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Abstract 

This paper introduces a new generalization of the transmuted Marshall-Olkin Fréchet distribution of Afify 

et al. (2015), using Kumaraswamy generalized family. The new model is referred to as Kumaraswamy 

transmuted Marshall-Olkin Fréchet distribution. This model contains sixty two sub-models as special cases 

such as the Kumaraswamy transmuted Fréchet, Kumaraswamy transmuted Marshall-Olkin, generalized 

inverse Weibull and Kumaraswamy Gumbel type II distributions, among others. Various mathematical 

properties of the proposed distribution including closed forms for ordinary and incomplete moments, 

quantile and generating functions and Rényi and  -entropies are derived. The unknown parameters of the 

new distribution are estimated using the maximum likelihood estimation. We illustrate the importance of 

the new model by means of two applications to real data sets. 

Keywords:   Moments of residual life, Goodness-of-fit, Order Statistics, Maximum 

Likelihood Estimation.  

Introduction 

The procedure of expanding a family of distributions for added flexibility or to construct 

covariate models is a well-known technique in the literature. In many applied sciences 

such as medicine, engineering and finance, amongst others, modeling and analyzing 

lifetime data are crucial. Several lifetime distributions have been used to model such 

kinds of data. The quality of the procedures used in a statistical analysis depends heavily 

on the assumed probability model or distributions. Because of this, considerable effort 
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has been expended in the development of large classes of standard probability 

distributions along with relevant statistical methodologies. However, there still remain 

many important problems where the real data does not follow any of the classical or 

standard probability models. The Fréchet distribution is one of the important distributions 

in extreme value theory and it has been applied to data on characteristics of sea waves 

and wind speeds. Further information about the Fréchet distribution and its applications 

were discussed in Kotz and Nadarajah (2000). 

 

Recently, some extensions of the Fréchet distribution are considered. The exponentiated 

Fréchet (Nadarajah and Kotz, 2003), beta Fréchet (Nadarajah and Gupta, 2004 and 

Barreto-Souza et al., 2011), transmuted Fréchet (Mahmoud and Mandouh, 2013), 

Marshall-Olkin Fréchet (Krishna et.al., 2013), gamma extended Fréchet (da Silva et al., 

2013), transmuted exponentiated Fréchet (Elbatal et al. 2014), Kumaraswamy Fréchet 

(Mead and Abd-Eltawab, 2014), transmuted Marshall-Olkin Fréchet (TMOF) (Afify et 

al., 2015), transmuted exponentiated generalized Fréchet (Yousof et al., 2015), beta 

exponential Fréchet (Mead et al., 2016) and Weibull Fréchet (Afify et al., 2016) 

distributions. The cumulative distribution function (cdf) of the TMOF distribution is 

given (for    ) by 
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where     and   are positive, | |       is a scale parameter,  ,   and   are shape 

parameters. The corresponding probability density function (pdf)is given by 
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In this article we present a new generalization of the TMOF distribution called 

Kumaraswamy transmuted Marshall-Olkin Fréchet (Kw-TMOF) distribution based on the 

family of Kumaraswamy generalized (Kw-G) distributions introduced by Cordeiro and de 

Castro (2011). The main motivation for this extension is that the new distribution is a 

highly flexible life distribution which contains as sub models sixty two well known and 

unknown distributions, admits different degrees of kurtosis and asymmetry and the 

Kumaraswamy transmuted Marshall-Olkin Fréchet (Kw-TMOF) distribution provides a 

superior fit to real data than its sub models and non-nested models. 

