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Abstract 

For the first time, a five-parameter distribution, called the kumaraswamy quadratic hazard rate distribution is 

defined and studied. The new distribution contains as special models some well-known distributions discussed in 

lifetime literature, such as the Linear failure rate, Exponential and Rayleigh distributions, among several others. 

We obtain the moments, moment generating and quantile functions. We discuss the method of maximum 

likelihood to estimate the model parameters and determine the observed information matrix. A real data sets 

illustrate the importance and flexibility of the proposed models. 

Keywords:   Quadratic Hazard Rate distribution, Order Statistics,Maximum Likelihood 

Estimation, Reliability Function.  

1.   Introduction 

The quadratic hazard rate distribution ( )QHR  distribution was introduced by Bain (1974). This 

distribution generalizes several well known distributions. Among these distributions are the 

linear fialure (hazard) rate, exponential  and Rayleigh distributions. Also, the QHRD  may have 

an increasing (decreasing) hazard function or a bathtub shaped hazard function or an upside-

down bathtub shaped hazard function. This property enables this distribution to be used in 

many applications in several areas, such as reliability, life testing, survival analysis and others. 

 

A random variable X  is said to have the quadratic hazard rate distribution ( )QHRD with three 

parameters , ,   and  , if it has the cumulative distribution function  
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where 0, 0    and 2 .    This restriction on the parameter space is made to be 

insure that the hazard function with the following form is positive, see Bain (1974), 
2( , , , ) = , > 0.A x x x x       The corresponding probability density function (pdf) is 

given by 
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Distribution generalization theory has been the focus of prominent investigation over the past 

years (see, e.g., Amoroso 1925; Good 1953; Hoskings and Wallis 1987; McDonald 1984; 

Gupta et al. 1998). A particular generalization model is the class of beta generalized 

distributions introduced in Eugene et al. (2002) generated from the logit of the beta random 

variable. Recently, Cordeiro and Castro (2011) introduced a new family of generalized 

distributions (Kw-G), based on the Kumaraswamy distribution (Kumaraswamy 1980), to 

extend the wK   normal distribution is obtained by taking ( )G x  in (1. 2) to be the normal 

cumulative function. Analogously, the wK Weibull (Cordeiro et al. (2010)), General results 

for the Kumaraswamy- G  distribution (Nadarajah et al. (2012)). wK - generalized gamma 

(Pascoa et al. (2011)), Kw  Birnbaum-Saunders (Saulo et al. (2012)), and wK   Gumbel 

(Cordeiro et al. (2012)) distributions are obtained by taking ( )G x  to be the cdf of the Weibull, 

generalized gamma, Birnbaum-Saunders and Gumbel distributions, respectively, Elbatal 

(2013) introduced kumaraswamy generalized linear failure rate , and the Kumaraswamy 

Exponentiated Pareto Distribution, among several others. Hence, each new Kw G  

distribution can be generated from a specified G  distribution.  

 

The Kumaraswamy ( )wK  distribution is not very common among statisticians and has been 

little explored in the literature.The cdf and pdf of the Kumaraswamy distribution are defined by 

  |( , ) ( ) = 1 1 ,0 < < 1,
b

a

X a bF x x x       (1.3) 

where > 0a  and > 0b  are shape parameters, and the probability density function 
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|( , ) ( ) = 1 ,
b

a a

X a bf x abx x


        (1.4) 

which can be unimodal, increasing, decreasing or constant, depending on the parameter values. 

It does not seem to be very familiar to statisticians and has not been investigated systematically 

in much detail before, nor has its relative interchangeability with the beta distribution been 

widely appreciated. However, in a very recent paper, Jones (2009) explored the background 

and genesis of this distribution and, more importantly, made clear some similarities and 

differences between the beta and wK  distributions. However, the beta distribution has the 

following advantages over the wK  distribution: simpler formulae for moments and moment 

generating function (mgf), a one-parameter sub-family of symmetric distributions, simpler 

moment estimation and more ways of generating the distribution by means of physical 

processes. 

