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Abstract 

We introduce a new class of continuous distributions called the transmuted exponentiated generalized-G 

family which extends the exponentiated generalized-G class introduced by Cordeiro et al. (2013). We 

provide some special models for the new family. Some of its mathematical properties including explicit 

expressions for the ordinary and incomplete moments, generating function, Rényi and Shannon entropies, 

order statistics and probability weighted moments are derived. The estimation of the model parameters is 

performed by maximum likelihood. The flexibility of the proposed family is illustrated by means of an 

application to a real dataset. 

Keywords:   Generating Function, Maximum Likelihood, Order Statistic, Transmuted-G 

Family, Exponentiated Generalized-G Family.  

1.   Introduction  

In the last few decades, there have been an increased interest among statisticians in 

defining new generators of univariate distributions, by adding one or more shape 

parameter(s) to a baseline distribution, to provide great flexibility in modelling data in 
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several applied areas such as reliability, engineering, economics, biological studies, 

environmental sciences, finance and medical sciences. Some well-known generators are 

the Marshall-Olkin-G (MO-G) by Marshall and Olkin (1997), the beta-G (B-G) by 

Eugene et al. (2002), the Kumaraswamy-G (Kw-G) by Cordeiro and de Castro (2011), 

the McDonald-G (Mc-G) by Alexander et al. (2012), the gamma-G by Zografos and 

Balakrishanan (2009), the Kumaraswamy odd log-logistic-G (KwOLL-G) by Alizadeh et 

al. (2015), the beta odd log-logistic generalized by Cordeiro et al. (2015), the 

Kumaraswamy transmuted-G (KwT-G) by Afify et al. (2015), the beta transmuted-G 

(BT-G) by Afify et al. (2015) and the generalized transmuted-G (GT-G) by Nofal et al. 

(2015). 

 

Further, Shaw and Buckley (2007) introduced an interesting technique of adding a new 

parameter to an existing distribution called the transmuted-G (TG for short) family. Let 

 (   ) be a baseline cumulative distribution function (cdf) and  (   ) be its 

probability density function (pdf) with a parameter vector  . Shaw and Buckley (2007) 

defined their TG family by the cdf and pdf given by 

 (     )   (   ),      (   )-      (1) 

and  

 (     )   (   ),       (   )-       (2) 

respectively. The TG family is a mixture of the baseline and exponentiated-G (ExG for 

short) distributions, the last one with power parameter equal to two. The baseline 

distribution  ( ) is clearly a special case of (1) when    . 

 

The statistical literature contains many extended distributions which have been 

constructed based on the TG family. For example, the transmuted generalized extreme 

value (Aryal and Tsokos, 2009), transmuted Weibull (Aryal and Tsokos, 2011), 

transmuted log-logistic (Aryal, 2013), transmuted modified Weibull (Khan and king, 

2013), transmuted additive Weibull (Elbatal and Aryal, 2013), transmuted 

complementary Weibull geometric (Afify et al., 2014), transmuted Weibull Lomax (Afify 

et al., 2015) and transmuted Marshall-Olkin Fréchet (Afify et al., 2015) distributions. 

Recently, Nofal et al. (2015) proposed the generalized transmuted-G (GT-G) family 

which extends the TG family and studied its mathematical properties. 

 

This vast amount of literature motivated us to use the TG family to construct a new 

generator called the transmuted exponentiated generalized-G (TExG-G for short) family. 

We provide a comprehensive description of their properties with the hope that the TExG-

G class will attract wider applications in biology, medicine, economics, reliability, 

engineering, and in other areas of research. In this article, we define the TExG-G family 

using the pdf and cdf of the exponentiated generalized-G (ExG-G) family proposed by 

Cordeiro et al. (2013). The cdf and pdf of the ExG-G class are given, respectively, by 

 (       )  [   (   ) ]
 
       (3) 

and 

 (       )     (   ) (   )   [   (   ) ]
   

     (4) 

where   and   are positive shape parameters. 
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The rest of the paper is outlined as follows. In Section 2, we define the TExG-G family of 

distributions and provide its special models. In Section 3, we derive a very useful linear 

representation for the TExG-G density function. Three special models of this family are 

presented in Section 4 and some plots of their pdf's are given. We obtain in Section 5 

some general mathematical properties of the proposed family including asymptotics, 

extreme values, ordinary and incomplete moments, probability weighted moments 

(PWMs), mean deviations, residual life function and reversed residual life function. 

Order statistics and their moments are investigated in Section 6. In Section 7, we 

determine the stress-strength model for the proposed family. In Section 8, some 

characterizations results are provided. Maximum likelihood estimation (MLE) of the 

model parameters is investigated in Section 9. In Section 10, we perform an application 

to a real dataset to illustrate the potentiality of the new family. Section 11 deals with a 

small simulation study to assess the performance of the MLE method. Finally, some 

concluding remarks are presented in Section 12. 

