosekar and Ierapetritou, 2018 ). In

ase of uncertainties, however, PCE models have proven beneficial
l chaos expansion strategy for active fault identification of chem- 
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Fig. 1. Scheme of the one-shot PCE-based (OS 2 -PCE) implementation for robust 

process design and active fault identification. 
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regarding convergence according to the Cameron-Martin theorem

( Cameron and Martin, 1947 ). To set up a PCE model, several ref-

erence simulations of the original model are required to generate

a sufficient number of training data sets. Moreover, the process

operating conditions are fixed, and the PCE model is valid only

under these conditions. When it comes to active fault identifica-

tion, the operating conditions are changed deliberately to reveal

potential faults as quickly as possible ( Du et al., 2015 ). New op-

erating conditions, in turn, imply that for every new scenario the

PCE model has to be re-calibrated with costly reference simula-

tions; i.e., new simulated training data sets have to be created. To

overcome the need for new reference simulations, it is essential to

include the auxiliary control parameters directly in the PCE model.

Here, a promising idea is to treat the auxiliary control parameters

as uniformly distributed random variables and to integrate auxil-

iary control parameters in the PCE model ( Shen and Braatz, 2016 ).

The so-called one-shot approach, however, is likely to suffer the

curse of dimensionality. When model parameters and process de-

sign parameters are considered at the same time, the complexity

of the PCE model and the number of required reference simula-

tions increase dramatically. The main contribution of this work is

to demonstrate how the total number of CPU-intensive reference

simulations can be reduced considerably for a highly efficient ac-

tive FDI implementation. To keep the computational cost tractable,

we use the sparsity effect. In detail, we implement the least an-

gle regression (LAR) approach ( Blatman and Sudret, 2011 ) to ob-

tain a workable PCE model, which represents the impact of the

model parameters and fault-revealing auxiliary control parameters

in equal measure. The scheme of the proposed work flow is illus-

trated in Fig. 1 . Moreover, the flexibility of the proposed concept

enables a direct integration of model parameter correlations which

are typically ignored by most model-based studies – despite the

potential strong effect of the model parameter correlations on sim-

ulation results as demonstrated by our case study. 

The remainder of the paper is organized as follows. In Section 2 ,

the general concepts of model-based active fault detection and iso-

lation (FDI), the basic idea of PCE, and the principles of the spar-

sity effect are given. In Section 3 , we introduce the case study for

active FDI (i.e., analyzing a tubular plug flow reactor), and discuss

the derived results. Finally, we provide conclusions in Section 4 . 

2. Methods 

In what follows, the methods and concepts are introduced sep-

arately. The primary focus is on active fault identification and iso-

lation principles. As we combine active FDI with optimal perfor-

mance measures, the basics of robust process design are summa-

rized, too. In both case, an efficient uncertainty analysis is manda-

tory. To this end, the general idea of polynomial chaos is intro-

duced, and our novel extension, the one-shot sparse PCE approach,

is outlined in more detail. 

2.1. Active fault detection and isolation 

Fault identification concepts are classified as either passive or

active. Passive strategies gather and evaluate process data without

feedback on the system under study. Active concepts, in turn, aim

at applying fault-revealing auxiliary input signals to the analyzed

system. An optimal fault-revealing auxiliary input is expected to

improve the FDI performance in terms of the fault detection rate

and fault isolation. In this work, the focus is on active FDI concepts.

To this end, relevant process models, M i , i ∈ { 1 , . . . , m } , have to be

formulated, including the nominal model (i.e., fault-free behavior)

and potential error models describing specific fault scenarios. For

practical reasons, the fault scenarios are limited to a finite number

of the most relevant faults; i.e., m � ∞ . Thus, a failure mode and
Please cite this article as: R. Schenkendorf et al., An efficient polynomia

ical processes, Computers and Chemical Engineering (2018), https://doi
ffect analysis (FMEA) is typically the first step to identify relevant

ailure modes which are subsequently translated to mathematical

odels ( Kapur and Pecht, 2014; Khan and Abbasi, 1998 ). 

The governing equations of complex technical systems may be

iven as differential algebraic equations (DAEs) equal to: 

 i 

{
˙ x d (t) = f i (x (t) , u (t) , p ) , x d (0) = x 0 , 

0 = g i (x (t) , u (t) , p ) , 
∀ i ∈ { 1 , . . . , m } 

(1)

here t ∈ [0, t f ] is the time, u ∈ R 

n u denotes the control input

ector, and p ∈ R 

n p denotes the time-invariant parameter vector.

