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Abstract

Model-based design of pharmaceutical manufacturing processes has received

much interest in academia and industry. Model parameter uncertainties, how-

ever, might deteriorate the predicted process performance. Probability-based

robust process design concepts as a countermeasure against uncertainties might

be implemented. Here, parameter uncertainties are typically limited to Gaus-

sian parameter distributions. However, parameter uncertainties derived with

experimental data can be correlated and arbitrarily distributed. In our pre-

vious work, transformation techniques were combined with the point estimate

method (PEM) to address non-Gaussian and correlated parameter distributions,

but at the cost of additional nonlinearities and approximation errors. In this

work, we take advantage of Gaussian mixture distributions (GMD) and decom-

pose the parameter distribution into a finite set of Gaussian distributions using

the Expectation-Maximization approach. Combining the GMD with the PEM

ensures a proper and effective uncertainty quantification. The improved PEM

algorithm is applied to a freeze-drying process (lyophilization) aiming for high-

quality products with minimum processing time. Results obtained suggest that

the novel GMD-PEM algorithm has the potential to outperform conventional

robustification concepts regarding credibility and efficiency.
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1. Introduction

The global competition in the (bio)chemical and pharmaceutical industries

necessitates efficient and reliable manufacturing processes. Mathematical mod-

els, which mimic manufacturing processes, provide options for predicting and for

optimizing the efficiency and effectiveness of the process performance with the5

desired reliability levels and low investment costs (Liu & Xu, 2017; Edgar et al.,

2001; Biegler, 2010). Mathematical models for (bio)chemical and pharmaceuti-

cal processes typically consist of conservation equations and model parameters

that describe the respective physiochemical phenomena (Luyben, 1989; Roffel

& Betlem, 2007; Benyahia et al., 2012). However, due to model simplifications10

and measurement imperfections, the estimated model parameters are imprecise

(Emery & Nenarokomov, 1998; Schenkendorf et al., 2018). Uncertain model

parameters, in turn, lead to variations in model simulations that might result

in performance losses and high-risk process operations (Grossmann & Sargent,

1978; Sahinidis, 2004; Telen et al., 2015; Vallerio et al., 2015). In the literature,15

the design of (bio)chemical processes considering model parameter uncertainties

is known as robust process design.

1.1. Review of probability-based robust process design concepts

Robust process design intends to improve the robustness of the processes

under model uncertainties at the cost of reduced process performance (Vallerio20

et al., 2015). For instance, scenario- and possibility-based approaches might

be implemented to handle the adverse effect of parameter uncertainties making

use of worst-case scenarios and fuzzy-set theory, respectively (Beyer & Send-

hoff, 2007). Alternatively, probability-based approaches have been implemented

extensively in various studies to solve robust optimization problems(Vallerio25
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et al., 2016; Shi et al., 2016; Sahinidis, 2004). These approaches provide an ex-

plicit description of uncertainties in terms of probability distributions, and thus,

probability-based approaches ensure less conservative solutions compared with

scenario- and possibility-based concepts (Sahinidis, 2004; Beyer & Sendhoff,

2007; Mesbah et al., 2014). However, probability-based approaches suffer from30

high computational costs of the propagation and quantification of uncertainties

(Smith, 2013; Telen et al., 2015; Vallerio et al., 2016). A general probability-

based robust optimization strategy, in which the point estimate method (PEM)

was implemented and adapted further to correlated parameter distributions, are

introduced and explained in our previous work (Schenkendorf, 2014a; Xie et al.,35

2018). The implemented PEM aims to avoid a vast amount of non-deterministic

samples and associated simulation runs by analyzing exclusively statistical mo-

ments of low order. In doing so, fewer sample points compared with Monte

Carlo simulations (MCs) and polynomial chaos expansion (PCE) have to be

evaluated in robust process design (Oladyshkin & Nowak, 2012; Nimmegeers40

et al., 2016). Moreover, the PEM is more accurate than other cubature meth-

ods as concluded by Maußner & Freund (2018). The original PEM, however, is

limited to Gaussian probability distributions (Lerner, 2002).

When utilizing experimental data for calibrating models, regression methods

that assume Gaussian likelihood functions are typically used, and the inverse of45

the Fisher information matrix (FIM) is the standard for quantifying parameter

uncertainties. This concept of uncertainty quantification, however, is accurate

only if the process model is linear regarding the model parameters, and the pa-

rameter uncertainties are Gaussian distributed (Shi et al., 2014; Schenkendorf

et al., 2018). Practically, the amount of experimental data of novel (bio)chemical50

and pharmaceutical products is always limited, and the applied process models

are highly nonlinear and complex (Sheehan & Liapis, 1998; Carullo & Vallan,

2012). Shi et al. (2014) compared estimated parameter uncertainties based on

the regression method and a Bayesian technique. It was found that the shapes of

the probability distribution of the model parameters are generally non-Gaussian55

for nonlinear models. Kalyanaraman et al. (2015) also obtained non-Gaussian
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distributions for parameter uncertainty estimated with experimental data using

the Bayesian approach. A similar conclusion is given in Joshi et al. (2006) where

the parameter uncertainties, which are approximated by the bootstrap method,

have non-Gaussian distributions. Therefore, it is necessary to consider proba-60

bility distributions with non-Gaussian distributions for robust process design in

the field of (bio)chemical engineering (Rossner, 2014; Xu & Gómez-Hernández,

2016; Oladyshkin & Nowak, 2012). Robust process design that includes param-

eter uncertainties of non-Gaussian, data-centric probability density functions is

still missing in the literature and is the focus of this work. To apply the PEM65

for these non-Gaussian uncertainties, we present an adapted sampling scheme

within a Gaussian-mixture framework for proper uncertainty quantification.

Commonly, not only the non-Gaussian shape of parameter distributions but

also parameter correlations are ignored to simplify robust process design prob-

lems (Telen et al., 2015; Maußner & Freund, 2018). This simplifying assumption,70

in turn, leads to an inevitable loss of information and might result in sub-optimal

process designs. Alternatively, in the case of the PEM, non-Gaussian distribu-

tions including parameter correlations can be incorporated via a transformation

step; i.e., sample points from the original PEM are mapped with a single trans-

formation function to mimic the correlated non-Gaussian distribution. In our75

previous work, we used the Gaussian copula and the Nataf transformation to

map the original PEM samples to non-Gaussian distributions of interest, so

that the information included in the non-Gaussian distribution, as well as the

parameter correlation, is appropriately considered Xie et al. (2018). The trans-

formation step, however, leads to extra complexity in the approximation which80

might reduce the accuracy of the PEM. Moreover, the Gaussian copula is ca-

pable only of describing a linear correlation between the parameters. In this

work, we propose to use Gaussian mixture distributions (GMD) to represent

non-Gaussian and correlated parameter uncertainties, i.e., the weighted sum of

a limited number of Gaussian distributions. The GMD concept does not add any85

extra complexity in the approximation and is available for nonlinear parameter

correlation problems.
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GMD has been extensively applied in the field of pattern recognition and

machine learning to cluster data into subgroups (Bishop, 2006). Rossner (2014)

came up with the idea of using GMD to decompose a one-dimensional Gaussian90

distribution into several component distributions to approximate the uncertain-

ties in the model output more accurately even if the resulting model uncer-

tainties are non-Gaussian. Technically, a least square estimation approach with

additional constraints on the width of the Gaussian mixture components was

used to determine the weight factors of the GMD. In this work, we also use95

GMD for proper uncertainty quantification but follow a different philosophy.