 

In this note, we combine the works of Kumaraswamy (1980) and Cordeiro and Castro (2011) 

to derive some mathematical properties of a new model, called the Kumaraswamy quadratic 

hazard rate ( )KQHR  distribution, which stems from the following general construction: if G  

denotes the baseline cumulative function of a random variable, then a generalized class of 

distributions can be defined by 

 |( , ) ( ) = 1 1 ( )
b

a

X a bF x G x          (1.5) 
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where > 0a  and > 0b  are two additional shape parameters. The Kw G  distribution can be 

used quite effectively even if the data are censored. Correspondingly, its density function is 

distributions has a very simple form 

 
1

1

|( , ) ( ) = ( ) ( ) 1 ( )
b

a a

X a bf x abg x G x G x


        (1.6) 

 

The density family (1.6) has many of the same properties of the class of beta- G  distributions 

(see Eugene et al. (2002)), but has some advantages in terms of tractability, since it does not 

involve any special function such as the beta function. A physical interpretation of the wK  G  

distribution given by (1.5) and (1.6) (for a  and b  positive integers) is as follows. Suppose a 

system is made of b  independent components and that each component is made up of a  

independent subcomponents. Suppose the system fails if any of the b  components fails and 

that each component fails if all of the a  subcomponents fail. Let 
1 2, ,...,j j jaX X X  denote the 

life times of the subcomponents with in the thj  component, = 1,...,j b  with common (cdf) G . 

Let 
jX  denote the lifetime of the thj  component, = 1,...,j b  and let X  denote the lifetime of 

the entire system. Then the (cdf) of X  is given by 
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So, it follows that the wK  G  distribution given by (1.5) and (1.6) is precisely the time to 

failure distribution of the entire system.  

 

The rest of the article is organized as follows. In Section 2, we define the cumulative, density 

and hazard functions of the KQHR  distribution and some special cases. In Section 3. includes 

thr moment , moment generating function . The distribution of the order statistics are proposed 

in Section4. Least squares and weighted least squares estimators introduced in Section 5. 

Finally, maximum likelihood estimation is performed in Section 6. 

2.   Kumaraswamy Quadratic Hazard Rate Distribution 
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In this section we studied the kumaraswamy quadratic hazard rate ( )KQHR  distribution and 

the sub-models of this distribution. Now using  (1.1) and (1.2) in (1.5) we have the cdf of 

Kumaraswamy quadratic hazard rate distribution 
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    (2.1) 

 

The corresponding probability density function (pdf) of the kumaraswamy quadratic hazard 

rate distribution is given by 
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 (2.2) 

Graph of (2.2) for various values of a,b,α,β and θ is given in appendix-I 

 

The Linear failure rate (LFR), exponential (E), Rayleigh (R) distributions are clearly the most 

important submodels of Equation (2.2). Other submodels can be immeditely defined from 

Table 1. It is evident that (2.2) is much more flexible than the different distributions  listed in 

Table1. The following are special cases of the KQHR  ( , , , , ) :a b    

Table 1:   Some sub-models of the KQHR  distribution 

 

 

2.1  Reliability Analysis 

The Kumaraswamy quadratic hazard rate can be a useful characterization of life time data 

analysis. The reliability function ( )RF  of the Kumaraswamy quadratic hazard rate distribution 

is denoted by ( )KQHRR x  also known as the survivor function and is defined as 
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  (2.3) 

Distribution α θ β A b 

Quadratic Hazard Rate - - - 1 1 

kumaraswamy Linear failure rate - - 0 - - 

kumaraswamy Rayleigh 0 - 0 - - 

kumaraswamy Exponential - 0 0 - - 

Linear failure rate - - 0 1 1 

Rayleigh 0 - 0 1 1 

Exponential - 0 0 1 1 
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It is important to note that ( )KQHRR x  ( )KQHRF x = 1. The hazard rate function (HF) and 

reversed hazarde rate function defined by 

( )
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1 ( )
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Graph of (2.4) for various values of a,b,α,β and θ is given in appendix-II 
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 (2.5) 

respectively. It is important to note that the units for ( )KQHRh x  is the probability of failure per 

unit of time, distance or cycles. These failure rates are defined with different choices of 

parameters. The cumulative hazard function of the Kumaraswamy quadratic hazard rate 

distribution is denoted by ( )KQHRH x  and is defined as 
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It is important to note that the units for ( )KQHRH x  is the cumulative probability of failure per 

unit of time, distance or cycles. we can show that . For all choice of parameters the distribution 

has the decreasing patterns of cumulative instantaneous failure rates. 
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3.   Statistical Properties 

In this section we study the statistical properties of the kumaraswamy quadratic hazard rate 

distribution. Specifically quantile, moments and moment generating function .Moments are 

necessary and important in any statistical analysis, especially in applications. It can be used to 

study the most important features and characteristics of a distribution (e.g., tendency, 

dispersion, skewness and kurtosis). 