 = [ x d , x a ] ∈ R 

n x is the state vector, in which x d ∈ R 

n x d and x a ∈
 

n x a are the differential and algebraic states, respectively. x 0 is

he vector of the initial conditions. f i and g i denote the differen-

ial and algebraic vector fields of the system and define the phys-

cal and chemical interactions in accordance with the i th model.

n the field of active FDI, these models are an essential part of

he algorithmic fault detection and isolation implementation. The

uality of the FDI performance depends critically on the reliabil-

ty of the evaluated model candidates. Thus, uncertainties asso-

iated with model parameters p have to be incorporated in the

odel-based active FDI concept conscientiously. Uncertainty mea-

ures (e.g., probability density functions) are assigned to the pa-
l chaos expansion strategy for active fault identification of chem- 

.org/10.1016/j.compchemeng.2018.08.022 
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Fig. 2. Active FDI principle: overlap of model responses of the nominal model, fault model F 1 , and fault model F 2 . (a) Strong overlap cause slow FDI rates while a 

reduced overlap of the model densities (b) guaranties improved FDI rates. 
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ameters resulting from experimental data imperfections. Techni-

ally, we assume parameter uncertainties of finite variance which

re described by second-order random variables. The probability

pace (�, F , P ) is defined by the sample space �, the σ -algebra

, and the probability measure P on �. Moreover, we assume that

he time-invariant probabilistic uncertainties are functions of ran-

om variables ω := [ ω 1 , ..., ω p n ] 
T 

with known independent proba-

ility density functions 
{

P ω i 

}n p 

i =0 
over �. Because of the parameter

ncertainties, the simulation results can be considered as random

ectors according to the Doob–Dynkin lemma ( Bobrowski, 2005 ).

or instance, exemplary probability density functions of a nomi-

al model and two fault models at a given time point t k are illus-

rated in Fig. 2 . The strong overlap of the density functions shown

s prohibitive regarding reliable and fast FDI results. The reduced

verlap of the corresponding density functions in Fig. 2 b, in turn,

nsures an improved FDI rate ( Schenkendorf, 2016 ). The objective

f active FDI is to identify an auxiliary control input that reduces

he overlap of the simulation results and their confidence intervals,

.e., maximizing the differences between the models according to

heir associated uncertainties. Thus, in the next step, the uncer-

ainties have to be incorporated in calculating the fault-revealing

uxiliary inputs numerically. Following a control vector parame-

erization ( Biegler, 2010 ) strategy, the optimization problem reads

s: 

 

F DI := arg max 
u FDI 

m −1 ∑ 

i =1 

m ∑ 

j= i +1 

D (M i (u 

F DI , p ) , M j (u 

F DI , p )) . (2) 

n the literature, various distance measures D exist to quan-

ify the difference between two or more model candidates and

heir density functions ( Mesbah et al., 2014 ). In this work, a dis-

ance measure based on the Kullback–Leibler distance is used

 Schenkendorf, 2016 ): 

 (M i (u , p ) , M j (u , p )) = d KL (pdf i || pdf j ) + d KL (pdf j || pdf i ) , (3)

ith 

 KL (pdf i || pdf j ) = 

∫ 
�

pdf i (x ) ln 

pdf i (x ) 

pdf j (x ) 
dx , (4)

here pdf i and pdf j are probability density functions corresponding

o models M i and M j , respectively. 

To solve the optimization problem in Eq. (2) , at every itera-

ion the corresponding probability density functions have to be

uantified for all incorporated model candidates. In parallel, while

earching for fault-revealing control actions, the process under

tudy has to meet given design specifications, i.e., ensuring safety
Please cite this article as: R. Schenkendorf et al., An efficient polynomia

ical processes, Computers and Chemical Engineering (2018), https://doi
argins and high productivity. Thus, the concepts of robust pro-

ess design need to be considered simultaneously but typically are

gnored in the literature of active FDI. 

.2. Robust process design 

The uncertainty measures introduced above can be used

o formulate robustified process design performance indicators

 Telen et al., 2015 ) as: 

min 

u (t) 
E [ J (x t f )] + αVar [ J (x t f )] 0 . 5 , (5a)

subject to: Eq. (1), 

Pr [ h nq ( x ( t ) , u ( t ) , p ) ≥ 0 ] ≤ ε nq , (5b) 

| E [ h q (x (t) , u (t) , p )] | ≤ ε q,μ, (5c) 

Var [ h q (x (t) , u (t) , p )] ≤ ε q,δ, (5d) 

u min ≤ u ≤ u max . (5e) 

Here, E [ ·] and Var [ ·] denote the mean and variance values of

he random variables, J is the objective function of the states at

 f , α denotes a scalar weight factor, [ u min , u max ] are the upper and

ower boundaries for the control input vector, Pr denotes the prob-

bility of an event, h nq and h q are the functions for the inequality

nd equality constraints, respectively and ε nq , ε q, μ, and ε q, δ are

olerance factors ( Rangavajhala et al., 2009 ). The individual chance

onstraint in (5b) is approximated with the Cantelli-Chebyshev in-

quality with a scalar weight factor βc ( Telen et al., 2015 ) as: 

 [ h nq ] + βc Var [ h nq ] 
0 . 5 ≤ 0 . (6)

he robust optimization framework can reduce the influence of

ncertain model parameters on the optimization outcome. This is

ecause of the following reasons. First, by optimizing the objec-

ive function, an averaged measure of the objective function is im-

roved under parameter uncertainties while minimizing the overall

ariation of the objective function in parallel. Second, by consider-

ng the chance constraints in Eq. (6) and the approximated inequal-

ty constraints in Eqs. (5c) and (5d) , relevant statistics of constraint

iolations under parameter uncertainties are incorporated into the

ptimization problem systematically. 