2.   The TExG-G Family 

The cdf of the TExG-G family using (3), is defined by 

  (         )  [   (   ) ]
 
2     [   (   ) ]

 
3    (5) 

 

The pdf corresponding to (5) is defined by 

 (         )     (   ) (   )   [   (   ) ]
   

 

 2      [   (   ) ]
 
3       (6) 

 

We denote by   TExG-G(       ) a random variable X with the pdf (6). For 

simulating from this family, if    (   ) then for      

       {  {  [
    √(   )      

  
]

 

 

}

 

 

} 

and for    ,  

      2  (   
 

 )
 

 3  

 

Some special classes of the TExG-G family are listed in Table 1. 

3.   Linear Representation 

In this section, we provide a useful representation for the cdf and the pdf of TExG-G 

family. 

 

Using the series expansion 

(   )    ∑ 

   

 
(  )   ( )

    (   )
    | |              
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Table 1:   Sub-classes of the TExG-G family 

 

The cdf in (5) can be expressed as 

 ( )  (   )∑   
   (  ) (

 
 
) ,   ( )-    ∑   

   (  ) (
  
   

) ,   ( )-    (7) 

 

The cdf of TExG-G family in (7) can be expressed as 

 ( )  (   ) ∑  

 

     

(  )   (
 
 
) .

  
  

/ ( )   ∑ 

 

   

(  ) (
  
   

) .
  
  

/ ( )  

 ( )  ∑  

 

   

(  ) ∑ 

 

   

(  ) .
  
  

/ [(   ) (
 
 
)   (

  
   

)]  ( )   

Then 

 ( )  ∑   
      ( )          (8) 

where  ( )   ( )  is the cdf of the Ex-G family with power parameter   and 

   (  ) ∑ 

 

   

(  ) .
  
  

/ [(   ) (
 
 
)   (

  
   

)] 

 

The corresponding TExG-G density function is obtained by differentiating (8) 

 ( )  ∑   
       ( ) ( )    ∑   

             (9) 

where   ( )    ( ) ( )    is the Ex-G pdf with power parameter  . 

4.   Special Models 

In this section, we provide some examples of the TExG-G family of distributions. The 

pdf (6) will be most tractable when  (   ) and  (   ) have simple analytic 

expressions. These special models generalize some well-known distributions in the 

literature. Now, we provide three special models of this family corresponding to the 

baseline Pareto (Pa), Weibull (W) and Fréchet (Fr) distributions. 

Reduced class        (   ) Author 

ExG-G class        (   ) Cordeiro et al. (2013) 

Ex-G class        (   )   

G-G class        (   ) Gupta et al. (1998) 

TEx-G class        (   ) Alizadeh et al. (2015) 

TG-G class        (   ) Merovci et al. (2015) 

T-G class        (   ) Shaw and Buckley (2007) 

Baseline model        (   )   
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4.1  The TExG-Pareto (TExGPa) Distribution 

The Pareto (Pa) distribution with shape parameter     and scale parameter     has 

pdf and cdf given by  ( )           (for    ) and  ( )    (   )   
respectively. Then, the pdf of the TExGPa model is given by 

 ( )    
    

     
6  (

 

 
)
  

7

   

{      8  (
 

 
)
  

9

 

}  

 

The TExGPa distribution becomes the TPa distribution when      . For    , the 

TExGPa distribution reduces to the ExGPa model. For     and     we obtain the 

TExPa and TGPa distributions, respectively. The plots of the density function of the 

TExGPa distribution are displayed in Figure 1 for selected parameter values. 

 

 
 

Figure 1. The TExGPo pdf: (a) For   =  =  =   ,   =   and   =    (black line),   =   ,   =  ,   = , 

  =  and   =   (dotted blue line),   =  = ,   =  ,   =   and   =   (red line),   =   ,   =  ,   =  , 

  =   and   =     (green line) and   =   ,   =   ,   =    ,   =   and   =    (yellow line) (b) For   

=  =  ,   =   ,   =    and   =   (black line),   =  =  ,   =  ,   =   and   =   (dotted blue line) and 

  =  =  ,   =  ,   =    and   =   (red line). 