Quantile and Random Number Generation 

The quantile 
qx  of the KQHR ( , , , , )a b    is real solution of the following equation 
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The random number generation as x  of the KQHR ( , , , , )a b    is defined by the following 

relation 
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Moments 

The following theorems give the thr  moment ( )r  and moment generating function ( )XM t  of 

the KQHR ( ; , , , , ).x a b    

Theorem (3.1) 

If X  has the KQHR ( ; , , , , )x a b   ,then the thr  moment of X  is given by the following  
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since 

2 3(
2

)
30 < <1,

x x x

e





  

then the using the binomial of 

1

2 3(
2

)
31 1

b
a

x x x

e







 

     
   

  
   

given 

by 

1

2 3 2 3( (
2 2

1

=0

) )
3 31 1 = ( 1) 1 ,

b
a ai

x x x x

i b

i i

x x

e e

 
 

 


   
  

 
 
 

          
       

    
     

   (3.4) 

then 
( 1) 1

2 3 2 3( (
2 2

21

=0 0

) )
3 3= ( 1) ( ) 1

a i

x x x x
' i rb

r i i

x x

ab x x x e e dx

 
 

 

   

 

   
  

 
 
 

  
 

    
 
 

   

again 

( 1) 1

2 3 2 3( (
2 2

( 1) 1

=0

) )
3 31 = ( 1) ,

a i

x x x x

j a i

j j

x x j

e e

 
 

 
 

   
   

 
 
 

  
 
  

 
 

   (3.5) 

therefore 

1 ( 1) 1

=0 =0
= ( 1)

' i j b a i

r i j i j
ab

        
   
   
   

   

 

2 3( 1)(
2

2

0

)
3( ) ,

j x x

r

x

x x x e dx






  
  




       (3.6) 

but the expansion of 
2( 1)

2
i x

e


 

 and 
3( 1)

3
i x

e


 

 are given by  

32
32 ( 1)( 1)

32

=0 =0

( ( 1) )( ( 1) )
32= and = ,

! !

mk

j xj x

k m

j xj x
e e

k m




    
  

   (3.7) 

substituting from (3.7) into (3.6) we have 
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where 
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Which completes the proof. 

 

Based on Theorem (3.1) the measures of variation, skewness and kurtosis of the KQHR

( , , , , , )a b     distribution can be obtained according to the following relation  
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3.3   Moment Generating Function 

In this subsection we derived the moment generating function (mgf) of kumaraswamy 

quadratic hazard rate distribution.  

Theorem (3.2):   If X  has the KQHR ( , , , , , )a b    , then the the moment generating 

function (mgf) of X  is given as follows 
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substituting (3.3) , (3.4)and (3.5) into relation (3.9) we get the following 
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Which completes the proof. 

4.   Order Statistics 

Moments of order statistics play an important role in quality control testing and reliability, 

where a practitioner needs to predict the failure of future items based on the times of a few 

early failures. These predictors are often based on moments of order statistics. We now derive 

an explicit expression for the density function of the thi  order statistic 
( : )i nX , say :: ( )i nf x , in a 

random sample of size n  from the KQHR  distribution. Let 1,X 2 ,...,X nX  be a simple random 

sample from KQHR ( ; , , , , )x a b    with cumulative distribution function and probability 

density function as in (2.1) and (2.2), respectively. Let 
(1: )nX 

(2: )nX  ... ( : )n nX  denote the 

order statistics obtained from this sample. In reliability literature, 
( : )i nX  denote the lifetime of 

an ( 1)n i    out  of n  system which consists of n  independent and identically 

components. Then the pdf of 
( : )i nX ,1 i n   is given by  
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the last order statistics as 
( ) 1 2= ( , ,..., )n nX Max X X X  and median order 1mX  . 