The statistical moments required to solve the robust process de-

ign problem, i.e., E [ ·] and Var [ ·] for the state vector x , are defined

s: 

 [ x ] = 

∫ 
x pdf (x ) dx , (7) 
�

l chaos expansion strategy for active fault identification of chem- 
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o  

F  

n  

m  

i  
Var [ x ] = 

∫ 
�(x − E [ x ])(x − E [ x ]) T pdf (x ) dx . (8)

The integral terms, however, given in Eqs. (7) and (8) have to

be evaluated numerically. This evaluation may render the robust

model-based process design approach into an intractable problem,

especially when using standard methods of numerical integration,

e.g., Monte Carlo simulations or Gaussian quadrature-based con-

cepts. The same holds true for the implementation of active FDI

( Eq. (4) ) – with or without the consideration of process perfor-

mance and safety aspects. Alternatively, a novel one-shot sparse

PCE (OS 2 -PCE) concept is introduced in the following as a highly

flexible and efficient algorithmic backbone layer for the robust pro-

cess design and active FDI or, in particular, a combination thereof. 

2.3. One-shot sparse PCE approach ( OS 2 -PCE) 

The non-intrusive concept of PCE has been proven beneficial

in uncertainty analysis because of its demonstrated convergence

( Cameron and Martin, 1947 ), i.e., the PCE model can describe any

process of finite variance. Due to the Askey scheme ( Xiu and Kar-

niadakis, 2002 ), PCE is applicable to any parameteric probability

density function. Empirical distributions can be included using iso-

probabilistic transformation techniques ( Sudret and Caniou, 2013 ).

The general idea of PCE is to use orthogonal polynomials to ap-

proximate the model output. The applied orthogonal polynomials,

in turn, depend on the given probability density functions of the

parameteric uncertainties while the corresponding polynomial co-

efficients are estimated to fit a finite set of reference simulations

( Xiu and Karniadakis, 2002 ). The main contribution of this paper

is to demonstrate how the number of polynomial terms needed

and the total number of CPU-intensive reference simulations can

be reduced considerably for a highly efficient active FDI implemen-

tation. The proposed OS 2 -PCE concept is outlined below starting

with the conventional PCE setting. Subsequently, we show how the

conventional PCE approach can be reduced to a one-shot realization

avoiding prohibitive re-parameterizations of the polynomial coeffi-

cients when solving the dynamic optimization problem, and sec-

ond, how PCE benefits from the sparsity effect by applying least

angle regression. 

2.3.1. Generalized polynomial chaos expansion 

The generalized PCE approach ( Xiu and Karniadakis, 2002 ) rep-

resents any random variable of finite variance, Y (ω) ∈ L 

2 (�, F , P) ,

as an expansion of orthogonal polynomial basis functions: 

 (ω) ≈ Y (ω) PCE = 

∑ 

k ∈A 
αk 	k (ω) , (9)

where ω is a random variable vector, αk is the polynomial coeffi-

cient, 	k ( ω) is the polynomial basis function of degree less than

or equal to p . A represents the set of multiple indices depending

on the applied truncation scheme ( Blatman and Sudret, 2011 ). In

summary, the number of terms of the truncated series is defined

as: 

card A PCE = 

(
n ω + p 

p 

)
= 

(n ω + p)! 

n ω ! p! 
, (10)

where n ω is the number of uncertain quantities (e.g., model pa-

rameters) and may lead to an exponential increase in the compu-

tational costs due to the curse of dimensionality when it comes to

the computation of the unknown polynomial coefficients and pro-

viding the reference simulations ( Blatman and Sudret, 2011 ). This

is particularly true for the active FDI concept because for any an-

alyzed fault-revealing input configuration the model output results

are different compared to the nominal case, i.e., when no auxiliary
Please cite this article as: R. Schenkendorf et al., An efficient polynomia

ical processes, Computers and Chemical Engineering (2018), https://doi
ontrol input for FDI is applied. Thus, for any new model input-

utput realization, the polynomial coefficients of the related PCE

odels have to be recalculated based on a new set of CPU-costly

eference simulations. The problem of updating the PCE model

ithin the dynamic optimization loop is illustrated in Fig. (3 a). To

e-bottleneck the PCE-based active FDI approach, the PCE model

as to be derived in a single step first, and the dynamic opti-

ization has to be solely based on the fixed PCE model without

he need for cumbersome re-parameterizations; i.e., running a one-

hot PCE approach. 