4.2  The TExG-Weibull (TExGW) Distribution 

The Weibull distribution with scale parameter     and shape parameter     has pdf 

and cdf given by  ( )              (  )  (for    ) and  ( )      (  ) , 

respectively. Then, the pdf of the TExGW model is given by  

 ( )              (  ) 0     (  ) 1
   

{      0     (  ) 1
 

}  

 

The TExGW distribution becomes the TW distribution when      . For    , the 

TExGW distribution reduces to the ExGW model. For     and     we obtain the 

TExW and TGW distributions, respectively. The plots of the density function of the 

TExGW distribution are displayed in Figure 2 for selected parameter values. 
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Figure 2. The TExGW pdf: (a) For   =    ,   =    ,   =  ,   =   and   =     (black line),   =  =   , 

  =  ,   =     and   =  (dotted blue line),   =    ,   =   ,   =  ,   =     and   =  (red line),   

=    ,   =   ,   =    ,   =     and   =    (green line) and   =  =  ,   =   , and   =  =  (yellow 

line) (b) For   =  =   ,   =  ,   =     and   =   (black line),   =   ,   =   ,   =  ,   =     and   =  

(dotted blue line),   =   ,   =   ,   =    ,   =     and   =  (red line),   =   ,   =   ,   =  ,   =     

and   =    (green line) and   =  =   ,   =  ,   =     and   =  (yellow line). 

4.3  The TExG-Fréchet (TExGFr) Distribution 

The Fréchet distribution with positive parameters   and   has pdf and cdf given by 

 ( )       (   )  .
 

 
/
 

 (for    ) and  ( )    .
 

 
/
 

, respectively. Then, the pdf of 

the TExGFr model is given by 

 ( )                      .
 

 
/
 

6    .
 

 
/
 

7

   

8  6    .
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7

 

9

   

         {      8  6    .
 

 
/
 

7

 

9

 

}  

 

 

The TExGFr distribution becomes the TFr distribution when      . For    , the 

TExGFr distribution reduces to the ExGFr model. For     and     we obtain the 

TExFr and TGFr distributions, respectively. The plots of the density function of the 

TExGFr distribution are displayed in Figure 2 for selected parameter values. 

5.   Mathematical Properties 

In this section, we investigate mathematical properties of the TExG-G family of 

distributions. Established algebraic expansions to determine some structural properties of 

the TExG-G family of distributions can be more efficient than computing those directly 

by numerical integration of its density function. 
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Figure 3. The TExGFr pdf: (a) For   =   ,   =    ,   =  ,   =     and   =   (black line),   =  and   

=  =   =   =    (dotted blue line),   =   ,   =  ,   =  =    and   =   (red line),   =    ,   =   ,   

=  ,   =     and   =    (green line) and   =   ,   =  =  ,   =   , and   =  (yellow line) (b) For   =  , 

  =   ,   =  =     and   =   (black line),   =   ,   =  ,   =  =     and   =  (dotted blue line),   =  

,   =   ,   =   =     and   =  (red line),   =    ,   =  ,   =  =     and   =   (green line) and   

=   ,   =   =  ,   =   =     and   =  (yellow line). 

5.1  Asymptotics 

The asymptotics of  ( ),  ( ) and  ( ) as  ( )    are given by 

 ( ) (   )   ( )                                ( )     

 ( )  (   )   ( ) ( )                   ( )     

 ( )  (   )   ( ) ( )                     ( )     

where  ( ) is the hazard rate function (hrf) of the TExG-G family. 

 

The asymptotics of  ( ),  ( ) and  ( ) as  ( )    are given by 

   ( )   ( )                             ( )     

 ( )    ( ) ( )                       ( )     

 ( ) 
  ( )

 ( )
                                      ( )     

5.2  Extreme Values 

If   (       )   denotes the mean of a random sample from (6), then by the 

usual central limit theorem √ (   ( )) √   ( ) approaches the standard normal 

distribution as     under suitable conditions. Sometimes one would be interested in 

the asymptotes of the extreme values       (       ) and       (       ). 
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First, suppose that G belongs to the max domain of attraction of the Gumbel extreme 

value distribution. Then by Leadbetter et al. (1987), there must exist a strictly positive 

function, say  ( ), such that  

     
   

 
   (    ( ))

   ( )
    

   
 
(      ( )) (    ( ))

 ( )
      

for every    . But  

    
   

 
   (    ( ))

   ( )
    

   
 
(      ( )) (    ( ))

 ( )
       

for every    . It follows from Leadbetter et al. (1987) that F belongs to the max 

domain of attraction of the Gumbel extreme value distribution with  

   
   

  ,  (       )-     ,    (   )- 

for some suitable norming constants      and   . Second, suppose that G belongs to 

the max domain of attraction of the Fréchet extreme value distribution. Then by 

Nadarajah et al. (2015), there must exist a     such that  

   
   

 
   (    ( ))

   ( )
    

   
 
(      ( )) (    ( ))

 ( )
    

for every    . But  

   
   

 
   (    ( ))

   ( )
    

   
 
(      ( )) (    ( ))

