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Abstract

This paper introduces a new four-parameter lifetime model called the Weibull Burr XlI
distribution. The new model has the advantage of being capable of modeling various shapes
of aging and failure criteria. We derive some of its structural properties including ordinary
and incomplete moments, quantile and generating functions, probability weighted moments
and order statistics. The new density function can be expressed as a linear mixture of Burr
X1l densities. We propose a log-linear regression model using a new distribution so-called the
log-Weibull Burr XlI distribution. The maximum likelihood method is used to estimate the
model parameters. Simulation results to assess the performance of the maximum likelihood
estimation are discussed. We prove empirically the importance and flexibility of the new model
in modeling various types of data.
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1 Introduction

The statistical literature contains hundreds of continuous univariate distributions which have sev-
eral applications from finance, economics, environmental, biomedical sciences and engineering,
among others. These applications have shown that data sets following the well-known models are
more often the exception rather than the reality. So, a significant progress has been made towards
the generalization of some classical distributions and their successful applications in several areas.

The Burr-XIl (BXII) distribution originally proposed by Burr (1942) has many applications in
different areas including reliability, failure time modeling and acceptance sampling plans. Shao
(2004) extended the three-parameter BXII distribution and used it to model extreme events with
applications to flood frequency. Tadikamalla (1980) studied the BXIl model and its related mod-
els, namely: Pareto Il (Lomax), log-logistic, compound Weibull gamma and Weibull exponential
distributions.

Recently, many authors constructed generalizations of the BXII distribution. For example,
Paran@aet al. (2011) proposed the beta BXII, Par@eet al. (2013) studied the Kumaraswamy
BXIl, Gomeset al. (2015) proposed the McDonald BXII, Mead (2014) introduced the beta expo-
nentiated BXII, Al-Saiarieet al. (2014) studied the Marshall-Olkin extended BXIl and Mead and
Afify (2016) investigated the Kumaraswamy exponentiated BXII distributions.

The cumulative distribution function (cdf) and probability density function (pdf) of the two

parameter BXII distribution are given by (far> 0)
G(xa,pf)=1-(1+x)7* and  g(xa,p)=aBx (1 +x)FT, 1)

respectively, where andg are positive shape parameters.
The aim of this paper is to define and study a new lifetime model called\ibull Burr
X1l (WBXII) distribution. Its main feature is that two additional shape parameters are inserted

in equation (1) to provide more flexibility for the generated model. Using the Weibull-G (W-G)
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family of distributions (Bourguignoet al., 2014), we construct the four-parameter WBXII model

and give a comprehensive description of some of its mathematical properties. In fact, the WBXII
model can provide better fits than at least eight other models, each one having the same number of
parameters.

Further, the WBXII model due to its flexibility in accommodating all forms of the hazard rate
function (hrf) (see Figure 2) seems to be an important distribution that can be used to serve as an
alternative model to other lifetime distributions available in the literature for modeling positive real
data in many areas. We prove that the WBXII distribution is capable of modelling various shapes
of data using two dierent data sets. It can provide better fits to these data sets.

Let g(x; &) andG(x; £) denote the density and cumulative functions of the baseline model with
parameter vectaf and consider the Weibull cdi(x) = 1 — expax®) (for x > 0) with positive
parameters andb. Based on this density, Bourguignehal. (2014) replaced the argumexby

G(x; &)/G(x; &), whereG(x; &) is the reliability function and defined the cdf of their W-G family by

_ [gﬁig] bo1 —atd G(x; &) °
F(X,a,b,f) —abf(; tre?dt= 1—exp{—a m] } (2)
The corresponding pdf of (2) is given by
. [ GO [G(x; f)]b
f = it SRV _
(x;a,b,&) = abgx; &) [6(x; e exn{ a Sxol [ 3)

wherea andb are two additional positive shape parameters. In general a random vafiabte
pdf (3) is denoted bX ~W-G(a, b, &). If b = 1, the W-G class reduces to the exponential-G (Ex-G)
family.