.3.2. One-shot PCE approach 

To avoid the repeated need for polynomial coefficient re-

alibrations and consequently, additional costly simulation runs,

he PCE model has to be made sensitive to the auxiliary input di-

ectly; i.e., the PCE model is also a function of the auxiliary in-

ut parameters. The general idea of this implementation is illus-

rated in Fig. (3 b). Here, the PCE model is derived only in the first

ingle step, and the optimization is directly based on the OS-PCE

odel without the need for additional simulation runs of the orig-

nal model candidates ( Eq. (1) ). Practically, the auxiliary input is

ntegrated in the OS-PCE model as a control vector parameter real-

zation. Within the framework of optimal control vector parameter-

zation, inputs are parameterized by piecewise constant functions

here the corresponding control parameters might be specified by

pper and lower bounds ( Biegler, 2010 ). Because of these upper

nd lower bounds, the control vector parameters can be considered

s uniformly distributed random variables. Uniform random vari-

bles, in turn, are an inherent part of generalized PCE ( Xiu and Kar-

iadakis, 2002 ). Thus, the control vector parameters of the fault-

evealing auxiliary input can be incorporated in the PCE framework

irectly ( Shen and Braatz, 2016 ). The extended PCE model reads as:

 PCE (p , u ) = 

∑ 

A u 

∑ 

A p 

αkl 	
p 

k 
(ω )	u 

l (ω ) , (11)

ith specific polynomial basis functions 	 p 

k 
(ω) and 	u 

l 
(ω) for the

ncertain model parameters p and auxiliary inputs u , respectively.

he joint analysis, however, causes an exponential increase in the

umber of orthogonal polynomial terms. The dimension of the ran-

om vector is now the sum of the number of model parameters,

p ∈ R n p , and the number of elements of the discretized control vec-

or, p u ∈ R n p u ; i.e., the dimension of the random parameter vector

eads ω ∈ R 

n p + n p u . According to Eq. (10) , the computational load

o build the extended PCE model ( Eq. (11) ) increases exponentially

ith the number of elements of the control vector. This is the main

eason why OS-PCE has been applied only for very simple control

ector realizations. In Shen and Braatz (2016) , a single parame-

er for the control vector is considered. More flexible and power-

ul control vector realizations, however, correlate with high com-

utational costs ( Paulson and Mesbah, 2018 ). Because of the in-

reased number of reference simulations needed, OS-PCE may be-

ome prohibitive for problems of practical relevance. To avoid this

imitation, the so-called sparsity-of-effects principle ( Blatman and

udret, 2011 ) has to be exploited, that is, to include only the most

elevant terms of Eq. (11) resulting in a representative but sparse

CE model. An effective algorithm to identify the most relevant

olynomial terms is based on least angle regression. 

.3.3. Least angle regression 

For a workable PCE implementation, an efficient computation

f the polynomial coefficients is mandatory in the field of active

DI. To this end, the LAR concept selects exclusively those poly-

omial functions 	θ , u ( · ) that have the most impact on the PCE

odel ( Eq. (11) ) and its residuals. For many engineering problems,

t has been proven that a relatively low number of polynomial
l chaos expansion strategy for active fault identification of chem- 

.org/10.1016/j.compchemeng.2018.08.022 
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Fig. 3. Non-intrusive PCE-based strategies for active FDI: (a) each PCE model has to be re-parameterized during optimization, (b) direct PCE-based optimization, but the 

number of reference simulations (e.g., nominal model and fault models F 1 & F 2 stored in a CSV file) are prohibitive, (c) dramatic reduction of needed reference simulations 

due to the sparsity effect. 

Fig. 4. Exemplary illustration of the least angle regression concept for two random 

variables. In an iterative process, relevant PCE coefficients αkl are assigned to the 

active set ( ) and have to be identified via reference simulations. The non-active 

PCE coefficients ( ) are set to zero. 
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fi  
erms are required to mimic the approximated system behavior,

.e., card (A 

LAR ) << card (A ) . Fewer polynomial terms, in turn, mean

ewer model evaluations and computational costs. The basic idea

f LAR is to start off with an empty polynomial function set and

o add those polynomial terms that reduce the difference between

he original model ( Eq. (1) ) and the sparse PCE model the most,

.e., which are highly correlated with the residuals. In parallel, the

elevant polynomial coefficients are calculated via linear regres-

ion. A selecting criteria, which is based on cross-validation, avoids

verfitting and identifies the best sparse PCE model candidate with

he lowest estimation error. For the technical details of LAR, please

ee ( Blatman and Sudret, 2011 ) and references therein. The work-

ng principle of LAR is illustrated in Fig. 4 via an academic exam-

le. Here, one model parameter is assumed to follow a Gaussian

istribution, e.g., p 1 ∼ N (5 , 1) , while one control vector parameter

s characterized by a uniform distribution, e.g., u 1 ∼ U(0 , 5) . As-

uming a maximum polynomial order of five which is common in

any engineering problems ( Sudret and Caniou, 2013 ), 36 polyno-

ial coefficients have to be identified theoretically; see Fig. 4 a. LAR
Please cite this article as: R. Schenkendorf et al., An efficient polynomia

ical processes, Computers and Chemical Engineering (2018), https://doi
dentifies polynomial terms that have the highest correlation with

he residuals; i.e., the difference between the PCE model and the

eference simulation. Only these polynomial coefficients are added

o an active set as shown in Fig. 4 b. The remaining coefficients

re set to zero. The active set of polynomial coefficients is sys-

ematically extended to meet given specifications. Typically, 20% to

0% of the polynomial coefficients become part of the active set

s illustrated by way of example in Fig. 3 c; i.e., a large reduction

n computational costs. The resulting OS 2 -PCE-based optimization

roblem reads as: 