 ( )
      

for every    . So, it follows from Leadbetter et al. (1987) that F belongs to the max 

domain of attraction of the Gumbel extreme value distribution with  

   
   

   ,  (       )-     (    ) 

for some suitable norming constants      and   . Third, suppose that G belongs to the 

max domain of attraction of the Weibull extreme value distribution. Then, by Leadbetter 

et al. (1987), there must exist a     such that  

   
   

  
 (  )

 ( )
    

   
 
   (  )

 ( )
    

for every    . But  

   
   

 
 (  )

 ( )
    

   
 
   (  )

 ( )
     

for every    . Similarly it follows that F belongs to the max domain of attraction of the 

Weibull extreme value distribution with  

   
   

 ,  (       )-     , (  )  - 

for some suitable norming constants      and   . We conclude that F belongs to the 

same min domain of attraction as that of G. The same argument applies to min domain of 

attraction. That is, F belongs to the same min domain of attraction as that of G. 
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5.3   Moments 

The  th ordinary moment of   is given by 

  
   (  )   ∫  

 

  

     ( )   

Using (5), we obtain  

  
  ∑  

   

 

   (  
 )          (10) 

 

Hereafter,      denotes the Ex-G distribution with power parameter(   ). Setting 

    in (10), we have the mean of  . 

 

The last integration can be computed numerically for most parent distributions. The 

skewness and kurtosis measures can be calculated from the ordinary moments using well-

known relationships. 

 

The  th central moment of  , say   , follows as  

    (   )  ∑ 

 

   

(  )  .
 
 
/ (  

 )      
   

 

The cumulants (  ) of   follow recursively from  

     
  ∑  

   

   

.
   
   

/        
   

where      
       

    
        

     
   

    
  , etc. The skewness and kurtosis 

measures also can be calculated from the ordinary moments using well-known 

relationships. 

 

The moment generating function (mgf) of  , say   ( )   (   )  is given by 

  ( )  ∑
  

  
  
 

 

   

 ∑  

 

     

    
  

 (  
 )  

5.4  Incomplete Moments 

The main application of the first incomplete moment refers to the Bonferroni and Lorenz 

curves. These curves are very useful in economics, reliability, demography, insurance 

and medicine. The answers to many important questions in economics require more than 

just knowing the mean of the distribution, but its shape as well. This is obvious not only 

in the study of econometrics but in other areas as well. The th incomplete moments, say 

  ( )  is given by 

  ( )  ∫  
 

  

   ( )    
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Using equation (9), we obtain 

  ( )  ∑  
   

 

  ∫  
 

  
    ( )         (11) 

 

The first incomplete moment of the TExG-G family,   ( ), can be obtained by setting 

    in (11). 

 

Another application of the first incomplete moment is related to meanresidual life and 

mean waiting time given by   ( )  ,    ( )-  ( )    and   ( )    
,  ( )  ( )-  respectively. 

5.5  Probability Weighted Moments 

The PWMs are expectations of certain functions of a random variable and they can be 

defined for any random variable whose ordinary moments exist. The PWM method can 

generally be used for estimating parameters of a distribution whose inverse form cannot 

be expressed explicitly. 

 

The (   )th PWM of   following the TExG-G family, say     , is formally defined by 

      *    ( ) +  ∫  
 

  

    ( )   ( )     

 

Using equations (5) and (6), we can write 

 ( )  ( )    ∑  

 

     

(  )     (   )   .
 
 
/  ( ),   ( )- (   )  

         6(   ) 4
 (   )   

 
5    4

 (   )   

 
57  

 

 

After some algebra, we can write 

 ( )  ( )  ∑  

 

   

        ( ) 

where  

     
  (  ) 

   
∑  

 

     

  (   )   (  )   .
 
 
/ 4

 (   )   

 
5

 6(   ) 4
 (   )   

 
5    4

 (   )   

 
57  

 

 

Then, the (   )th PWM of   can be expressed as  

     ∑  

 

   

     (    
 )      
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5.6  Mean Deviations 

The mean deviations about the mean ,    (|    
 |)- and about the median ,   

 (|   |)- of   are given by       
  (  

 )     (  
 ) and      

     ( ), 

respectively, where   
   ( ),         ( )   (   ) is the median,  (  

 ) is 

easily calculated from (5) and   ( ) is the first incomplete moment given by (11) with 

   . 

 

Now, we provide two ways to determine    and   . First, a general equation for   ( ) 

can be derived from (11) as  

  ( )  ∑ 

   

 

      ( )  

where   ( )  ∫  
 

  
     ( )   is the first incomplete moment of the exp-G distribution. 