 

Definition 1. A random variable   is said to have Kw-G distribution if its cdf is given by 

 ( )    ,   ( ) -   

where     and     are two additional parameters whose role is to introduce 

skewness and to vary tail weights. The corresponding pdf is given by  

 ( )     ( ) ( )   ,   ( ) -     

where  ( ) and  ( ) are the cdf and pdf of the baseline distribution respectively. Clearly 

when      , we obtain the baseline distribution. 
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Providing a new class of distributions is always precious for statisticians. Thus, the aim 

of this paper is to study the Kw-TMOF distribution. The fact that the Kw-TMOF 

distribution generalizes existing commonly used distributions and introduces new 

lifetime models is an important aspect of the model. Further, we demonstrate that the 

proposed model provides a significant improvement compared to some existing lifetime 

models and it is also a competitive model to the gamma extended Fréchet (da Silva et al., 

2013) and beta Fréchet (Barreto-Souza et al., 2011) distributions. In addition, we 

investigate some mathematical properties of the new model, discuss maximum likelihood 

estimation of its parameters and derive the observed information matrix. 

 

The rest of the paper is outlined as follows. In Section 2, we demonstrate the subject 

distribution and the expantions for the pdf and cdf. The statistical properties include 

quantile functions, random number generation, moments, moment generating functions, 

incomplete moments, mean deviations and Rényi and  -entropies are derived in Section 

3. The order statistics and their moments are investigated in Section 4. The 

characterization of the Kw-TMOF in terms of a truncated moment of a function of the 

random variable is given in Section 5. In Section 6, We discuss maximum likelihood 

estimation of the model parameters. In Section 7, the Kw-TMOF distribution is applied to 

two real data sets to illustrate the potentiality of the new distribution for lifetime data 

modeling. Finally, we provide some concluding remarks in Section 8. 

The Kw-TMOF Distribution 

The Kw-TMOF distribution and its sub-models are presented in this section. A random 

variable   is said to have Kw-TMOF with vector parameters    where 

  (           )  if its cdf is defined (for    ) by 
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where     are two additional shape parameters.The corresponding pdf of the Kw-TMOF 

is given by 
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A physical interpretation of Equation (4) is possible when   and   are positive integers. 

Suppose a system is made up of   independent components in series and that each 

component is made up of   independent subcomponents in parallel. So, the system fails if 

any of the   components fail and each component fails if all of its  subcomponents fail. 
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If the sub-component lifetimes have a common Kw-TMOF cumulative function, then the 

lifetime of the entire system will follow the Kw-TMOF distribution (4). 

 

From another view; suppose a system consists of   independent sub-systems functioning 

independently at a given time and that each sub-system consists of  independent parallel 

components. Suppose too that each component consists of two units. If the two units are 

connected in series then the overall system will have Kw-TMOF distribution with     

whereas if the components are parallel then the overall system will have Kw-TMOF 

distribution with     . 

 

Furthermore, we can interpret the system from the redundancy view. Redundancy is a 

common method to increase reliability in an engineering design. Barlow and Proschan 

(1981) indicate that, if we want to increase the reliable of a given system, then 

redundancy at a component level is more effective than redundancy at a system level. 

That is, if all components of a system are available in duplicate, it is better to put these 

component pairs in parallel than it is to build two identical systems and place the systems 

in parallel. 

 

The proposed Kw-TMOF model is very flexible model that approaches to different 

distributions when its parameters are changed. The flexibility of the Kw-TMOF is 

explained in Table 1 where it has sixty two sub-models when their parameters are 

carefully chosen. The reliability function (rf), hazard rate function (hrf) and cumulative 

hazard rate function (chrf) are, respectively, given by 

 (   )  {  * (   )  .
 

 
/
 

 (      )   .
 

 
/
 

+

 

*  (   )  .
 

 
/
 

+

   

}

 

  

 (   )          
            (   )  .

 

 
/
 

 (        )   .
 

 
/
 

*  (   )  .
 

 
/
 

+

    

, (   )  .
 

 
/
 

 (      )   .
 

 
/
 

-

   

         {  * (   )  .
 

 
/
 

 (      )   .
 

 
/
 

+

 

*  (   )  .
 

 
/
 

+

   

}

  

        

 

and 

 (   )      {  * (   ) 
 .

 

 
/
 

 (      ) 
  .

 

 
/
 

+

 

*  (   ) 
 .