First, we decompose the multivariate distribution directly instead of doing that

individually for each marginal distribution which leads to lower computational

costs. Second, we implement the expectation-maximization (EM) algorithm to

cluster the data and to estimate the weight factors of the GMD. Note that100

for the traditional least square estimation as suggested in Rossner (2014), the

optimal weight factors are difficult to obtain, especially for high-dimensional pa-

rameter problems (Ng et al., 2012). With this novel GMD-PEM algorithm for

robust process design, we can capture the shapes of the non-Gaussian parameter

distributions and the respective model output distributions realistically.105

1.2. Background of the case study: freeze-drying process

The novel GMD-PEM algorithm in robust process design is motivated and

applied to the freeze-drying process. The freeze-drying process, also named

lyophilization, plays an essential role in (bio)pharmaceutical manufacturing to

stabilize active pharmaceutical ingredients (APIs) which are unstable and have110

limited storage time in aqueous solutions, e.g., therapeutic protein formulations

and vaccines (Amorij et al., 2007; Kasper et al., 2013). To minimize degradation

effects and to ensure cake integrity, freeze-drying, which is a high-cost, time-

consuming batch-wise process, requires careful formulation and process design.

Here, primary drying where water is removed from the frozen product is the115

most time-consuming and failure-prone step (Fissore et al., 2010). As APIs

used for freezing-drying are highly valuable products, the model-based design of
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the primary drying step may help to ensure high quality at a competitive cost. A

mathematical model for primary drying was investigated in Fissore et al. (2010,

2011) to mimic the mass and energy transfers during the freeze-drying process.120

Mortier et al. (2016) adapted the model for first steps in model-based process

design. A grid-based approach was implemented to increase the efficiency of the

primary drying step while guaranteeing critical quality attributes (CQA) of the

dried product ICH (2009). Moreover, Monte Carlo simulations were also used to

quantify the effect of parameter uncertainties which might result from measure-125

ment noise and model simplifications. However, optimization with the Monte

Carlo simulations at individual time points might lead to a suboptimal solution

and is computationally expansive by definition, especially in combination with

Monte Carlo simulations for uncertainty quantification.

1.3. Scope of the present work130

In this work, we aim to optimize the freeze-drying process under uncer-

tain model parameters. Here, uncertainties with non-Gaussian distributions

are assumed for two critical process parameters: the mass transfer resistance

coefficient of the product and the heat transfer coefficient of the vial and the

product (Tang & Pikal, 2004; Mortier et al., 2016). The non-Gaussian dis-135

tributed parameters are taken into account in the freeze-drying simulation, and

the resulting uncertainties in the sublimation mass and the temperature at the

sublimation interface are quantified. For instance, the uncertain model param-

eters and the resulting variations in the sublimation mass are depicted in Fig.

1. The novel GMD-PEM algorithm is implemented to efficiently describe and140

quantify the non-Gaussian uncertainties in the model parameters and outputs,

and these uncertainties are integrated into the robust process design to ensure

product quality standards and process efficiency simultaneously. Moreover, we

demonstrate the superiority of the novel GMD-PEM algorithm by comparing

the derived robust process design results with the original PEM and the PEM145

with the nonlinear transformation step.

The remainder of the paper is organized as follows. The mathematical back-
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Uncertain model parameters Uncertain process performanceFreeze-drying
process

B
C

model

A

Figure 1: Illustration of uncertain model parameters in the freeze-drying process: Two cor-

related model parameters with a non-Gaussian distribution, see the scatter plot (A), of the

freeze-drying process (B) lead to uncertain non-Gaussian simulation results, e.g., sublimation

mass distributions (C).

ground of the methods and the structure of the robust process design problem

are introduced in Section 2. The first-principle model of the freeze-drying pro-

cess, as well as the assumed parameter uncertainties, is presented in Section150

3. Results and discussion about the performance of the proposed GMD-PEM

algorithm for robust process design are provided in Section 4. In Section 5, the

conclusions are given.

2. Methodology

In this section, we describe the basics and the mathematical formulations155

of the GMD-PEM algorithm for robust process design. First, we start with a

brief review of the PEM, the single Gaussian approach, and the transformed

arbitrary distribution approach. Second, we introduce the EM algorithm to

calibrate the GMD-PEM algorithm, i.e., to iteratively determine the maximum

likelihood of the parameters even when the actual structure of the Gaussian160

mixture distribution is unknown.

Robust process design requires statistical information regarding the quanti-

ties of interests, e.g., yield, conversion and costs, to ensure meaningful designs

based on simulation studies. To this end, the parameter uncertainties that are

propagated through the model have to be transferred to the simulation results,165
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and the resulting statistics are then quantified. Two options are available to cal-

culate the needed statistical information. One option is to estimate the prob-

ability distribution directly with Monte Carlo simulations and kernel density

estimators (Mooney, 1997), which requires a vast number of samples to cover

the relevant parameter space (Botev et al., 2010). The second option is to cal-170

culate statistical moments instead, e.g., mean, variance, skewness, and kurtosis,

and to parameterize the probability distributions with these statistical moments

(Zhao & Ono, 2001). As the statistical moments can be approximated with the

PEM (Lerner, 2002; Schenkendorf, 2014a; Xie et al., 2018), the computational

cost is typically lower compared to the direct approximation of the resulting175

probability density functions. However, for the same model, the accuracy of

the approximated statistical moments decreases with the increase of the order

of the statistical moment. Moreover, recovering the complete information of a

non-Gaussian probability distribution with low-order statistical moments intro-

duces additional approximation errors, which is further illustrated subsequently180

in the case study. The basics of the PEM are summarized in what follows.

2.1. Point estimate method (PEM)

Assuming an nξ-dimensional random parameter vector ξ ∈ Iξ ⊂ Rnξ , the

corresponding multivariate normal distribution with the joint density function

p(ξ) reads as:

p(ξ) =
1√

(2π)nξ |Σ|
exp

(
−1

2
(ξ − µξ)TΣ−1(ξ − µξ)

)
, (1)

where µξ and Σ are the vector of the mean values and the covariance matrix,

respectively. Moreover, we assume a nonlinear function f(ξ) : R(nξ) → Rnx

which represents the mathematical process model. The process model maps the

model parameters to the model outputs; i.e., x = f(ξ). The n-th statistical

moment of x is given as:

µn =

∫
Iξ

xp(ξ)dξ n = 1, (2)

µn =

∫
Iξ

(x− µ1)np(ξ)dξ n ≥ 2. (3)
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The PEM can be used to approximate the integral terms in Eqs. (2) and (3) with

the weighted sum of the model simulations which are evaluated at deterministic

parameter sample points (Schenkendorf, 2014a):

µ1 ≈ w0f(GF [0]) + w1

∑
f(GF [±ϑ]) + w2

∑
f(GF [±ϑ,±ϑ]), (4)

µn ≈ w0(f(GF [0])− µ1)n + w1

∑
(f(GF [±ϑ])− µ1)n+

w2

∑
(f(GF [±ϑ,±ϑ])− µ1)n,

(5)

where ϑ =
√

3, w0 = 1 +
n2
ξ−7nξ
18 , w1 =

4−nξ
18 , w2 = 1

36 . The generator function

GF (·) is used to create deterministic sample points used in Eq. (4) and (5)

(Lerner, 2002). For instance, with GF [±ϑ] two sample points are generated185

starting with the first element of the original parameter vector that is assigned

a new value with +ϑ and −ϑ, respectively. The remaining elements of the

parameter vector are processed similarly according to this permutation scheme.