 

F DI := arg max 
u FDI 

m −1 ∑ 

i =1 

m ∑ 

j= i +1 

D 

(
M 

LAR 
PCE,i 

(
u 

F DI , p 

)
, M 

LAR 
PCE, j 

(
u 

F DI , p 

))
, (12) 

ith 

 

LAR 
PCE (p , u ) = 

∑ 

A LAR 
u 

∑ 

A LAR 
p 

αkl 	
p 

k 
(ω )	u 

l (ω ) . (13)

n summary, the work flow of the proposed OS 2 -PCE framework

or active FDI is the following: (1) To build the sparse PCE model

hich includes uncertain model parameters and control vector pa-

ameters of the auxiliary control input alike and (2) to evaluate this

parse PCE model within the optimization routine ( Eq. (13) ). The

riginal dynamic optimization problem is transferred into a CPU-

riendly algebraic optimization problem (see Fig. 3 c), i.e., instead of

olving ODEs in Eq. (2) , the analytical formula in Eq. (13) is evalu-

ted for the auxiliary control input parameters at every iteration.

echnically, the PCE-based framework is realized with UQLAB 

©

 Marelli and Sudret, 2014 ) and fmincon in MATLAB 

® with a multi-

tart strategy to avoid local optima. 

.4. Parameter correlation 

The existence of parameter correlations might increase the dif-

culty of quantifying the resulting model uncertainties properly
l chaos expansion strategy for active fault identification of chem- 
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Fig. 5. Scheme of the analyzed jacketed tubular reactor with the heating and cool- 

ing system to control the jacket temperature of the six elements individually. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Model parameters and assumed parameter uncertainties. 

Parameters Unit Nominal value Uncertainty 

x 1 (0) – 0 –

x 2 (0) – 0 –

αkin s −1 0.058 N (0.058,0.0058) 

β (nominal) s −1 0.2 N (0.2,0.02) 

β (fault) s −1 0.05 N (0.05,0.01) 

v s −1 0.1 –

γ – 16.66 –

δ – 0.25 –
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( Xie et al., 2018 ). Thus, an additional goal of this paper is to

demonstrate how parameter correlations can be integrated into

the proposed concept of active FDI. Note that parameter correla-

tions are unavoidable when model parameters are identified with

experimental data, but despite their considerable impact, param-

eter correlations are typically ignored in uncertainty analysis and

robust model-based design ( Li et al., 2010; Valkó et al., 2017; Xu

and Gertner, 2008 ). Here, the framework of PCE allows a straight-

forward integration of parameter correlations via isoprobabilistic

transformations ( Lebrun and Dutfoy, 2009; Rosenblatt, 1952; Valkó

et al., 2017 ) or by using copula-based strategies ( Nelsen, 2007;

Sklar, 1959 ). In this work, an isoprobabilistic transformation is im-

plemented for simplicity. For more details regarding isoprobabilis-

tic transformation concepts, the interested reader is referred to

Xie et al. (2018a) and references therein. 

3. Case study 

To demonstrate the proposed concept of active FDI, a jacketed

tubular reactor under steady-state condition is studied assuming

an irreversible first-order reaction; see Fig. 5 . Please note that

the steady-state assumption is not mandatory but is selected for

simplicity. Time-dependent problems can be solved similarly. The

governing equations are given in Eqs. (14) and (15) ( Telen et al.,

2015 ): 

dx 1 

dz 
= 

αkin 

v 
(1 − x 1 ) e 

γ x 2 
1+ x 2 , (14)

dx 2 

dz 
= 

αkin δ

v 
(1 − x 1 ) e 

γ x 2 
1+ x 2 + 

β(z) 

v 
(u − x 2 ) . (15)

The states x 1 and x 2 are the dimensionless forms of the reac-

tant concentration and the reactor temperature, respectively. The

jacket temperature u is defined as the auxiliary input for active

FDI. Following the control vector parameterization strategy, the

auxiliary control input is discretized into six equidistant elements

(see Fig. 5 ) constrained by 280K and 400K or in terms of ran-

dom variables: u i ∼ U[280 , 400] , ∀ i = 1 , . . . , 6 . The kinetic coeffi-

cient αkin and the heat transfer coefficient β are assumed to fol-

low a Gaussian distribution with a standard deviation of 10% of

their nominal values to integrate the model parameter uncertain-

ties. Please note that the proposed OS 2 -PCE concept is not lim-

ited to Gaussian distributions, i.e., various parameteric and empir-

ical distributions can be included via the Askey scheme ( Xiu and

Karniadakis, 2002 ) and iso-probabilistic transformation techniques

( Sudret, 2008 ), respectively. The applied model parameters are

summarized in Table 1 and further details of the reactor model can

be found in Telen et al. (2015) . In what follows, the proposed con-

cept of active FDI is demonstrated, and we show how to add pro-

cess performance and safety measures to active FDI. To this end,
Please cite this article as: R. Schenkendorf et al., An efficient polynomia