 

 
/
 

+

   

}  

 

Figure 1 provides some plots of the Kw-TMOF density curves for different values of the 

parameters           and  . Some plots of the hrf of the Kw-TMOF are displayed in 

Figure 2. 
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Figure 1: Plots of the Kw-TMOF density function for some parameter values. 

 

  
Figure 2:   Plots of the Kw-TMOF hrf.  

Useful Expansions 

Expansions for Equations (3) and (4) can be derived using using the series expansion 

(   )   
   

 (  )  (   )
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The cdf of the Kw-TMOF in Equation (3) can be expressed in the mixture form 
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The pdf of the Kw-TMOF in (4) can be expressed in the mixture form 
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Table 1:   Sub-models of the Kw-TMOF distribution 

No. Distribution             Author 

  KTF             New 

  KTMOIE             New 

  KTMOIR             New 

  KTMOGIW                 New 

  KTMOGuII                New 

  KTMOIW                New 

  KTGIW                 New 

  KTGuII                New 

  KTIW                New 

   KTIE             New 

   KTIR             New 

   KF             Mead and Abd-Eltawab (2014) 

   KMOF             Afify et al. (2016) 

   KMOIE             -- 

   KMOIR             -- 

   KMOGIW                 New 

   KMOGuII                New 

   KMOIW                New 

   KGIW                 Afify et al. (2016) 

   KGuII                Afify et al. (2016) 

   KIW                Shahbaz et al. (2012) 

     KIE                           Mead and Abd-Eltawab (2014)  

     KIR                           Mead and Abd-Eltawab (2014)  

     TMOF                           Afify et al. (2015)  

     TMOIE                           --  

     TMOIR                           --  

     TMOGIW                               New  

     TMOGuII                              New  

     TMOIW                              New  

     TEGIW                               New  

     TEGuII                              New  

     TEIW                              New  

     TGIW                               Merovci et al. (2013)  

     TGuII                              New  

     TIW                              Khan et al. (2013)  

     MOFD                           Krishna et al. (2013)  

     MOIE                           --  

     MOIR                           --  

     MOGIW                               New  

     MOGuII                              New  

     MOIW                              New  

     TEF                           Elbatal et al. (2014)  

     TEIE                           --  

     TEIR                           --  

     TF                           Mahmoud and Mandouh (2013)  

     TIE                           Oguntunde and Adejumo (2015)  

     TIR                           Ahmad et al. (2014)  

     EF                           Nadarajah and Kotz (2003)  

     EIE                           --  

     EIR                           --  

      TGF                           New  

     TGIE                           New  

     TGIR                           New  

     GF                           New  

     GIE                           New  

     GIR                          New  
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No. Distribution             Author 

     GIW                               de Gusmão et al. (2011)  

     GuII                              Gumbel (1958)  

     IW                              Keller et al. (1982)  

     F                           Fréchet (1924)  

     IE                           Keller and Kamath (1982)  

     IR                           Trayer (1964)  

 

where 
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The Kw-TMOF density function can be expressed as a mixture of Fréchet densities. 

Thus, some of its mathematical properties can be obtained directly from those properties 

of the Fréchet distribution. Therefore Equation (4) can be also expressed as  

 (   )   
         

         

(          )
 (      )      (6) 

where  (      )denotes to the Fréchet pdf where     (          )   . 

Properties 

Quantile Function 

The quantile function (qf) of    is obtained by inverting (3) as 
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Simulating the Kw-TMOF random variable is straightforward. If   is a uniform variate 

on the unit interval (   )  then the random variable    ( ) follows (4), i.e.   Kw-

TMOF (           )  

Ordinary and Incomplete Moments 

The th moment, denoted by   
 , of   (for    ) is given as by 

  
   (  )  

   
         

 
        

(          )  (  ⁄ )  .  
 

 
/     (7) 

 

Sitting    , we get the mean of  . The skewness and kurtosis measures can be 

calculated from the ordinary moments using well-known relationships. 