Please note, that for GF [±ϑ,±ϑ] two elements of the parameter vector are

permuted at the same time. So the number of sample points generated with190

GF (·) depends on the number of possible permutations. Theoretically, the total

number of sample points from GF [0], GF [±ϑ], GF [±ϑ,±ϑ] is 2n2ξ + 1; i.e., the

problem scales quadratically with the number of uncertain model parameters

(Lerner, 2002).

As pointed out by Lerner (2002), the PEM can calculate integral terms of195

monomials only up to order of 5 accurately. In other words, the complexity

of function f(ξ), as well as the order of the calculated statistical moments,

determines the accuracy of Eqs. (4) and (5) when the original PEM is used.

According to the discussion in Schenkendorf (2014b) and Maußner & Freund

(2018), satisfactory estimations of the first- and second-order moments can be200

found for many engineering problems, while higher-order moments with n > 2

might be beyond the capability of the PEM. Note that the approximation with

the above given GF (·) configuration is available only if ξ follows a standard mul-

tivariate normal distribution; i.e., µξ = 0 and Σ = I (Lerner, 2002; Xie et al.,

2018). Thus, for non-Gaussian parameter uncertainties, alternative concepts205
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have to be applied.

2.2. Non-Gaussian parameter uncertainties

2.2.1. Methods from literature and previous work

As mentioned in Rossner (2014), the distribution of parameter uncertainties

estimated with experimental data from various resources might have arbitrary

shapes; i.e., the parameter uncertainties cannot be described properly by Gaus-

sian density functions. Thus, Eqs. (4) and (5) are ill-posed and have to be

refined. To employ the PEM for non-Gaussian parameter distributions, the de-

terministic sample points have to be modified as illustrated in Fig. 2. Here, we

assume θ ∈ Iθ ⊂ Rnθ is the vector of the parameters with non-Gaussian uncer-

tainties, and we want to estimate the mean and variance of f(θ) which could be

the cost function for the process design or a constraint function as explained in

the following section. The first idea, which is what we call the single Gaussian

approach in the left column, is to approximate the arbitrary distribution with

a multivariate normal distribution of which the mean E(θ) and variance Σ(θ)

according to:

E(θ) =
1

N

N∑
i=1

θi, (6)

Σ(θ) =
1

N

N∑
i=1

(θi − E(θ))(θi − E(θ))T . (7)

Note that the off-diagonal elements Σ(θ) are typically neglected and set to zero;

i.e., the parameter uncertainties are considered a multivariate Gaussian distri-

bution without parameter correlations. The original PEM samples generated

by function GF [·] are mapped onto the the multivariate normal distribution

described by E(θ) and Σ(θ) with the linear transformation given below:

θPEMi = AξPEMi + E(θ), i = 1, . . . , 2n2θ + 1, (8)

where A is the lower triangle matrix from the Cholesky decomposition of Σ(θ).

According to the proposition in Xie et al. (2018), the mean and variance of f(θ)

10



  

Single Gaussian distribution Gaussian mixture distributionSingle arbitrary distribution

nS = (2nΘ
2  + 1)ncnS = (2nΘ

2  + 1)nS = (2nΘ
2  + 1)

Original distribution

Nonlinear-transfer approach Gaussian mixture distributionSingle Gaussian approach

Generate sample points for the point estimate method (PEM)

Calculation of 
mean and variance

Estimation 
maximization

Nataf transformation
(Gaussian copula)

Single Gaussian distribution Gaussian mixture distributionSingle arbitrary distribution

Linear transformation Linear transformation

Figure 2: A schematic diagram for the single Gaussian approach, the nonlinear-transfer ap-

proach (previous work), and the Gaussian mixture distribution (GMD, present work) with an

example of a one-dimensional probability distribution. nS and nθ are the number of sample

points for the PEM and the number of parameters. nc is the number of component mixtures

for the GMD.
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can be derived with the transformed samples based on Eqs. (4) and (5):

µ1(f(θ)) ≈
2n2
θ+1∑
i=1

wif(θPEMi ), (9)

µ2(f(θ)) ≈
2n2
θ+1∑
i=1

wi(f(θPEMi )− µ1(f(θ)))2. (10)

For the sake of simplicity, in the robust process design literature, it is com-

monly assumed that the parameter uncertainties follow a Gaussian distribution210

and are independent (Srinivasan et al., 2003; Telen et al., 2015; Shi et al., 2016;

Kaiser et al., 2016). However, this assumption leads to a certain loss of infor-

mation regarding parameter uncertainties and includes extra deviations in the

approximations of Eqs. (9) and (10).

The second approach is one that we used in previous work Xie et al. (2018),

the so-called nonlinear-transfer approach (NTA). It is illustrated in the middle

column of Fig. 2. Instead of using a Gaussian distribution, we directly map

the PEM samples to the actual parameter distribution. To this end, the iso-

probabilistic transformation given in Eq. (11) is frequently used:

θPEMi = F−1
θ (Fξ(ξ

PEM
i )). (11)

In Eq. (11), Fθ and Fξ are the joint cumulative density function (CDF)

for parameters θ and standard Gaussian random parameters ξ. The joint CDF

Fθ for multivariate distributions are usually complex and implicit, especially

when the distributions are non-Gaussian and correlated. Moreover, it is also

challenging to map directly from one parameter space to the other with Eq.

(11) due to the complexity of Fθ. Therefore, Fθ is approximated using Gaussian

copulas with marginal CDFs Fnθ for individual parameters and the correlation

matrix Σρ, as shown in Eq. (12) (Nelsen, 2007):

Fθ = FN [F−1(F1), · · · , F−1(Fnθ ); Σρ]. (12)

Here, F−1 denotes the inverse CDF of the standard normal distribution, FN de-215

notes the joint CDF of multivariate normal distributions, and Fi, i = 1, . . . , nθ
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are the marginal CDFs of parameters θi. In this study, the inverse Nataf trans-

formation, which is an alternative numerical algorithm based on Eqs. (11) and

(12), is used to transform the PEM samples of a standard multivariate Gaus-

sian distribution to the samples of the target distribution of θ (Noh et al., 2009;220

Lebrun & Dutfoy, 2009). With the modified samples, Eqs. (9) and (10) can be

used to calculate the mean and the variance of the model outputs.

This method retains almost all of the parameter distribution information in

the modified PEM sample points. However, the iso-probabilistic transformation

might be highly nonlinear and adds extra complexity in the simulation results225

f(θ) = f(F−1
θ (Fξ(ξ))). Note that the Gaussian copula is correct only when the

parameters are linearly correlated. These two simplifying assumptions might

result in sub-optimal robust process designs.

2.2.2. Gaussian mixture distributions (GMD)

GMD are an essential part of the proposed algorithm for robust process230

design. Unlike the two previous approaches where we either simplify a non-

Gaussian distribution into an independent Gaussian distribution or transform

the original PEM samples to a non-Gaussian distribution with nonlinear trans-

formation functions, the GMD concept represents a non-Gaussian distribution

with the superposition of a limited number of Gaussian distributions. The PEM235

samples are mapped to these Gaussian distributions with a linear transformation

step, as illustrated in the right column in Fig. 2.