A second general formula for   ( ) is given by  

  ( )  ∑ 

   

 

        ( )  

where     ( )  ( ) ∫  
 ( )

 
   ( )  

      can be computed numerically. 

 

These equations for   ( ) can be used to construct Bonferroni and Lorenz curves defined 

for a given probability   by  ( )    ( ) (   
 ) and  ( )    ( )   

 , respectively, 

where   
   ( ) and    ( ) is the qf of   at  . 

5.7   Residual Life and Reversed Residual Life Functions 

The  th moment of the residual life, say   ( )   ,(   ) |   -,     ,..., 

uniquely determine  ( ). The  th moment of the residual life of   is given by  

  ( )  
 

 ( )
 ∫  

 

 

(   )   ( )  

Therefore 

  ( )  
 

 ( )
∑ 

   

 

  
 ∫  

 

 

    ( )  

where   
    ∑   

   .
 
 
/ (  )    . 

 

Another interesting function is the mean residual life (MRL) function or the life 

expectation at age   defined by   ( )   ,(   )|   -, which represents the 

expected additional life length for a unit which is alive at age  . The MRL of   can be 

obtained by setting     in the last equation. 

 

The  th moment of the reversed residual life, say   ( )   ,(   ) |   - for     

and      ,... uniquely determines  ( ). We obtain  

  ( )  
 

 ( )
∫  

 

 

(   )   ( )  
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Then, the  th moment of the reversed residual life of   becomes 

  ( )  
 

 ( )
∑  

   

 

  
  ∫  

 

 

    ( )  

where   
     ∑   

   (  ) .
 
 
/     . 

 

The mean inactivity time (MIT) or mean waiting time (MWT) also called the mean 

reversed residual life function is given by   ( )   ,(   )|   -, and it represents 

the waiting time elapsed since the failure of an item on condition that this failure had 

occurred in (   ). The MIT of the TExG-G family of distributions can be obtained easily 

by setting     in the above equation. 

6.   Order Statistics 

Order statistics make their appearance in many areas of statistical theory and practice. Let 

        be a random sample from the TExG-G family of distributions and let 

 ( )    ( ) be the corresponding order statistics. The pdf of  th order statistic, say     , 

can be written as  

    ( )  
 ( )

 (       )
 ∑     

    (  ) .   
 
/      ( )      (12) 

where  (   ) is the beta function. 

 

Substituting (5) and (6) in equation (12) and using a power series expansion, we get 

 ( )  ( )      ∑  

 

   

        ( )  

where  

     
  (  ) 

   
∑  

 

     

(  )     (   )       (
     

 
)4

 (   )   

 
5

 6(   ) 4
 (     )   

 
5    4

 (     )   
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Moreover, the pdf of      can be expressed as  

    ( )  ∑ 

   

   

 
(  )  .   

 
/

 (       )
∑  

 

   

        ( )  

 

Then, the density function of the TEx-G order statistics is a mixture of Ex-G densities. 

Based on the last equation, we note that the properties of      follow from those 

properties of     . For example, the moments of      can be expressed as  

 (    
 )  ∑     

    
(  )  (

   
   

)

 (       )
∑   

        (    
 )     (13) 
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Based upon the moments in equation (13), we can derive explicit expressions for the L-

moments of   as infinite weighted linear combinations of the means of suitable TExG-G 

order statistics. They are linear functions of expected order statistics defined by  

   
 

 
∑  

   

   

(  )  .
   
     

/   (      )      

7.   Stress-Strength Model 

Stress-strength model is the most widely approach used for reliability estimation. This 

model is used in many applications of physics and engineering such as strength failure 

and system collapse. The reliability, say  , where     (     ) is a measure of 

reliability of the system when it is subjected to random stress    and has strength   . 

 

The system fails if and only if the applied stress is greater than its strength and the 

component will function satisfactorily whenever      .   can be considered as a 

measure of system performance and naturally arises in electrical and electronic  systems. 

Other interpretation can be that, the reliability of the system is the  probability that the 

system is strong enough to overcome the stress imposed on it. 

 

Let    and    be two independent random variables have TExG-G(          ) and 

TExG-G(          ) distributions. From (10) and (9), the pdf of    and the cdf of    

can be, respectively, expressed by 

  (            )  ∑  

 

   

 (  ) ∑ 

 

   

(  ) (
   

 
) [(    ) (

  

 
)    (

   

 
)]  (   ) (   )    

and 

  (            )  ∑  

 

   

(  ) ∑  
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/ 0(    ) .
  

 
/    .

   

   
/1  (   )   

 

The reliability,  , is defined by 

  ∫  
 

 

 
 
(            )  (            )    
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Then   is given by 

  ∑      (    
 )

 

     

  

8.   Characterizations 

In this section, we present certain characterizations of TExG-G distribution. The first 

characterization is based on a simple relationship between two truncated moments. It 

should be mentioned that for this characterization, the cdf need not have a closed form.  