 



Haitham M. Yousof, Ahmed Z. Afify, Abd El Hadi N. Ebraheim, G. G. Hamedani, Nadeem Shafique Butt 

Pak.j.stat.oper.res.  Vol.XII  No.2 2016  pp281-299 288 

Corollary 1. Using the relation between the central moments and non-centeral moments, 

we can obtain the  th central moment, denoted by     of a Kw-TMOF random variable 

as follows  

    (   )  ∑ 
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where  (  ) is the on-central moments of the Kw-TMOF (             )  Therefore 

the  th central moments of the Kw-TMOF (           )  if      is given by  
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The moment generating function (   ) of    say   ( )   (   )  (for    ) is given 

by 
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The  th incomplete moments, denoted by   ( ) of   is given by 
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Using Equation (6) and the lower incomplete gamma function, if      we obtain 

  ( )   
         

           

(          )  (  ⁄ )  (  
 

 
 (          ) .

 

 
/
 

*  (8) 

 

The first incomplete moment of  ,denoted by,   ( )  is immediately calculated from 

Equation (8) by setting    . 

Rényi and  -Entropies 

The Rényi entropy of   represents a measure of variation of the uncertainty. The Rényi 

entropy is defined by  

  ( )  
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Therefore, the Rényi entropy of a random variable   which follows the Kw-TMOF 

(   ) is given by 
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Where  
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Moments of Residual and Reversed Residual Lifes 

The  th moments of residual life, denoted by   ( )   ((   ) |   )            , 

is defined by   ( )  
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Here we can use the upper incomplete gamma function defined by  (   )  

∫  
 

 
         . Another interesting function is the mean residual life function (MRL) or 

the life expectancy at age t, defined by   ( )   ((   )|   )  and it represents the 

expected additional life length for a unit which is alive at age  . The MRL of the Kw-

TMOF distribution can be obtained by setting     in the last equation. The  th 

moments of the reversed residual life, denoted by   ( )   ((   ) |   )   

             , is given by   ( )  
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of the reversed residual life of a Kw-TMOF (       ) given that      is given by 
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Here we can use the lower incomplete gamma function defined by  (   )  

∫  
 

 
           The mean inactivity time (MIT) or mean waiting time (MWT) also called 

mean reversed residual life function, defined by   ( )   ((   )|   )  and it 

represents the waiting time elapsed since the failure of an itemon condition that this 

failure had occurred in (   ). The MRRL of the Kw-TMOF distribution can be obtained 

by setting    . 

Order Statistics 

The order statistics and their moments have great importance in many statistical problems 

and they have many applications in reliability analysis and life testing. The order 

statistics arise in the study of reliability of a system. The order statistics can represent the 

lifetimes of units or components of a reliability system. Let              be a random 

sample of size   from the Kw-TMOF (   ) with cdf and pdf as in (3) and (4), 

respectively. Let  ( )  ( )      ( ) be the corresponding order statistics. Then the pdf of 

 th order statistics, say    (   )       denoted by   ( ) is given by 
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The pdf of   in (9) can be expressed as a mixture of Fréchet densities as  
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Characterization 

Characterizations of distributions is an important research area which has recently 

attracted the attention of many researchers. This section deals with a characterization of 

Kw-TMOF distribution. This characterization is in terms of a truncated moment of a 

function of the random variable. Our characterization result employs a special case of a 

theorem due to Glänzel (1987), see Theorem 1 below. Note that the result holds also 

when the interval   is not closed. Moreover, it could be also applied when the cdf   does 

not have a closed form. As shown in Glänzel (1990), this characterization is stable in the 

sense of weak convergence. 

 

Theorem 1.  Let (     ) be a given probability space and let    ,   - be an interval 

for some       (                              )  Let        be a 

continuous random variable with the distribution function   and let   be a real function 

defined on   such that 

 , ( )|   -   ( )          

is defined with some real function  . Assume that     ( ),     ( ) and   is twice 

continuously differentiable and strictly monotone function on the set  . Finally, assume 

that the equation     has no real solution in the interior of  . Then   is uniquely 

determined by the functions   and   , particularly 

 ( )  ∫  
 

 

 |
  ( )

 ( )   ( )
|    (  ( ))    

where the function   is a solution of the differential equation    
  

   
 and   is the 

normalization constant, such that ∫  
 

    . 
 