To this end, we use equations (1) and (2) to obtain the four-parameter WBXII cd §d)

F(x .5,8,b) = 1- exp{-a[(L+ ¥y - 1]'}. ()

ACCEPTED MANUSCRIPT
3



ACCEPTED MANUSCRIPT

The corresponding pdf of (4) is given by

fxa.pab) = apabx ™ (L+x Yt [1-(1+x)?]

exp{—a[(l + X2y — 1]b}, (5)

wherea, 8,a andb are positive shape parameters. Henceforth, we denote a random vatiable
having pdf (5) byX ~WBXII(«,3,a,b). The WBXII model reduces to the exponential BXII
distribution whenb = 1. Fora = 1 andpB = 1, we obtain the Weibull Lomax and Weibull log-
logistic distributions, respectively. The cdse a = 1 refers to the exponential Lomax distribution
and the casb = 8 = 1 refers to the exponential log-logistic distribution. o b = @ = 1 and
a=b =8 =1, we have the standard Lomax and standard log-logistic distributions, respectively.
The survival function (sf), hrf and cumulative hazard rate function (chr¥ afe, respectively,
given by
S(x;a,B,a,b) = exp{—a[(l + X2 — 1]b},
h(x; a,,ab) = apab X (L+ XY [1- L+ x)*]

and

Hoa.B.a.b) = a[@+xy - 1] .
The remainder of the paper is organized as follows: in Section 2, we provide some plots for the
pdf and hrf of the WBXII model and derive useful mixture representations for the pdf and cdf. We
obtain in Section 3 some mathematical properties of the WBXII distribution including ordinary
and incomplete moments, quantile and generating functions, moments of the residual, reversed
residual life and probability weighted moments (PWMs), order statistics and their moments. The
maximum likelihood estimates (MLEs) of the model parameters are determined in Section 4, as
well as simulation results to assess the performance of the MLEs are discussed. In Section 5,

we propose the log-Weibull BXII (LWBXII) regression model and estimate the parameters by the

method of maximum likelihood. In Section 6, the WBXII distribution is applied to two real data
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sets to illustrate its potentiality. Finally, in Section 7, we provide some concluding remarks.

2 Plots and Linear Representation

In this section, we provide some plots of the pdf and hrf of the WBXII model to show its flexibility.
Figure 1 displays some plots of the WBXII density for some parameter valygs andb. Plots
of the hrf of the WBXII model for selected parameter values are given in Figure 2, where the hrf

can be bathtub, upside down bathtub (unimodal), increasing, decreasing or constant.

2.1 Linear Representation

The WBXII density function (5) can be expressed as

1—(1+x) "
f(x) = a,BabX"l(1+x")‘ﬁ‘1[ {+x) ]

(O

_ -5]°
exp —a[:L d+x) ] . (6)
b
(@ +x)7

A

]b+1

By expandingA, we can write

o (Cakak[1- @]

A:Z Kl

ko [(1 + xa)"g]bk

Inserting this expansion in (6) and, after some algebra, we have

oo (_1)kak+1 1— (1 + Xa)_ﬁ b(k+1)-1
() =apbx(1+x)7" ;Z‘ k! [([1 + X )ﬂ]b(k+1)]1
=0 | e

Consider the power series

R N 1—‘(q-i_J) j
(1-2 ,Z:;‘ e z, (7)

which holds forizZ < 1 andq > 0 real non-integer.
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—[b(k
After applying the power series (7) {()1 + x")‘ﬁ] [ +l)+1], the last equation can be rewritten

as

bad*Ir'(b(k+1)+j+1)
K'T'(b(k+1)+1)

f) = apx(@1+x)7" i 2y

k,j=0
[1- @) ®)
Next, consider the generalized binomial series given by
r
(1-2t= Z( DLy, ©)

rNra- r)
which holds forlZ < 1 anda > 0 real non-integer.

Applying the generalized binomial (9) to the last term of (8) and after some simplifications, the

WBXII density (8) can be expressed as a linear mixture of the BXII densities as

oo

f() = > o g B(r +1)), (10)

r=0
where
3 (D) bad T (b(k+1) + T (b(k+1) +j+1)

v =vr(ab) = kao KIjt (r+ D)IT(b(k+ 1)+ YT (b(k+ 1)+ j—r)

andg(x; «, B (r + 1)) is the BXII density with parametersandg (r + 1).

Let W be a random variable having the BXII distribution (1) with parameteendp. For

Ir < af, therth ordinary and incomplete moments\afare, respectively, given by
rr ror

ﬂ?:ﬁB(ﬁ——,—+1) and gor(z):ﬁB(z“;ﬁ__’_+l)’
a «a a

whereB(a,b) = [~ t**(1 + t)"@dt andB(z a,b) = fozta‘l (1 + t)~@+D)dt are the beta and the
incomplete beta functions of the second type, respectively. So, several structural properties of the

WBXII model can be obtained from (10) and those properties of the BXII distribution.
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Similarly, the cdf (4) ofX can be expressed in the mixture form

(o)

FO) = ) o G(xa.B(r +1)),

r=0

whereG(x; a, 8(r + 1)) is the BXII cdf with parameters andg(r + 1).