The GMD is structured as

θ ∼
NC∑
j=1

ωjN (µ1j ,Σj), (13)

where N (µ1j ,Σj) means the Gaussian distribution with mean µ1j and covari-

ance matrix Σj for the jth component. Here, ωj is the non-negative weight

for jth component with
∑NC
j=1 ωj = 1. NC is the total number of Gaussian

distributions. The probability density function (PDF) of θ is equal to:

p(θ) =

NC∑
j=1

ωjpj(θ), (14)

13



  

where pj(θ) is the PDF of a Gaussian distribution given as

pj(θ) =
1√

(2π)nθ |Σj |
exp(−1

2
(θ − µ1j)

TΣj
−1(θ − µ1j)). (15)

Note that the sum of random variables and the weighted sum of the Gaussian

distributions are different concepts, i.e., the sum of the random variables results

in a Gaussian distribution, whereas the weighted sum of the Gaussian distribu-

tions can represent non-Gaussian distributions needed for robust process design.

With the approximation in Eq. (13), the original PEM samples are mapped in-

dividually to the component distributions with the linear transformation given

in Eq. (8). Here, NC × (2n2θ + 1) samples are obtained as:

θPEMji = Ajξ
PEM
i + µ1j , i = 1 . . . 2n2θ + 1, j = 1 . . . NC , (16)

where Aj is the lower triangle matrix from the Cholesky decomposition of the

full co-variance matrix Σj . To determine the samples with Eq. (16), we still

need information about the structure of the GMD in Eq. (13). In other words,240

the values for ωj , µ1j , Σj , and NC have to be estimated.

Let us assume y are the realizations from a non-Gaussian distribution. Gen-

erally, the unknown parameters ωj , µ1j , and Σj can be determined by maxi-

mizing the marginal likelihood function of the unknown parameters with given

realizations of y as:

θ∗p = argmax
θ
L(y; θp), (17)

L(y; θp) =

∫
L(y, z; θp)dz, (18)

where θp is the vector of unknown parameters, i.e., ωj , µ1j , and Σj , and L

is the likelihood function (Kleinbaum & Klein, 2010; Rossner, 2014). The dis-

cretized variables z indicate the membership of each realization in one of the

component distributions. Please note that z are unobserved variables and as

such latent variables. Thus, solving the maximization problem in Eq. (18) is

challenging (Bishop, 2006). Alternatively, the EM approach, which is commonly

used to maximize the marginal likelihood function of parameters in cases where

14



  

latent variables exist (Bishop, 2006), can be used to estimate the parameters

θp. Before implementing the EM approach, the likelihood function in Eq. (17)

is reformulated as shown in Eq. (19). Here, the likelihood function L(y; θp)

is written as a probability density function of realizations y conditioned on θp,

i.e., p(y|θp).

ln(p(y|θp)) =

∫
q(z) ln

(
p(y, z|θp)
q(z)

)
dz −

∫
q(z) ln

(
p(z|y; θp)

q(z)

)
dz,

= F (q, θp) +KL(q||p), (19)

where KL(·) is the non-negative Kullback-Leibler divergence measure. And

F (q, θp) is known as the evidence lower bound, which provides the lower bound

of ln(p(y|θp)). The idea of the EM approach is to maximize the lower bound

F (q, θp) instead of maximizing the likelihood p(y|θp).245

The EM approach includes two steps. For instance, assuming the kth itera-

tion:

• The expectation step: The parameter values from the last iteration are

taken and assumed as constant in this step. And p(y|θp,k−1) is also con-

stant in this step. Therefore, F (q, θp,k−1) could be maximized by minimiz-

ing KL(q||p). The minimum value of KL(q||p) is achieved if KL(q||p) = 0,

i.e.,

q(z)k = p(z|y; θp,k−1). (20)

Moreover, the posterior distribution p(z|y; θp,k−1) can be analytically ex-

pressed with the Bayesian inference. Alternatively, the variational infer-

ence method with mean field approximation could also be implemented in250

the expectation step to approximate q(z)k, if the derivation of the analyt-

ical expression of the posterior distribution is intractable.

• The maximization step: The obtained distribution of the latent variables

q(z)k from the expectation step is taken and fixed in this step. And

F (q(z)k, θp) is maximized with manipulating the value of θp, which is
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equivalent to the maximization problem:

θp,k = argmax
θp

∫
q(z)k ln(p(y, z; θp))dz. (21)

The integral term of the latent variables z in the objective function still ex-

ists. However, the natural logarithm function inside the integral function

reduces its complexity and enables analytical solutions for the parameters255

θ (Bishop, 2006). Moreover, the additional distribution of q(z)k from the

estimation step provides higher weight on the most likely latent variable

sequence, which also alleviates the complexity of the optimization prob-

lem.

According to the EM approach with KL(·) as a non-negative measure, the

relation between the likelihood functions from the k− 1 and k iterations can be

obtained. So a steady increment of the likelihood functions p(y|θp) is observed

and guaranteed in the EM approach.

ln(p(y|θp,k)) ≥ F (qk, θp,k) ≥ F (qk, θk−1) = ln(p(y|θp,k−1)) (22)

The expectation and maximization steps are iterated until the terminal con-

dition is fulfilled. For more details regarding the derivation, the proof, and the

mathematical equations of the EM approach, the interested reader is referred

to Bishop (2006) and Moon (1996). Moreover, to identify a meaningful number

of Gaussian distributions NC to build the GMD, the Bayesian information cri-

terion (BIC), given in Eq. (23), is applied to determine the optimum number

of component distributions (Bernardo et al., 2003; Gupta et al., 2010).

BIC = ln(ny)nθp − 2 lnL(y; θp), (23)

where ny means the number of realizations, nθp indicates the number of pa-260

rameters, which is proportional to the number of component distributions. The

configuration with the lowest BIC value is selected as the GMD of the origi-

nal distribution. Here, the number of parameters are included in the objective

function to avoid overfitting
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Unlike the single Gaussian distribution and the nonlinear-transfer approach,

the mean and the variance of f(θ) are derived with the weighted sum of the mean

and the variance of f(θ) on the component distributions and are formulated as

(Fisher, 1959; Bulmer, 1979):

µ1(f(θ)) ≈
NC∑
j=1

ωjµ1j(f(θ)), (24)

µ2(f(θ)) ≈

NC∑
j=1

ωj(µ2j(f(θ)) + µ1j(f(θ))2)

− µ1(f(θ))2, (25)

where the mean and the variance of f(θ) of the component distributions are

calculated as:

µ1j(f(θ)) ≈
2n2
θ+1∑
i=1

wif(θPEMji ), (26)

µ2j(f(θ)) ≈
2n2
θ+1∑
i=1

wi(f(θPEMji )− µ1j(f(θ)))2. (27)

In summary, the proposed GMD-PEM approach retains most of the informa-265

tion of a non-Gaussian parameter distribution and does not introduce additional

nonlinearities to the transformation step in Eq. (16) or in Eqs. (24) to (27).