Here is our first characterization. 
 

Proposition 1.  Let     (   ) be a continuous random variable and let  

 ( )  {  
0 (   )  (   )  (      )   (   ) 1

   

[  (   )  (   ) ]
  }          

The random variable   belongs to Kw-TMOF family ( ) if and only if the function   

defined in Theorem 1 has the form 
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Proof.  Let     be a random variable with pdf ( ), then 
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and 
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Conversely, if   is given as above, then 
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Now, in view of Theorem 1,    has density ( )  
 

Corollary 2.  Let     (   )  be a continuous random variable. The pdf of   is ( ) if 
and only if there exist functions   and   defined in Theorem 1 satisfying the differential 

equation 
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The general solution of the differential equation in Corollary 2 is 
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where   is a constant. Note that a set of functions satisfying the differential Equation 
(  ) is given in Proposition 1 with      However, it should be also noted that there are 

other pairs (   ) satisfying the conditions of Theorem 1. 
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Estimation 

The maximum likelihood estimators (MLEs) for the parameters of the Kw-TMOF is 

discussed in this section. Let           be a random sample of this distribution with 

unknown parameter vector   (           )   Then, the log-likelihood function for 

     ( )  is: 
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We can find the estimates of the unknown parameters by setting the score vector to zero, 

 ( ̂)     and solving them simultaneously yields the ML estimators  ̂  ̂  ̂  ̂  ̂and  ̂. 

These equations cannot be solved analytically and statistical software can be used to 

solve them numerically by means of iterative techniques such as the Newton-Raphson 

algorithm. For the five parameters Kw-TMOF distribution all the second order 

derivatives exist. Setting these above equations to zero and solving them simultaneously 

also yield the MLEs of the six parameters. 

 

For interval estimation of the model parameters, we require the     observed 

information matrix  ( )  *   +(                  ) given in Appendix A. Under 

standard regularity conditions, the multivariate normal   (   ( ̂)  ) distribution can be 

used to construct approximate confidence intervals for the model parameters. Here,  ( ̂) 
is the total observed information matrix evaluated at  ̂  Therefore, Approximate    (  
 )  confidence intervals for           and   can be determined as: 
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 is the upper  th percentile of the standard normal distribution.   

Data Analysis 

In this section, we provide two applications of the Kw-TMOF distribution to show its 

importance. We now provide a data analysis in order to assess the goodness-of-fit of the 

new model. For the two real data sets we shall compare the fits of the Kw-TMOF model 

with six of its sub models: the KMOIE, KMOIR, TMOF, MOF, TF and Fréchet 

distributions to show the potential of the new distribution. Moreover, we shall compare 

the proposed distribution with two non-nested models: gamma extended Fréchet (GEF) 

(da Silva et al., 2013) and beta Fréchet (BF) (Barreto-Souza et al., 2011) distributions 

with corresponding densities given (for    ) by 
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where  ,   ,   and   are positive parameters. 
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Data Set I: Glass Fibres 

The first data set is obtained from Smith and Naylor (1987). The data are the strengths of 

    cm glass fibres, measured at the National Physical Laboratory, England. 

Unfortunately, the units of measurement are not given in the paper. 

Data Set II: Carbon Fibres 

The second data set corresponds to an uncensored data set from Nichols and Padgett 

(2006) on breaking stress of carbon fibres (in Gba). This data set was previously studied 

by Afify et al. (2014) to fit the transmuted complementary Weibull geometric 

distribution. 