ical processes, Computers and Chemical Engineering (2018), https://doi
e define the conversion of the reactor as the process output used

or process monitoring and process design: 

 f = x 1 ( z = 1) , (16)

here z is the relative reactor position, 0 ≤ z ≤ 1. As all proposed

trategies are based on a very efficient PCE implementation, we

ompare the PCE outcome with the original model first. In Fig. 6 ,

he resulting probability density functions for the reactor temper-

ture at different locations are illustrated. Please note that these

ncertainties of the reactor temperature are a result of the model

arameter uncertainties. When we compare the Monte Carlo simu-

ation result (5,0 0 0 simulations) of the original nominal model and

he corresponding OS 2 -PCE model, we see a good match and low

pproximation errors. Similar results can be derived for the reac-

ant profiles and the two models of fouling layers, but the results

re not shown here due to space limitations. As the PCE models

epresent the original model candidates sufficiently well, they are

ood candidates for solving the optimization problems for active

DI efficiently. In addition to a reduced overlap of the model re-

ults and an improved FDI rate, the reactor has to ensure high pro-

uctivity and safety operation, i.e., high conversion and tempera-

ure values below 400K. Please note that the entire OS 2 -PCE frame-

ork requires only 20 0 0 model evaluations computed once in par-

llel, while the conventional PCE-based design framework without

sing the sparsity effect and the normal robust design approach

eed around 10,0 0 0 and at least 20,0 0 0 evaluations (depending on

he optimization condition), respectively. 

.1. Active fault detection and isolation 

In the first step, two different fault scenarios are defined: (1) a

ouling layer in the front section of the reactor and (2) a fouling

ayer in the end section of the reactor. Fouling is a relevant failure

ode in chemical engineering. Typically, process design and oper-

ting strategies are applied to reduce the formation of critical foul-

ng layers ( Föste et al., 2013; Ishiyama et al., 2014; Mirzaei et al.,

017 ), but the fouling process cannot be avoided completely. Thus,

dentifying the fouling formation progress is essential for schedul-

ng intervention and cleaning actions in time ( Diaz-Bejarano et al.,

015; Markowski et al., 2013; Qureshi and Zubair, 2016 ). Algorith-

ically, the fouling effect is realized by changing the heat transfer

oefficient locally (see Table 1 ) to mimic the lower thermal con-

uctivity caused by the fouling layer; i.e., for Fault 1 (0 ≤ z ≤ 0.5)

nd Fault 2 (0.5 ≤ z ≤ 1) β( z ) = 0.05 is used instead of β( z ) = 0.2

s for the nominal case. The OS 2 -PCE framework includes eight in-

ut random variables, i.e., six control elements and the two uncer-

ain model parameters, which result in 20 0 0 model evaluations for

ach model candidate to derive the corresponding OS 2 -PCE model.

he applied OS 2 -PCE models ( Eq. (13) ) benefit considerably from

he sparsity effect; i.e., the number of required terms was reduced

y a factor of card (A 

LAR ) / card (A ) = 0 . 2 , on average. After the sin-

le one-shot PCE model building step, the optimal fault-revealing

emperature input profile is derived in the presence of model pa-

ameter uncertainties. That is, in the course of optimization no ad-
l chaos expansion strategy for active fault identification of chem- 
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Fig. 6. Probability density functions of the reactor temperature at different relative reactor positions, z ∈ {0.2, 0.4, 0.8}. 50 0 0 Monte Carlo simulations are used to compare 

the nominal process model with the derived OS 2 -PCE model. 

Fig. 7. Results for the default scenario: (a) assuming a constant jacket temperature profile, (b) the probability density functions of the nominal and fault cases, and (c) the 

reactor temperature profile (nominal model) and its 99% confidence interval. 
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Fig. 8. Results for active FDI: (a) optimized jacket temperature profile, (b) the probability density functions of the nominal and fault cases, and (c) the reactor temperature 

profile (nominal model) and its 99% confidence interval. 
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e  
itional simulation runs of Eqs. ((14) –(15) ) are needed to solve the

ptimization problem ( Eq. (12) ). As a reference scenario, we define

he temperature profile of a constant jacket temperature of 350K

n the entire reactor; see Fig. 7 a. In Fig. 7 b, we show the resulting

robability density functions of the reactor conversion ( Eq. (16) ).

he averaged conversion determined by the nominal model is 0.91,

ut the strong overlap of the density functions is prohibitive for

DI. The reactor temperature, in turn, is below the critical temper-

ture limit of 400K for the nominal model as illustrated in Fig. 7 c.

n case of an optimal fault-revealing jacket temperature profile

see Fig. 8 a) the difference in the reactor conversion could be in-

reased considerably as illustrated in Fig. 8 b. When combined with

ayesian reasoning, the condition of the reactor might be quanti-

ed in a subsequent step ( Schenkendorf, 2016 ). The improved FDI

utcome, however, goes along with a decreased process perfor-

ance regarding the conversion of the nominal model, c f = 0 . 62 .
Please cite this article as: R. Schenkendorf et al., An efficient polynomia

ical processes, Computers and Chemical Engineering (2018), https://doi
oreover, the reactor exceeds the temperature limit of 400K at the

utlet; see Fig. 8 c. In active FDI, robust process design principles

ave to be considered in parallel to avoid such a dramatic loss in

he process performance and critical temperature values, respec-

ively. 