Note that the computational cost increases proportionally to the number of

component distributions, and thus, we apply the BIC to ensure that only a low

number of component distributions are used.270

In the next section, we present the structure of a robust process design,

especially the formulation of the objective function and constraints.
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2.3. Robust process design with non-Gaussian uncertainties

The general structure of the probability-based robust process design reads

as:

min
x(·),u(·)

Φ(M(xtf )) (28a)

subject to:

ẋd(t) = gd(x(t),u(t),p), (28b)

0 = ga(x(t),u(t),p), (28c)

xd(0) = x0, (28d)

Pr[hnq(x(t),u(t),p) ≥ 0] ≤ εnq, (28e)

umin ≤ u ≤ umax, (28f)

where t ∈ [0, tf ] is the time, u ∈ Rnu is the vector of the control variables, and

p ∈ Rnp is the vector of the time-invariant parameters. xd ∈ Rnxd and xa ∈275

Rnxa are the differential and algebra states; i.e., x = [xd,xa] ∈ Rnx . The initial

conditions for the differential states are given by x0, as uncertainties can exist in

parameters and the initial conditions; i.e., θ = [p; x0]. Φ(M(xtf )) denotes the

robust formulation of the Mayer objective term M(xtf ) that is used for nominal

optimal control problems. Eqs. (28b) and (28c) are the model equations with280

gd : R(nxd+nxa )×nu×np → Rnxd and ga : R(nxd+nxa )×nu×np → Rnxa . The

left side of Eq. (28e) is the probability of violating the inequality constraints

hnq : R(nxd+nxa )×nu×np → Rnnq . εnq is the tolerance factor that gives the

maximum acceptable probability for constraint violations. [umin,umax] are the

upper and lower boundaries for the control variables.285
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min
x(·),u(·)

µ1(M(xtf )) + αµ2(M(xtf ))0.5, (29a)

subject to:

i = 1, . . . , 2n2θ + 1 j = 1, . . . , NC , (29b)

θji = [pji,x0,ji]
T ,xji = [xd,ji,xa,ji]

T ,xd,ji(0) = x0,ji,xtf ,ji = xji(tf ), (29c)

ẋd,ji(t) = gd(xji(t),u(t),pji), 0 = ga(xji(t),u(t),pji), (29d)

hji = −hnq(xji(t),u(t),pji) (29e)

NC∑
j=1

ωjF

(
−
µ1j(h)

µ2j(h)0.5

)
≤ εnq, (29f)

µ1(M(xtf )) =

NC∑
j=1

ωjµ1j(M(xtf )), (29g)

µ2(M(xtf )) =

NC∑
j=1

ωj(µ2j(M(xtf )) + µ1j(M(xtf ))2)

− µ1(M(xtf ))2,

(29h)

µ1j(M(xtf )),µ2j(M(xtf )),µ1j(h),µ2j(h)are calculated

with Eqs. (26) and (27)
(29i)

umin ≤ u ≤ umax, (29j)

The proposed GMD-PEM algorithm provides meaningful results not only for

non-Gaussian parameter uncertainties but also for non-Gaussian simulation re-

sults. The structure of the GMD-PEM algorithm for robust process design is

shown in Eq. (29). Eq. (29a) is the robust objective function, which consists of

the first and second statistical moment according to Eqs.(29g) and (29h). The290

weight factor α controls the trade-off between performance and robustness. Eqs.

(29c) and (29d) are the model parameters, initial conditions and the equations

of mathematical model. Here, i and j are the index of PEM sample points and

component distribution, respectively. The failure probability of the inequality

constraints is approximated with the weighted sum of the failure probability295

results of the individual component distributions as shown in Eq. (29f). For the

sake of completeness, the robust process optimization problem making use of
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the SGA and NTA concepts is summarized in Appendix A. Note that when the

SGA or NTA is implemented, the approximation is accurate only if the probabil-

ity distribution of the constraints is Gaussian. Thus, the SGA- and NTA-based300

approaches might lose essential information about the model output uncertain-

ties in the case of non-Gaussian distributions, which might be the result of

non-Gaussian model parameter uncertainties or due to model nonlinearities.

The performance of the GMD-PEM algorithm and its accuracy are compared

with reference simulations in the next section.305

3. Case study: the freeze-drying process

To demonstrate the performance of the GMD-PEM algorithm, we introduce

the freeze-drying model first. Here, the model parameters are assumed to be

uncertain and are assigned non-Gaussian distributions.

3.1. Primary drying of the freeze-drying process310

The freeze-drying process, also known as lyophilization, has been extensively

used in pharmaceutical manufacturing to stabilize APIs which are unstable and

have limited storage time in aqueous solutions, e.g., therapeutic protein formu-

lations and vaccines (Amorij et al., 2007; Kasper et al., 2013). However, the

process suffers from high energy consumption, a long processing period, and315

critical operating limits (Fissore et al., 2011). The traditional freeze-drying

process in a batch chamber consists of three successive steps which are freezing,

primary drying, and secondary drying as illustrated in Fig. 3. The primary dry-

ing step is recognized as the most time-consuming and error-prone step (Fissore

et al., 2010). Thus, in this study, we consider the robust process design of the320

primary drying step; i.e., we take parameter uncertainties into account while at

the same time we aim to minimize the risk level of defective dried APIs.

Typically, during the primary drying step, the shelf temperature is increased,

and the chamber pressure is decreased to a certain level so that sublimation of

the water in the vials is initiated and continued at the sublimation surface,325
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Condenser 
chamber

Vacuum pump

Pc

Frozen product

Sublimation 
interface

Heating shelf

A

B

Dried product

Vial

Ts

Figure 3: Schematic diagram of a lyophilizer where the temperature of the heating shelf (Ts)

and the pressure of the chamber (Pc) are optimized to achieve maximum performance. On

the left side is the enlarged view of the vial with the frozen and dried API. The light blue

and red arrows indicate the flow of the vapor. A and B are the locations where a choked flow

might exist.

which moves downward during the drying step. The water vapor is transferred

from each vial to the condenser chamber and is discharged via the vacuum pump

to keep the pressure in the chamber at a specific level. As the mass and energy

transfer the occur in the vials is identical, the model of the primary drying step

is based on a single vial as shown in Fig. 3. In this work, the mathematical330

model adapted from Mortier et al. (2016) is implemented for robust process

design.

The mass transfer equation (Fissore et al., 2011), which describes the dy-

namics of the sublimation process at the sublimation surface, is given as:

dmsub

dt
= Ap

Pi − Pc
Rp

, (30)

where Ap is the cross-sectional area of the product, Pc is the chamber pressure,

and Rp is the dried product resistance to the vapor flux. Pi is the vapor pressure

at the sublimation interface which can be calculated according to the equation

in Murphy & Koop (2005):

Pi = exp(9.55− 5720

Ti
+ 3.53ln(Ti)− 0.00728Ti). (31)

Ti is the temperature at the sublimation interface and is calculated with the
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energy balance equation given in Fissore et al. (2011). Here, the heat used for

sublimation is assumed to be equal to the heat transferred from the heating

shelf:

Kv(Ts − TB)Av = ∆Hs
dmsub

dt
, (32)

where Kv, Av, and Ts denote the heat transfer coefficient, the outer cross-

sectional area of the vial, and the shelf temperature, respectively. ∆Hs is the

heat of sublimation as given in Murphy & Koop (2005) and reads as:

∆Hs = 4.68× 104 + 35.9Ti − 0.0741T 2
i + 542exp(−(

Ti
124

)2). (33)

TB is the temperature at the bottom of vial and is equal to

TB = Ti + ∆T, (34)

where ∆T is the temperature difference across the frozen layer and is calculated

with the following equation given by Mortier et al. (2016):

∆T =
889200

(Lf (Pi−Pc))
Rp

− 0.0102Lf (Ts − Ti)
1− 0.0102Lf

. (35)

Here, Lf is the height of the frozen layer and has the following relation with

msub:

msub = (Ltotal − Lf )ρIεAp, (36)

where Ltotal, ρI , and ε are the total height of the product layer, the density of the

ice, and the volume of the ice fraction, respectively. The model parameters and

the size of the vials, are taken from Mortier et al. (2016). Note that the value335

of Rp and Kv in Table 1 are the averages of their values at different conditions.

More details regarding the determination, the structure, and coefficients Rp and

Kv can be found in Pisano et al. (2013) and Mortier et al. (2016).