3 The WBXII Properties

We investigate mathematical properties of the WBXII distribution including ordinary and in-
complete moments, quantile and generating functions and PWMs. It is better to obtain some struc-
tural properties of the WBXII distribution by establishing algebraic expansions than computing

those directly by numerical integration of its density function.

3.1 Ordinary Moments

Thenth ordinary moment oK is given by

= B = v, fo X (% @, B (r + 1)dx
r=0

Forn < af, we obtain

[

o= EX) = Y u B +1) B(ﬁ(r+1)—£,g+1). (11)

r=0
Settingn = 1in (11), we have the mean &f

The sth central momentNls) and cumulants«g) of X, are, respectively, given by
° (s
Me = EOC )" = 3 (1) (o,
and

s-1
’ § s-1 ’
Ks = Ug— (i_l)Kr/ls—r,

i=0
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wherex; = y}. The skewness and kurtosis measures can be calculated from the ordinary moments
using well-known relationships. Thefects of the parametesandb on the mean, variance,

skewness and kurtosis for given valuesrandg are displayed in Figures 3 and 4, respectively.

3.2 Quantile and Generating Functions

The quantile function (gf) oK is obtained by inverting (4) as

@

-1 HE
Xq = 1+(€Iog(1—q))] -1 ,0<g< 1L (12)

By settingg = 0.5 in (12) gives the median of. Simulating the WBXII random variable
is straightforward. IfU is a uniform variate on the unit interval (D), then the random variable
X = xq atq = U follows (5).

The moment generating function (mgf) ¥f sayMy (t) = E [exp(tX)], can be obtained from
(9) as

(o8]

Mx (®) = > vr Mra (1),

r=0
where M, (t) is the mgf of the BXII distribution with parameters g (r + 1). Paranéaet al.

(2011) provided a simple representation for the mgf of the three-parameter BXII distribution. In a
similar manner, we provide another representation for the mgfivialy of the BXII(a, 8) model.

Fort < O, we can write

M () = of f expyt) Yt (L + y) P dy.

Next, we require the Meijer G-function defined by

xtdt,

ai, ..., ap —if ]_[T‘le"(bj+t)]_[?:11“(l—aj—t)
by by | 2Ty (8 + ) [T s T (1 by — 1)

j=n+1

mn
Gp,q [xl

j=m+l
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wherei = V-1 is the complex unit ant denotes an integration path (Gradshteyn and Ryzhik,
2000, Section 9.3). The Meijer G-function contains as particular cases many integrals with ele-
mentary and special functions (Prudniketval.,, 1986). We now assume that= m/8, wherem
andg are positive integers. This condition is not restrictive since every positive real number can be
approximated by a rational number.

We have the following result, which holds for m and k positive integers, -1 andp > O

(Prudnikovet al., 1992, p. 21),

| (IO,,u, m,v) = f exp(-pxX) x* (1+ X;—")de
B 0
— VGgﬁHE mm A(m :u) A(ﬁ V+ 1)
-, g
A (B,0)
vurd
whereV = m anda (8,a) = &, %1, a%f. We can write (fott < 0)

m m
M) =ml|[-t,— -1, —,—-B-1].
® m( g P )

Hence, the mgf oK can be expressed as

- m m
My (t) = m;vr | (—t,ﬁ(r D —1,[))(r +1),—,8(r +1)—1).

3.3 Incomplete Moments

Thesth incomplete moment, say(t), of the WBXII distribution is given bys(t) = fot x® f(x)dx.

We can write from equation (10)

o)=Y v [ Xabas(r+ D)dx
r=0

and then using the lower incomplete gamma function, we obtairs(¥ot3)

(o)

= D u B+ BT +D -2, 2 +1).
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The first incomplete moment of, denoted by, (t), is simply determined from the above
equation by setting = 1.

The first incomplete moment has important applications related to the Bonferroni and Lorenz
curves and the mean residual life and the mean waiting time. Furthermore, the amount of scatter
in a population is evidently measured to some extent by the totality of deviations from the mean

and median. The mean deviations, about the mean and about the meXiahepend orp; (t).

3.4 Residual and Reversed Residual Life Functions

The nth moment of the residual life, denoted by(t) = E[(X-t)" | X >t], n=12,...,
uniquely determind-(x) (see Navarreet al,, 1998). Thenth moment of the residual life of is

given by

() = f " (x - " dF(x).