We believe, due to the nature of the cdf of TExG-G class, there may not be other possibly 

interesting characterizations than the ones presented in this section. Our first 

characterization result borrows from a theorem due to (Glänzel,1987), see Theorem 8.1 

below. Note that the result holds also when the interval   is not closed. Moreover, as 

shown in (Glänzel,1990), this characterization is stable in the sense of weak convergence. 

Theorem 8.1.  Let (     ) be a given probability space and let   ,   - be an interval 

for some     (          might as well be allowed). Let       be a 

continuous random variable with the distribution function   and let    and    be two real 

functions defined on   such that 

 ,  ( )|   -   ,  ( )|   - ( )          

is defined with some real function  . Assume that          ( ),     ( ) and   is 

twice continuously differentiable and strictly monotone function on the set  . Finally, 

assume that the equation        has no real solution in the interior of  . Then   is 

uniquely determined by the functions   ,    and  , particularly 

 ( )  ∫  
 

 

 |
  ( )

 ( )  ( )    ( )
|    (  ( ))    

where the function   is a solution of the differential equation    
    

      
 and   is the 

normalization constant, such that ∫  
 
    . 

 

Here is our first characterization of TExG-G distribution. 

Proposition 8.1.   Let     (   )be a continuous random variable and let   ( )  

{(   )    2  [ (   )]
 
3
 

}
  

 and   ( )    ( ) 2  [ (   )]
 
3
 

 for      

The random variable   belongs to TExG-G family ( ) if and only if the function   

defined in Theorem 8.1 has the form 

 ( )  
 

 
{  .  [ (   )]

 
/
 

}           
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Proof.  Let     be a random variable with density ( ), then 

,   ( )- ,  ( )|   -  {  2  [ (   )]
 
3
 

}           

and 

,   ( )- ,  ( )|   -  
 

 
{  2  [ (   )]

 
3
  

}           

and finally 

 ( )  ( )    ( )  
 

 
  ( ) {  2  [ (   )]

 
3
 

}                 

 

Conversely, if   is given as above, then 

  ( )  
  ( )  ( )

 ( )  ( )    ( )
 

   (   )[ (   )]
   

2  [ (   )]
 
3
   

  2  [ (   )]
 
3
           

and hence 

 ( )     {  2  [ (   )]
 
3
 

}           

Now, in view of Theorem 8.1,    has density ( )  

Corollary 8.1.  Let     (   ) be a continuous random variable and let   ( ) be as in 

Proposition 8.1. The pdf of   is ( ) if and only if there exist functions    and   defined 

in Theorem 8.1 satisfying the differential equation 

  ( )  ( )

 ( )  ( )    ( )
 

   (   )[ (   )]
   

2  [ (   )]
 
3
   

  2  [ (   )]
 
3
          

 

The general solution of the differential equation in Corollary 8.1 is 

 ( )          {  2  [ (   )]
 
3
 

}
  

 

        { ∫     (   )[ (   )]
   

2  [ (   )]
 
3
   

,  ( )-
    ( )    }  

 

where   is a constant. Note that a set of functions satisfying the differential equation in 

Corollary 8.1, is given in Proposition 8.1 with   
 

 
  However, it should be also noted 

that there are other triplets (       ) satisfying the conditions of Theorem 8.1. 



Haitham M. Yousof, Ahmed Z. Afify, Morad Alizadeh, Nadeem Shafique Butt, G.G. Hamedani, M. Masoom Ali 

Pak.j.stat.oper.res.  Vol.XI  No.4 2015  pp441-464 456 

9.   Estimation 

Let         be a random sample from the TExG-G distribution with parameters       

and  . Let   (        )  be the     parameter vector. For determining the MLE of 

 , we have the log-likelihood function  

                ∑ 

 

   

    (    )  (   ) ∑  

 

   

     (    ) 

 (   )∑ 

 

   

        ∑ 

 

   

         

where       (    )  and    (   )      
 . 

 

The components of the score vector,  ( )  
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)   are given by 
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where 

  (    )  
  (    )

  
     (    )  

  (    )

  
         (    )     (    )  

     (    )     (    )                
               

            

        
                            

     
 

Setting the nonlinear system of equations            and      and solving 

them simultaneously yields the MLE  ̂  ( ̂  ̂  ̂  ̂ ) . To solve these equations, it is 

usually more convenient to use nonlinear optimization methods such as the quasi-Newton 

algorithm to numerically maximize  . For interval estimation of the parameters, we 

obtain the     observed information matrix  ( )  *
   

    
+ (for            ), whose 

elements can be computed numerically. 