The mathematical model is used in this case study to maximize the efficiency

of the primary drying step under parameter uncertainties in Rp and Kv while

ensuring the product quality at the same time. Thus, the objective function

is to maximize the total mass of the ice removed by sublimation and to min-

imize the operating time. To avoid irreversible product damage and have an
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Table 1: Nominal values of the model parameters and the initial conditions for the primary

drying model.

Parameters Unit Nominal Value

Ap m2 3.80× 10−4

Av m2 4.15× 10−4

Av,n m2 1.25× 10−4

Rp m/s 5.57× 104

Kv J/(m2sK) 11.47

Ltotal m 0.00658

ρI kg/m3 919

ε − 0.97

M kg/mol 0.018

k − 1.33

R J/(Kmol) 8.314

Tg
◦C -34

acceptable API cake appearance, the production temperature at the sublimation

interface should be carefully maintained below the critical collapse temperature

Tc, which in this case is assumed to be equal to the glass transition tempera-

ture Tg (Mortier et al., 2016). Additionally, an upper boundary is given for the

sublimation rate dmsub
dt , which is due to the choke flow phenomenon at the vial

neck as explained in Searles (2004). The sublimation rate is calculated using

the following equation as in Mortier et al. (2016):

ṁsub,choke,vial =
0.3Av,n

√
kTrR
M M

RTr
Pc, (37)

where Av,n is the cross area at the vial neck. Chamber pressure Pc and shelf

temperature Ts are manipulated within the range from [5 Pa 30 Pa] and [-40340

◦C 30 ◦C], respectively. Note that the lower boundary of Pc is normally not set

below 5 bar, as a very low chamber pressure may have problems with product

contamination and heterogeneous heat transfer (Tang & Pikal, 2004). The un-
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certainty of the two parameters is assumed to follow a non-Gaussian distribution

and is characterized by the samples in the scatter plot in Fig. 4. Please note345

that the assumption of the parameter uncertainties is based on values provided

in Mortier et al. (2016) and the reference therein. To demonstrate the perfor-

mance of SGA, NTA, and GMD-PEM, artificial samples are created based on

the assumed non-Gaussian distribution. The result structure of the nominal

optimization of the primary drying process is given in Appendix B. Moreover,350

the structure of the robust optimization of it can be straightforwardly derived

with Eq. 29 and the equations in Appendix A.
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Figure 4: Scatter plot of the sample points for two uncertain parameters Rp and Kv .

The case study is coded in MATLAB R©. The robust process design was

solved with the simultaneous approach (Biegler, 2007) which was implemented

in the symbolic framework CasADi for numerical optimization (Andersson et al.,355

2012) using the NLP solver IPOPT (Wächter & Biegler, 2006) and the MA57

linear solver (Duff, 2004). The EM algorithm is initialized by k-means (Krishna

& Murty, 1999).

4. Results and discussion

This section discusses the robust process design results of the primary freeze-360

drying step. First, the results for the nominal process design are given. Next,
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the adverse effect of the parameter uncertainties on the nominal process design

is presented. Alternatively, the usefulness of the robust process design using the

GMD-PEM algorithm is introduced. To this end, the accuracy of the approx-

imated statistical moments and distributions are analyzed, and the results of365

the robust process design for the freeze-drying step are compared and discussed

with state-of-the-art methods in the field of robust process design.

4.1. Results for the nominal process design
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Figure 5: Control profile of chamber pressure Pc and shelf temperature Ts (a), and evolution

profile of the mass of the ice removed by sublimation and the temperature at the sublimation

interface (b) from the nominal design.

First, we want to optimize the efficiency of the primary drying process in the

absence of parameter uncertainties. As we described in the last section, shelf370

temperature Ts and chamber pressure Pc are designed to achieve the maximum

amount of ice removed by sublimation within the shortest drying time, while the

appearance of the dried product is guaranteed by limiting temperature Ti at the

sublimation interface below critical temperature Tc. The designed temperature

and pressure profiles are shown in Fig. 5. As in Fig. 5a, Ts is kept at its upper375

boundary, i.e., 30 ◦C, to provide more energy for the sublimation. In Fig. 5b,

Ti is also kept at its upper boundary to ensure higher vapor pressure Pi at the

sublimation interface to accelerate the sublimation process according to Eqs. 30
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and 31. In the beginning, Pc is set to 9.6 bar to achieve a higher sublimation

speed and is decreased gradually to compensate the influence of the decreasing380

height of the frozen layer in accordance with Eq. 35. Note that the complete

expressions of Rp and Kv from Mortier et al. (2016) are used for the nominal

process design. Note that Mortier et al. (2016) also attempted to optimize the

primary drying in the freeze-drying process with a grid-based approach. In

contrast to our results, the grid-based design compensates for the influence of385

the decreasing height of the frozen layer by decreasing the shelf temperature,

which leads to a certain loss in the sublimation speed. Consequently, we need

less than 6 h rather than the almost 7 h in Mortier et al. (2016) to complete

the primary drying process as indicated by the curve of msub in Fig. 5b. Note

that the transition phase at the beginning, i.e., heating the shelf and vacuuming390

the chamber to the design value, is neglected in this work because the period is

quite short compared to the entire primary drying step. In addition, the choked

flow limit at the vial neck calculated with Eq. 37 is not activated because the

sublimation speed is far below the limit, which is also shown in the following

subsection.395

4.2. Effect of parameter uncertainties on the nominal process design

The optimal process design for the nominal case above is based on the as-

sumption that the model parameters are accurate. However, due to measure-

ment imperfections and model simplifications, model parameters derived from

noisy measurement data are imprecise and might be described best via arbi-400

trarily distributed random variables (Rossner, 2014). In this particular case,

we assume the two parameters Rp and Kv are uncertain as indicated in the

scatter plot in Fig. 4. Next, we analyze the adverse effect of these parameter

uncertainties on the performance of the primary drying process obtained by

ignoring these parameter uncertainties. The results are illustrated in Fig. 6.405

As can be observed, the curves for the evolution of msub and Ti in Figs. 6a

and 6c deviate from the nominal values and vary in certain ranges expressed

with the confidence intervals (CIs) (Fisher, 1959). The primary drying process
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Figure 6: Evolution of the mean and 99% confidence interval (CI) of the mass of the ice

removed by sublimation msub (a) and the temperature at sublimation interface Ti (c). (b)

and (d) are the plots of the probability density function (PDF) of msub and Ti at t = 5 h,

respectively.
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with smaller (higher) values for Rp and Kv has a lower (higher) Ti. In contrast,

with smaller Rp and larger Kv values, the efficiency of the process is higher410

than what we expected regarding the nominal process design. As Ti exceeds the

critical temperature Tc = −34◦C, this leads to an undesired collapse of the API

cake. In Fig. 6d, there is a high risk that the API product will be wasted as

almost half of the probability distribution is on the right side of the red line, i.e.,

above the critical temperature. Therefore, it is necessary to consider parameter415

uncertainties in the design of the primary drying process as part of the robust

process design.

4.3. Deterministic samples
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Figure 7: Illustration of the original samples and the deterministic samples derived from the

three approaches. The green and red points in (a) are the deterministic samples from the single

Gaussian approach (SGA) and the nonlinear-transfer approach (NTA), respectively. The

purple and blue points in (b) are the deterministic samples for two component distributions

of the Gaussian mixture distribution (GMD).