.2. Robust process design 

Before we combine robust process design principles with ac-

ive FDI, we introduce the results of a direct robust process de-

ign strategy first and use them as additional references. Here, the

S 2 -PCE concept is implemented to solve the robust process design

roblem efficiently. In this case, the optimized jacket temperature

rofile aims at maximizing the conversion of the reaction while

imultaneously satisfying the temperature constraints in the pres-

nce of model parameter uncertainties. The weight factor, α, of the
l chaos expansion strategy for active fault identification of chem- 
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Fig. 9. Results for robust process design: (a) optimized jacket temperature profile, (b) the probability density functions of the nominal and fault cases, and (c) the reactor 

temperature profile (nominal model) and its 99% confidence interval. 
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objective function for the robust process design (Eq. (5)) is set to

four and thus, a low variation of the conversation C f ( Eq. (16) ) is

advantageous. Please note that a weight factor of zero results in an

exclusive optimization of the averaged conversation value but ig-

nores the associated uncertainty totally. In general, to find an op-

timal weight factor α, a multi-objective design strategy could be

implemented which is out of the scope of this study. Moreover,

the backoff value, βc , of the chance constraint ( Eq. (6) ) is set to

three, i.e., a strong focus on robustness but less on high conver-

sion. Please note that assuming a Gaussian distribution, a backoff

value of three results in 99% confidence intervals, i.e., 99 out of

100 realizations fulfill the given constraints under model parame-

ter uncertainties. The resulting optimal jacket temperature profile

is illustrated in Fig. 9 a. Obviously, a high jacket temperature at the

beginning and the end of the reactor seems beneficial for an in-

creased conversion as illustrated in Fig. 9 b. The averaged conver-

sion of the reactant is 0.98. The drop of the jacket temperature

in the middle of the reactor, in turn, keeps the reactor tempera-

ture below the limit of 400K; see Fig. 9 c. The robust process de-

sign comes at the price of a lower FDI rate, i.e., a large overlap in

the density functions as shown in Fig. 9 b. To find a jacket tempera-

ture profile that ensures an improved process performance and an

acceptable FDI rate, both objectives are combined in the next step.

3.3. Combining active FDI with a robust process design 

For improved FDI rates and high process performance, we have

to combine active FDI and robust process design principles. The

joint analysis uses the same OS 2 -PCE concept but with a modified

cost function. Technically, we incorporate the process performance

measures (Eq. (5)) as additional constraints to the introduced ac-

tive FDI optimization problem ( Eq. (3) ) in the following way: 

max 
u (t ) 

m −1 ∑ 

i =1 

m ∑ 

j= i +1 

D 

(
M 

LAR 
PCE,i , M 

LAR 
PCE, j 

)
, (17a)

E [ J (M 

LAR 
PCE,n )] + αVar [ J (M 

LAR 
PCE,n )] 0 . 5 ≤ δp f (17b)

E [ h nq (M 

LAR 
PCE,n )] + βc Var [ h nq (M 

LAR 
PCE,n )] 0 . 5 ≤ 0 (17c)

M 

LAR 
PCE,i 

(p , u ) = 

∑ 

A LAR 
u 

∑ 

A LAR 
p 

αkl,i 	
p 

k 
(ω )	u 

l 
(ω ) (17d)

u min ≤ u (t ) ≤ u max . (17e)

Here, δpf controls the impact of the robust process design on

active FDI. Assuming δp f = −0 . 65 , we derived a new optimized

jacket temperature profile; see Fig. 10 a. Similar to the robust pro-

cess design scenario ( Fig. 9 a), the jacket temperature is high in the

beginning and end sections of the reactor but low in the middle

section. The essential difference is that the jacket temperature pro-
Please cite this article as: R. Schenkendorf et al., An efficient polynomia
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le operates on its maximum and minimum limits. As shown in

ig. 10 b, the overlap of the density functions can be reduced while

he conversion for the nominal case can be increased ( c f = 0 . 85 )

ompared to the unconstrained active FDI design ( Fig. 8 b). Here,

oo, the jacket temperature drop in the middle of the reactor keeps

he reactor temperature below the limit of 400K; see Fig. 10 c. By

dapting the scaling parameter δpf a better trade-off between FDI

ate and process performance might be derived. Meaningful re-

ults, however, can only be calculated when considering the full

ncertainty information about the model parameters as demon-

trated in the next section. 