 

Under standard regularity conditions when    , the distribution of  ̂ can be 

approximated by a multivariate normal   (   ( ̂)  ) distribution to construct 

approximate confidence intervals for the parameters. Here,  ( ̂) is the total observed 

information matrix evaluated at  ̂. The method of the re-sampling bootstrap can be used 
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for correcting the biases of the MLEs of the model parameters. Good interval estimates 

may also be obtained using the bootstrap percentile method. The elements of  ( ) are 

given in Appendix A. 

10.   Application 

In this section, we demonostrate empirically the potentiality of the TExGW distribution 

presented in Section 4 by means of an application to a real data. The MLEs of the model 

parameters and some goodness-of-fit statistics for the fitted models are computed using 

MATH-CAD. 

 

The data set refers to the remission times (in months) of a random sample of 128 bladder 

cancer patients (Lee and Wang, 2003). These data have been used by Nofal et al. (2015) 

and Mead and Afify (2015) to fit the generalized transmuted log logistic and 

Kumaraswamy exponentiated Burr XII distributions, respectively. We compare the fit of 

the TExGW distribution with those of the transmuted Weibull Lomax (TWL) (Afify et 

al., 2015), McDonald Weibull (McW) (Cordeiro et al., 2014), McDonald modified 

Weibull (McMW) (Merovci and Elbatal, 2013), Kw-TEMW, generalized transmuted 

Lindley (GT-Li) (Nofal et al., 2015), Kumaraswamy Lindley (KwLi) (Cakmakyapan and 

Kad lar, 2014) and beta Lindley (BLi) (Merovci and Sharma, 2014) and exponentiated 

transmuted generalized Rayleigh (ETGR) (Afify et al., 2015) models with corresponding 

densities (for    ): 

 

•   The TWL density given by 
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•   The Mc-W density given by 

 ( )  
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 (     )*  (     , (  ) -) +   
   

•   The Mc-MW density given by 
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•   The GT-Li density given by 
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•   The Kw-Li density given by 

 ( )  
    (   )

(   )
   , (  )- {  

      

   
   , (  )-}
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9

   

  

•   The BLi density given by 

 ( )  
  (   )

 (   )(   )
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•   The ETGR density given by 

 ( )             , (  ) - *     , (  ) -+     

 {      [     , (  ) -]
 
} {     [     , (  ) -]

 
}
   

   
 

The parameters of the above densities are all positive real numbers except the parameter 

 , where | |   . 

 

In order to compare the distributions, we consider the goodness-of-fit statistics including 

the Akaike information criterion (   ), consistent Akaike information criterion (    ), 

Bayesian information criterion (   ), Hannan-Quinn information criterion (    ), 

minus twice maximized log-likelihood under the model (   ̂), Anderson-Darling (  ) 

and Cramér-Von Mises (  ) statistics. The smaller these statistics are, the better the fit 

is. Upper tail percentiles of the asymptotic distributions of these goodness-of-fit statistics 

were tabulated in Nichols and Padgett (2006). 

Table 2:                  -                                                        

Model    ̂                         

TExGW                                                        

TWL                                                         

Mc-W                                                      

Mc-MW                                                        

GT-Li                                                         

Kw-Li                                                       

BLi                                                       

ETGR                                                       
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Table 3:   MLEs and their standard errors (in parentheses) for cancer data 

 Model  Estimates  

 TExGW   ̂         ̂          ̂           ̂          ̂          

 (     ) (     ) (     ) (     ) (    )  

TWL   ̂         ̂         ̂           ̂           ̂          

   (    ) (     ) (     ) (      ) (     )  

Mc-W   ̂          ̂          ̂          ̂          ̂          

   (     ) (     ) (     ) (     ) (     )  

Mc-MW  ̂          ̂          ̂          ̂          ̂          ̂         

   (     ) (     ) (          ) (     ) (     ) (     ) 

GT-Li  ̂          ̂          ̂               ̂           

 (     ) (     ) (     ) (     )   

Kw-Li  ̂          ̂          ̂            

 (     ) (     ) (      )    

  BLi  ̂          ̂          ̂             

 (        ) (     ) (     )    

  ETGR   ̂          ̂         ̂          ̂           

 (     ) (    ) (          ) (     )   

 

Table 2 lists the numerical values of    ̂,    ,     ,     ,    ,    and    for the 

models fitted. The MLEs and their corresponding standard errors (in parentheses) of the 

model parameters are given in Table 3. 

 

In Table 2, we compare the fits of the TExGW model with the TWL, Mc-W, Mc-MW, T-

Li, Kw-Li, BLi and ETGR distributions. The figures in this table indicate that the ExGW 

distribution has the lowest values for the    ̂,    ,     ,     ,    ,    and    

statistics among the fitted models. Then, the TExGW model could be chosen as the best 

model. It is clear from Table 2 that the TExGW model provide the best fits to the cancer 

data. 