As discussed in Section 2, the GMD-PEM algorithm can be used to propa-

gate and to quantify uncertainties in the field of robust process design efficiently.420

The resulting samples are plotted in Fig. 7 in comparison with sample points

derived with the SGA and the NTA. The green sample points in Fig. 7a are

derived with the SGA. They are symmetrically distributed in the parameter
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space as only the mean and the variance of the individual parameters are used;

see Section 2.1. The red sample points in Fig. 7a are derived with the NTA.425

The NTA sample points are asymmetrically located in the parameter space due

to the nonlinear transformation step addressing the correlation and the non-

Gaussian shape of the parameter distributions. The EM algorithm and the BIC

as given in Section 2.1 are used to determine the number and the coefficients

of the Gaussian component distributions. In Fig. 7b, two component distribu-430

tions are illustrated which have the best match with the parameter uncertain-

ties. The corresponding deterministic samples are highlighted individually in

Fig. 7b with purple and blue sample points, respectively. Although the number

of GMD-PEM samples is twice as many as those for SGA or NTA, they can

represent the shape of the original parameter uncertainties more accurately with435

lower computational cost compared to Monte Carlo simulations.

4.4. Approximation accuracy

In this section, we analyze the accuracy of the novel GMD-PEM algorithm

regarding the approximated mean and the variance of the freeze-drying process

relevant state variables, i.e., msub and Ti. The results are summarized in Fig.440

8. Here, the approximated mean and variance values are compared with the

references from the Monte Carlo simulations. As shown in Figs. 8a and 8b,

the mean of msub can be estimated accurately with the SGA, NTA, and GMD-

PEM algorithm, while the variances are estimated more accurately with the

NTA and the GMD-PEM algorithm. Note that the approximated variances445

derived with the NTA deviate slightly from the reference, but the deviation is

considerably smaller compared to the estimation based on the SGA; see Fig. 8b.

The same analysis for Ti is illustrated in Figs. 8c and 8d. The estimated means

and variances from the GMD-PEM algorithm are in good accordance with the

references. The estimated mean based on the SGA or NTA is slightly lower than450

the references. However, the estimated variance deviates considerably from

the reference, especially the variance approximated by the SGA. The GMD-

PEM algorithm, in turn, not only provides a more accurate estimate of the
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Figure 8: Comparison of the mean and the variance of the mass of the ice removed by sub-

limation msub and the temperature at sublimation interface Ti, which are estimated with

the single Gaussian approach (SGA), the nonlinear-transfer approach (NTA), and the Gaus-

sian mixture distribution (GMD). Values from Monte Carlo simulations (MCs) are used as

references.
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Figure 9: Comparison of the original probability density function of the temperature at subli-

mation interface Ti at a single time point with the ones approximated by the single Gaussian

approach (SGA), the nonlinear-transfer approach (NTA), and the Gaussian mixture distribu-

tion (GMD).

mean and the variance but also represents the non-Gaussian shape of the model

output distributions which is essential for approximating the robust inequality455

constraints given in Eq. (29f). For instance, the non-Gaussian distribution can

be observed from the temperature at the sublimation interface Ti given in Fig.

9.

4.5. Robust process design results

The robust process design with the structure given in Eqs. A.1 and 29 is460

implemented with the different samples in Fig. 7 to design the primary drying

process. The tolerance factor εnq is set to 1%, so that the risk of failure in the

API cake appearance is lower than 1%. The designed profiles for the control

variables Pc and Ts are compared in Fig. 10. As we can see, the optimal shelf

temperature is lower than the upper boundary to force Ti to be lower than the465

critical collapse temperature with 99% probability. In parallel, the chamber

pressure decreases to its lower boundary 5 bar to accelerate the sublimation.

While the chamber pressure is fixed, Ts is gradually decreased to compensate

for the influence of decreasing height of the frozen layer. As discussed in Section

4.4, the approximation accuracy of the SGA, NTA, and GMD-PEM is different,470

and thus, the optimized Ts is different as well. To compare the performance of
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Figure 10: Results from a robust process design with the deterministic samples from the

single Gaussian approach (SGA), the nonlinear-transfer approach (NTA), and the Gaussian

mixture distribution (GMD). (a) and (b) are the profiles for chamber pressure Pc and shelf

temperature Ts, respectively.

the results obtained from the SGA, NTA, and GMD-PEM algorithm, we sim-

ulate the primary drying process with 6000 samples that are derived from the

original parameter distributions; see Fig. 4. The mean value of msub, i.e., msub,

at the final time point and the probability of constraint violations (εv) are cal-475

culated based on the simulation results which are related to the 6000 parameter

samples. The results are listed in Table 2. The nominal design has the best

efficiency: a low freeze-drying time and high msub. However, almost 50% of

the simulations violate the temperature constraint; i.e., Ti exceeds the critical

temperature. The SGA result, in turn, has a better performance compared to480

the results from the NTA and the GMD-PEM algorithm, but the constraint

violation is 94
6000 = 1.6% which is almost twice as high as the target value

εnq = 1%. The resulting NTA setting has much fewer constraint violations,

but the efficiency is low with 6.45 h for the primary drying process. In other

words, the design is too conservative. In contrast, the derived robust design485

from the GMD-PEM algorithm has the best trade-off between process efficiency

and product quality, i.e., the API cake appearance and integrity. In Table 2,

the GMD-PEM design achieves the same msub within 6 h and results in a failure
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probability of 62
6000 = 1%. Moreover, computational costs, i.e., the number of

model evaluations for uncertainty quantification for each optimization iteration,490

are also given in Table 2. As can be seen, GMD has the highest computational

costa as a single non-Gaussian distribution is approximated with several Gaus-

sian distributions, and for each of these Gaussian distributions, PEM samples

are generated. Therefore, the proposed GMD-PEM concept for the robust pro-

cess design has better performance at the cost of higher computational expense.495

Please note that the computational cost of GMD-PEM increases proportionally

with the increasing number of component distributions. This is also the reason

why BIC is used to select the optimum number of component distributions. The

Table 2: Results from the nominal design and the robust design with the deterministic samples

from the single Gaussian approach (SGA), the nonlinear-transfer approach (NTA), and the

Gaussian mixture distribution (GMD). 6000 samples generated from the original samples

are used to validate the probability of constraint violations (εv) for the different methods.

Computational cost indicates the number of model evaluations that are needed to quantify

the uncertainties for each optimization iteration.

drying time [h] msub × 103 [kg] εv comput. cost [-]

Nominal 5.90 2.2 50% 1

SGA 5.80 2.0 1.6% 9

NTA 6.45 2.0 0.15% 9

GMD 5.98 2.0 1% 18

choked flow limit is investigated for the GMD-PEM design, and the sublimation

speed is considerably slower than the choked flow limit, as shown in Fig. 11.500

Thus, the flow rate of the vapor at the vial neck is not fast enough to reach the

speed of sound and to trigger the choked flow phenomenon (Searles, 2004).

5. Conclusions

In this paper, a novel GMD-PEM algorithm for a robust process design with

the parameter uncertainties of non-Gaussian distributions was investigated and505
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Figure 11: Comparison of the sublimation rates during the primary drying process and the

choked flow limitation.

successfully demonstrated for the primary drying process. The GMD-PEM al-

gorithm was benchmarked with two approaches commonly used in literature and

introduced in our previous work. The proposed robust process design is based

on Gaussian mixture distributions and the expectation-maximization algorithm.