.4. Parameter correlation 

Finally, we illustrate the impact of parameter correlations on

he active FDI outcome. Most often, the model parameters can-

ot be measured directly and are identified by optimization pro-

edures (e.g., least square methods and maximum likelihood esti-

ations) evaluating given experimental data. The identified model

arameters providing the best model fit are typically correlated;

.e., the uncertainties of the model parameters are characterized

y the parameter (co)variance matrix. In the previous studies, we

nly considered the uncertainties of individual model parameters,

.e., ignoring parameter correlations totally. Thus, the available un-

ertainty information about the model parameters is not consid-

red properly and might result into too conservative or mislead-

ng model-based optimizations results. In the following, we addi-

ionally assume a parameter correlation of ρ = 0 . 8 while using the

ame parameter standard deviations of 10% of their nominal val-

es. Please note that the parameter correlation has been defined

anually and is not based on experimental data. Different val-

es of the parameter correlation might be of interest when ana-

yzing experimental data ( Xie et al., 2018b ). However, to demon-

trate the relevance of parameter correlations, the focus is solely

n the fictitious but representative parameter correlation value

iven above. In principle, the parameter correlation affects all con-

idered optimizations scenarios. For the sake of space, we mainly

iscuss the impact of the parameter correlation on the joint op-

imizations problem, i.e., active FDI with robust process design.

n Fig. 11 a, we illustrate the resulting jacket temperature profile.

he optimized profile follows a similar trajectory but with lower

emperature values at the reactor entrance compared to the non-

orrelation study ( Fig. 10 a). As highlighted in Fig. 11 b, the resulting

ensities of the conversion of the nominal and the two fault mod-

ls are well separated, i.e., high FDI-rate and credible fault classifi-

ation. The conversion, in turn, is slightly decreased, c f = 0 . 80 . The

onfidence intervals of the reactor temperature (see Fig. 11 c) are

ignificantly reduced in comparison to Fig. 10 c which allows more

exible and less conservative optimal results. Thus, the conversion

ight be improved by different scaling parameters δpf addition-
l chaos expansion strategy for active fault identification of chem- 
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Fig. 10. Results for active FDI with additional constraints and performance functions: (a) optimized jacket temperature profile, (b) the probability density functions of the 

nominal and fault cases, and (c) the reactor temperature profile (nominal model) and its 99% confidence interval. 

Fig. 11. Results for active FDI with additional constraints and performance functions considering the parameter correlation: (a) optimized jacket temperature profile, (b) the 

probability density functions of the nominal and fault cases, and (c) the reactor temperature profile (nominal model) and its 99% confidence interval. 

Table 2 

Active FDI results ignoring parameter correlation: (1) direct active FDI, (2) direct 

robust process design, and (3) joint design. Active FDI results including parameter 

correlation: (4) joint design but focus on high FDI rate, (5) balanced joint design, 

and (6) direct robust process design. Note that the Kullback-Leibler distance is based 

on Eq. (12) . 

Parameters Independent Correlated 

Scenarios Base line (1) (2) (3) (4) (5) (6) 

Conversion c f 0.91 0.62 0.98 0.84 0.80 0.90 0.97 

KL-Distance 7.28 74.73 2.30 52.35 68.39 29.43 6.30 

δpf – – – −0.65 −0.65 −0.75 –
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lly. Two additional configurations are analyzed: (1) less focus on

igh FDI rate, and (2) a direct optimal process design (Eq. (5)). The

esults are summarized in Table 2 and compared with all previ-

us implemented and discussed scenarios. The derived conversion

alues and the distance measures vary strongly. Thus, depending

n the system under study and given specifications, a proper bal-

nce between condition monitoring and process performance has

o be found. In general, however, parameter correlations should

e included in the model-based design framework. Please note,

ithin the proposed concept of OS 2 -PCE there is no need for ad-

itional reference simulations when considering parameter corre-

ations. Using the full information of the model parameter uncer-

ainties to improve the active FDI results comes with no additional

omputational costs. 

. Conclusions 

A new approach based on the one-short sparse polynomial

haos expansion (OS 2 -PCE) concept was proposed to quantify the

ffect of parameter uncertainties for active FDI efficiently. More-

ver, robust process design principle was successfully combined

ith the active FDI framework. First results regarding the effective-

ess and the performance of the proposed concept were demon-
Please cite this article as: R. Schenkendorf et al., An efficient polynomia

ical processes, Computers and Chemical Engineering (2018), https://doi
trated on an industrial relevant problem, i.e., forming of fouling

ayers in a jacket tubular reactor. In this study, the uncertainty of

inetic parameter and heat transfer coefficient are taken into ac-

ount. This work contributes to the literature in three ways. (1)

 distinct separation of each fault scenario was achieved by the

roposed active FDI framework including model parameter uncer-

ainties. Process performance requirements were added, and criti-

al operation constraints were satisfied simultaneously. (2) A dra-

atic reduction in the computational cost was achieved by incor-

orating the design parameters into PCE and utilizing the sparsity

f the polynomial coefficients. (3) The impact of the parameter cor-

elation on the model-based design for active FDI and the variation

f the process states was described and analyzed. In this work, a

xed ratio of active FDI and process performance was used. There-

ore, further work will explore the optimal trade-off between the

dentification of fault scenarios and to improve the process perfor-

ance by using multi–objective optimization strategies in the field

f pharmaceutical manufacturing processes. 
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