11.   Simulation Study 

In Table 4, we conducted simulation study to assess the performance of the maximum 

likelihood estimation procedure for estimating the TExGW distribution parameters using 

Monte Carlo simulation. Samples of sizes 100, 200, 500 and 1000 are generated for 

diferent combinations of parameters (  ,  ,   ,   and  ) from TExGW distribution.  
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Table 4:   MLEs and standard deviations for various parameter values 

Sample 

size (n) 

Estimated Values (Standard Deviations) 

 ̂  ̂  ̂  ̂  ̂ 

 
 =
  

 
 ,
  

 =
 
  

 ,
  

 =
 

 ,
  

 

=
 

  
an

d
  

 =
 
  

 

100 0.51441141 0.50992241 1.4465423 1.56418101 1.58129301 

(0.51628782) (0.52010807) (0.48042532) (0.50912482) (0.49994547) 

200 0.4972073 0.50772407 1.49518238 1.4342241 1.50027975 

(0.4944627) (0.52346495) (0.51690144) (0.4871885) (0.4936689) 

500 0.49697229 0.49533547 1.50214709 1.52501879 1.48796034 

(0.50973128) (0.5184531) (0.5219945) (0.51031283) (0.50996206) 

1000 0.49778671 0.50212024 1.51016213 1.49763388 1.51655605 

(0.53179596) (0.50874845) (0.50518858) (0.51187358) (0.5015058) 

 
 =
 

 =
  

 ,
  

 =
 

 ,
  

 =
 
  

  

an
d
  

 =
 

 

100 0.77566091 0.50288479 1.9983547 1.50848952 4.14922127 

(0.20108545) (0.19331491) (0.51032512) (0.49838794) (0.50051448) 

200 0.73896918 0.50526825 2.09284582 1.50150402 3.99150446 

(0.19470508) (0.19918857) (0.49555821) (0.4909273) (0.49785255) 

500 0.72357975 0.54830826 2.05826487 1.46992926 3.94862858 

(0.19399691) (0.20073988) (0.49659806) (0.50231758) (0.49868859) 

1000 0.75550155 0.72675095 1.98548277 1.47181445 4.02411126 

(0.20222761) (0.20239687) (0.49695527) (0.49691814) (0.50335157) 

 
 =
  

 
 ,
  

 =
  

 ,
  

 =
 

 ,
  

 

=
 
  

  
an

d
  

 =
 

 

100 0.75070137 1.45922125 1.01955259 1.97881513 1.53963708 

(0.18999323) (0.51321611) (0.38372388) (0.76299459) (0.7329739) 

200 0.75100464 1.52474589 1.0108306 2.03070155 1.5296659 

(0.14822696) (0.51869176) (0.50710696) (0.46905427) (0.49532688) 

500 0.7504679 1.5074032 0.99669677 1.99443086 1.47182768 

(0.10113948) (0.50377734) (0.49823552) (0.49066239) (0.4993453) 

1000 0.75110889 1.50046405 1.00091432 2.00521681 1.50610905 

(0.05013793) (0.2987079) (0.30356857) (0.30502217) (0.30298497) 

 

We repeated the simulation k =100 times and calculated the MLEs and the standard 

deviations of the parameter estimates. The empirical results are given in Table 4 shows 

that the estimates are quite stable and are close to the true value of the parameters for 

these sample sizes.  

12.   Conclusions 

In many applied areas there is a clear need for extended forms of the well-known 

distributions. Generally, the new distributions are more flexible to model real data that 

present a high degree of skewness and kurtosis. We propose a new transmuted 

exponentiated generalized-G (TExG-G) family of distributions, which extends the 

exponentiated generalized-G (ExG-G) family (Cordeiro et al., 2013) by adding one extra 
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shape parameter. Many well-known models emerge as special cases of the ExG-G family 

by using special parameter values. Some mathematical properties of the new class 

including explicit expansions for the ordinary and incomplete moments, quantile and 

generating functions, mean deviations, entropies, order statistics and probability weighted 

moments are provided. The model parameters are estimated by the maximum likelihood 

estimation method and the observed information matrix is determined. We perform a 

Monte Carlo simulation study to assess the finite sample behavior of the maximum 

likelihood estimators. We prove empirically by means of an application to a real data set 

that special cases of the proposed family can give better fits than other models generated 

from well-known families. 
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Appendix A 

The elements of the observed matrix  ( ) are given below: 
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where    (    )  ,   (    )    -    (    )  ,   (    )    -. 