Deterministic parameter samples were generated and used to approximate the510

mean and the variance of the objective function. In parallel, also under pa-

rameter uncertainties, the temperature at the sublimation interface had to be

kept reliably below -34 ◦C to ensure high-quality products. First, however, the

primary drying step was optimized while the parameter uncertainties were ig-

nored. A design with high efficiency was obtained compared to the literature515

but might result in low-quality products in practice due to the neglected pa-

rameter uncertainties. Second, the GMD-PEM algorithm was implemented and

based on the simulation results was able to calculate the most reliably robust

process design for the freeze-drying process. As demonstrated, the proposed

algorithm can approximate the non-Gaussian model parameters and the output520

distributions adequately, which is essential in fulfilling inequality constraints

under non-Gaussian parameter uncertainties. Monte Carlo simulations were

used to evaluate the final design. In comparison to standard PEM concepts, the

GMD-PEM algorithm provides the best trade-off between process efficiency and
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the acceptable limit of constraint violations of the product-relevant sublimation525

interface temperature.

Nomenclature

Methodology

µ1j mean of the j-th component distribution

Σ covariance matrix of the random parameters ξ530

Σi covariance matrix of the j-th component distribution

θ random parameters with non-Gaussian distribution

θPEMi i-th sample point for random variable θ from PEM and SGA or NTA

θPEMji i-th sample point from PEM of the random variables θ from the j-th

component distribution535

ξ random parameters with Gaussian distribution

ξPEMi i-th sample point for random variable ξ from PEM and SGA or NTA

f(·) nonlinear functions

p(θ) probability density function of the random variables θ

p(ξ) joint density function of random parameters ξ540

pj(θ) probability density function of j-th component distribution

x model state variables

y realizations from the non-Gaussian distributions

E(θ) mean value of the random parameters θ

N (µ,Σ) the Gaussian distribution with mean µ and covariance matrix Σ545

µξ mean values of the random parameters ξ
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µn n-th statistical moment of x

ωj ωj is the non-negative weight for j-th component distribution

Σ(θ) covariance matrix of the random parameters θ

Σρ correlation matrix550

θp unknown parameters of the component distributions

BIC Baysian information criterion

F CDF of univariate Gaussian distribution

F (q, θp) evidence lower bound

Fi marginal CDF of parameter θi, i = 1, . . . , nθ555

FN joint CDF of multivariate Gaussian distribution

Fθ joint CDF for the random parameter θ

Fξ joint CDF for the random parameter ξ

GF [·] generator function

hnq inequality constraint560

i index for sample point from PEM, i = 1, . . . , 2n2θ + 1

j index for component distribution, j = 1, . . . , NC

k iteration number in the EM approach

KL(·) Kullback-Leibler divergence

L(·) likelihood function565

M(·) objective function of the optimization problem

ny number of realizations y

nθp number of unknown parameters θp
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nθ dimension of the random variable θ

nξ dimension of the random parameters ξ570

NC number of the component distributions

PEM point estimate method

q(z) probability distribution of latent variables z

w0, w1, w2 weights for generator functions in PEM

z latent variables575

CDF cumulative density function

EM expectation and maximization approach

GMD Gaussiand mixture distribution

NTA nonlinear-transfer approach

SGA single Gaussian approach580

Case study

∆Hs heat of sublimation, J/kg

ṁsub,choke,vial choke flow limited sublimation rate, kg/s

ε volume of the ice fraction, −

ρI density of the ice, kg/m3
585

Ap cross-sectional area of the product, m2

Av outer cross-sectional area of the vial, m2

Av,n cross area at the vial neck, m2

Kv heat transfer coefficient, J/(m2sK)

Lf height of the frozen layer, m590
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Ltotal total height of the product layer, m

Pc chamber pressure, Pa

Pi vapor pressure at the sublimation interface, Pa

Rp dried product resistance to the vapor flux, m/s

TB temperature at the bottom of vial, K595

Ti temperature at the sublimation interface, K

Ts shelf temperature, K

msub mass of the sublimated ices, , kg

Appendix A. Robust process design with the SGA and the NTA

Here, we present the structure of the robust process design where the single

Gaussian approach and the nonlinear-transfer approach are implemented. As

mentioned, only the first two statistical moments can be estimated through the

PEM with good accuracy. Thus, only the mean and the variance of the Mayer

objective term and the inequality constraints are used to approximate their

robust formulation in Eqs. (28a) and (28e). The resulting robust optimization

structure reads as:

min
x(·),u(·)

µ1(M(xtf )) + αµ2(M(xtf ))0.5, (A.1a)

subject to:
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i = 1, . . . , 2n2θ + 1 (A.1b)

θi = [pi,x0,i]
T ,xi = [xd,i,xa,i]

T ,xd,i(0) = x0,i,xtf ,i = xi(tf ), (A.1c)

ẋd,i(t) = gd(xi(t),u(t),pi), 0 = ga(xi(t),u(t),pi), (A.1d)

hi = −hnq(xi(t),u(t),pi) (A.1e)

F

(
− µ1(h)

µ2(h)0.5

)
≤ εnq, (A.1f)

µ1(M(xtf )) =

2n2
θ+1∑
i=1

wiM(xtf,i), (A.1g)

µ2(M(xtf )) =

2n2
θ+1∑
i=1

wi(M(xtf,i)− µ1(M(xtf )))2, (A.1h)

µ1(h) =

2n2
θ+1∑
i=1

wihi, (A.1i)

µ2(h) =

2n2
θ+1∑
i=1

wi(hi − µ1(h))2, (A.1j)

umin ≤ u ≤ umax, (A.1k)

where θi are the deterministic PEM samples. Weight factor α controls the600

process performance and the robustness. Eq. (A.1f) approximates the failure

probability of the inequality constraints (Zhao & Ono, 2001).

Appendix B. Structure of nominal optimization of the primary dry-

ing process

The structure of the nominal optimization of the primary drying process is

given below. Chamber pressure Pc and shelf temperature Ts are manipulated

to minimize final drying time tf (B.1a), with which the frozen product can be

completely dried (B.1g), and satisfy the constraints for the CQA (B.1e) and the

technical limitation (B.1f):

min
Ti(·),msub(·),Ts(·),Pc(·)

tf , (B.1a)

subject to:
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Mathemical model: Eqs.(30) to (36) (B.1b)

Bounds: PLc ≤ Pc(t) ≤ PUc (B.1c)

TLs ≤ Ts(t) ≤ TUs (B.1d)

Inequality constraints: Ti(t) ≤ Tc (B.1e)

ṁsub(t) ≤ ṁsub,choke,vial (B.1f)

Equality constraints: msub(tf ) = ρIεApLtotal (B.1g)
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Xu, T., & Gómez-Hernández, J. J. (2016). Characterization of non-gaussian

conductivities and porosities with hydraulic heads, solute concentrations, and780

water temperatures. Water Resources Research, 52 , 6111–6136.

Zhao, Y.-G., & Ono, T. (2001). Moment methods for structural reliability.

Structural Safety , 23 , 47–75.

47



  

Uncertain model parameters Uncertain process performanceFreeze-drying
process

model

Gaussian mixture distribution + PEM

Robust Freeze-Drying Optimization
Pr

ob
le

m
So

lu
tio

n



  

Highlights: 

*	 improved algorithm for robust process design is introduced to propagate and quantify 	 	
	 complex parameter uncertainties and correlations efficiently

 

* 	 a Gaussian mixture distribution based point estimated method is proposed to quantify   		
	 non-Gaussian distributed uncertainties in the model parameters and model simulations


*	 robust process design concept has been successfully demonstrated with the freeze-drying 
	 process and compared critically with existing approaches