 

The pdf of the thi  order statistic for Kumaraswamy quadratic hazard rate distribution is given 

by 

1

2 3 2 3( (
2 2

::

2 3 2 3( (
2 2

2

) )
3 3( ) = 1 1 1 1 1

( , 1)

) )
3 3( ) 1

i n i
b b

a a

x x x x

i n

x x x x

x x
ab

f x e e
i n i

x x

x x e e

 
 

 
 

 



 

  

 

   

   

                                                             

  
 

    
 
 

1
1

2 3(
2

)
31 1 ,

b
a a

x x x

e









 

     
   

  
   

 

Therefore, the pdf of the largest order statistic 
( )nX  is given by 
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and the pdf of the smallest order statistic 
(1)X  is given by 
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5.   Least Squares and Weighted Least Squares Estimators 

In this section we provide the regression based method estimators of the unknown parameters 

of the kumaraswamy quadratic hazard rate distribution, which was originally suggested by 

Swain, Venkatraman and Wilson (1988) to estimate the parameters of beta distributions. It can 

be used some other cases also. Suppose 1,..., nY Y  is a random sample of size n  from a 

distribution function (.)G  and suppose 
( )iY ; =1,2,...,i n  denotes the ordered sample. The 

proposed method uses the distribution of 
( )( )iG Y . For a sample of size n , we have 
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see Johnson, Kotz and Balakrishnan (1995). Using the expectations and the variances, two 

variants of the least squares methods can be used.  

Method 1 (Least Squares Estimators). Obtain the estimators by minimizing 
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with respect to the unknown parameters. Therefore in case of KQHR  distribution the least 

squares estimators of , , ,   a  and b , say , ,LSE LSE LSE   , LSEa  and LSEb  respectively, by 

using (2.1) and (5.1) we have the following equation  
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To minimize equation (5.2) with respect to , , ,a   and b  and, we differentiate with respect 

to these parameters, which leads to the following equations. 
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The estimates of the parameters are obtained by equating the above equations to zero. 

Although the proposed estimators cannot be expressed in closed form, they can be obtained 

through the use of an appropriate numerical solution algorithm.  

Method 2 (Weighted Least Squares Estimators). The weighted least squares estimators can 

be obtained by minimizing 
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Therefore, in case of KQHR  distribution the weighted least squares estimators of , ,  , a  

and b , say , ,WLSE WLSE WLSE   , WLSEa  and WLSEb  respectively, can be obtained by minimizing 
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with respect to the unknown parameters only. 

6.   Maximum Likelihood Estimators 

In this section we consider the maximum likelihood estimators (MLE's) of KQHR  distribution. 

Let = ( , , , , ) ,Ta b    in order to estimate the parameters , ,   ,a  and b  of kumaraswamy 

quadratic hazard rate distribution, let 1,...,x nx  be a random sample of size n  from KQHR

( ; , , , , )x a b    then the log likelihood function can be written as 
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   (6.1) 

Differentiating L  with respect to each parameter , ,   ,a  and b  and setting the result equals 

to zero, we obtain maximum likelihood estimates. The partial derivatives of L  with respect to 

each parameter or the score function is given by 
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  (6.2) 
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By solving this nonlinear system of equations (6.2) - (6.6), these solutions will yield the ML 

estimators for  ,  ,   , a  and b . For the five parameters kumaraswamy quadratic hazard rate 

distribution KQHR ( , , , , , )a b x    pdf all the second order derivatives exist. Thus we have the 

inverse dispersion matrix is given by 
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By solving this inverse dispersion matrix these solutions will yield asymptotic variance and 

covariances of these ML estimators for  ,  ,   , a  and b . . Using (6.8), we approximate 

100(1 )%  confidence intervals for , ,   ,a  and b  are determined respectively as  

 
2 2 2 2

, , andz V z V z V z V              

where z  is the upper 100  the percentile of the standard normal distribution. 

6.1  Application 
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SPSS buit-in dataset “Breast Cancer Survival” is used to obtain fit The quadratic hazard rate 

distribution ( )QHR  distribution. The ML estimates of the parameters of The quadratic hazard 

rate distribution ( )QHR  distribution are given in the table 2. We have also given the AIC and 

negative of log likelihood function to decide about the suitability of the model. 

 

Variable 

Parameters (SE in Parenthesis) -2 Log (LF) AIC 

a b α β  θ 

Survival 

Time in 

years 

10347.77 

(302.69) 

8488.49 

(247.15) 

3.34 

(0.51) 

115.87 

(54.72) 

 47.75 

(12.33) 
-46988.97 -46978.97 
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Appendix-I:  Plots of density function (pdf) of Kumaraswamy quadratic hazard rate 

distribution for various values of               
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Appendix-II:  Plots of hazard rate function of Kumaraswamy quadratic hazard rate 

distribution for various values of               
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