Table 2:   The statistics    ̂              and      for data set I 

   Model      ̂                            

 Kw-TMOF                                               

 TMOF                                             

 KTMOIE                                               

 BF                                            

 GEF                                              

 MOF                                                   

 TF                                                   

 F                                                

Table 3:   MLEs and their standard errors (in parentheses) for data set I 

   Model    Estimates  

    ̂    ̂    ̂    ̂    ̂    ̂  

Kw-TMOF                                                             

  (     )   (     )   (     )   (     )   (     )   (     )  

 TMOF                                       --    --  

 (       )   (     )   (     )   (     )    --    --  

KTMOIE             --                                       

  (     )    --   (     )   (     )   (     )   (     )  

 BF    --                      --                      

   --   (     )   (     )    --   (      )   (      )  

 GEF    --                      --                     

   --   (     )   (     )    --   (      )   (     )  

 MOF                               --    --    --  

  (     )   (     )   (     )    --    --    --  

 TF    --                               --    --  

   --   (     )   (     )   (     )    --    --  

 F    --                      --    --    --  

   --   (     )   (     )    --    --    --  
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Table 4:   The statistics    ̂              and      for data set II 

Model     ̂                            

Kw-TMOF                                                   

KTMOIE                                                   

BF                                                  

GEF                                                 

TMOF                                                  

MOF                                                   

TF                                                  

F                                                   

Model Selection 

The model selection is carried out using goodness-of-fit measures including the Akaike 

information criterion (   ), consistent Akaike information criterion (    ), Bayesian 

information criterion (   ), Hannan-Quinn information criterion (    ) and    ̂ 

(where  ̂ is the maximized log-likelihood). 
 

Tables 2 and 4 list the numerical values of the    ̂,    ,    ,      and      using the 

first data set, whilst the MLEs and their corresponding standard errors (in parentheses) of 

the model parameters are shown in tables 3 and 5. These numerical results are obtained 

using the Mathcad program. Based on these criteria in tables 2 and 4, we conclude that 

the Kw-TMOF distribution provides a superior fit to these data than its sub models and 

non-nested models. Figures 3 and 4 display the fitted pdf and cdf the Kw-TMOF model 

to both data sets. It is clear from these plots that the Kw-TMOF provides close fit to the 

two data sets. 

Table 5:   MLEs and their standard errors (in parentheses) for data set II 

   Model    Estimates  

    ̂    ̂    ̂    ̂    ̂    ̂  

Kw-TMOF                                                              

  (    )   (     )   (     )   (     )   (     )   (      )  

 KTMOIE             --                                       

  (     )    --   (     )   (     )   (     )   (     )  

 BF    --                      --                      

   --   (     )   (     )    --  (      )   (      )  

 GEF    --                      --                      

   --   (     )   (     )    --  (      )   (      )  

 TMOF                                        --    --  

 (      )   (     )   (     )   (    )    --    --  

 MOF                               --    --    --  

 (      )   (    )   (     )    --    --    --  

 TF    --                               --    --  

   --   (     )   (     )   (     )    --    --  

 F    --                      --    --    --  

   --   (     )   (     )    --    --    --  
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Figure 3:   The estimated pdf and cdf of the Kw-TMOF model for data set I. 

  

Figure 4:   The estimated pdf and cdf of the Kw-TMOF model for data set II. 

Conclusions 

In this paper, We propose a new six-parameter distribution, called the Kumaraswamy 

transmuted Marshall-Olkin Fréchet (Kw-TMOF) distribution, which extends the 

transmuted Marshall-Olkin Fréchet (TMOF) distribution (Afify et al., 2015). We provide 

some of its mathematical and statistical properties. The Kw-TMOF density function can 

be expressed as a mixture of Fréchet densities. We derive explicit expressions for the 

ordinary and incomplete moments, Rényi and  -entropies. We also obtain the density 

function of the order statistics and their moments. We discuss maximum likelihood 
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estimation and calculate the information matrix. Two applications illustrate that the Kw-

TMOF distribution provides better fit than other competitive distributions. We hope that 

the proposed extended model may attract wider applications in survival analysis. 
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