1
1-F(@)
Then, we can write

n

°°( )n|n|tn| " i
> anr(n r5(r+1)B(t (r+1)—5,5+1).

1
my(t) = RO
Another interesting function is the mean residual life (MRL) function or the life expectation at
agex defined bymy(x) = E[(X — X) | X > X], which represents the expected additional life length
for a unit which is alive at agg. The MRL of the WBXII distribution can be obtained by setting
n = 1 in the last equation.
Navarroet al. (1998) proved that thath moment of the reversed residual life, dsty(t) =
E[t-—X)"| X<t]fort>0andn=1,2,..., uniquely determinds(x).

Then,M(t) is defined by

1t
Mn(t):%fo(t—x) dF(x).
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Thenth moment of the reversed residual lifeXf

_ 1 v Y N
Mn(t)—%;;”(n I)Ivr,B(r+1)B(t ﬁ(r+1)———+1)

The mean inactivity time (MIT) or mean waiting time (MWT), also called the mean reversed
residual life function, say,(t) = E[(t — X) | X < t], represents the waiting time elapsed since
the failure of an item on condition that this failure had occurred inK0The MIT of X can be

obtained by setting = 1 in the above equation.

3.5 Probability Weighted Moments

The PWMs are expectations of certain functions of a random variable and they can be defined
for any random variable whose ordinary moments exist.

The (s r)th PWM of X following the WBXII model,ps,, is defined by

psr = E{X°F(X)"} = f_m xX*F(X)" f(x) dx

Using (4) we can write

[1- @)}
1-expy—a =
|+ x)7]
i (_1)i l—-(r + 1) exp{_ia[l - (1 + Xa)ﬁ]b} |

4L (r—i+1) 2+ Xa)—ﬁ]b

F(X)'

Using (5) and the above equation, and after some simplifications, we obtain

0 -1 i+k+mbak+1
FFT = apx™ ) DR i)!k!j!m

i Jm=0
(i+DTr+DT(bK+D+j+DTCbOEK+D+]))
i+ DIk D+DTOK+D+]-m)

(1 + x(x)—ﬁ(m+1)—l
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After some algebra, we have

F0) FOO = D Tm g 2, 8(M+ 1),
m=0

where
b(-D)" « (—1)‘*" a“ (i + 1)"F(r +1)
(m+1)!ikj:0 KT (r—i+1)

Fbk+1)+j+ )T bk+1)+])
Thk+)+ I bKk+D)+]j-m)

Tm:

Then, the § r)th PWM of X can be expressed as

Psr = mi:;)ﬂ(m+ ¥ B(,B(m+ 1)- §§+ 1).

3.6 Order Statistics

corresponding order statistics. Then, the pdf ofitherder statisticX;.,, say fi.n(X), is given by

X O, n=1\
fi;n(X) = m ; (—1)1( J )F(X) J 1_ (13)
We can write
(C1"T G+ ) [1- @+ x) ]
i+j-1 /.
F(x)"I- Z TR exp{a\fv [(1+ Xa)—ﬁ]b } (14)

By inserting (5) and (14) in equation (13), we obtain

fin() = D tn 906 @, B(M+ 1)), (15)
m=0

where
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B b(—l)m o n-i _1)w+k+j ak+1(w+1)k(”}1)
" e 2 2, W KHIB(i,n—i+1)

wkI=0 j=0
i+ j)l“(bj(k+ D+1+1)T(b(k+1)+1)
ri+j-wrbk+)+D)Ir'(bk+1)+1-m)

andg(x; a,8(m+ 1)) denotes the BXII density function with parameterandg (m+ 1). Thus,

the density function of the WBXII order statistics is a linear mixture of two-parameter BXII den-
sities. Based on equation (15), we can obtain some structural properiigs fobm those BXII
properties.

Theqth moment ofX;., is given by

(o8]

EX) = Y tB(M+ 1) B(,B(m+ 1)—g,g+1). (16)

m=0
The L-moments are analogous to the ordinary moments and can be estimated by linear com-
binations of the order statistics. Then, using the moments in equation (16), we can derive explicit
expressions for the L-moments X¥fas infinite weighted linear combinations of the means of suit-

able WBXII distributions. They are defined by £ 1)
15 s-1
As = g%(—l)d( q ) E(Xs—d:s), s> 1
The first four L-moments, sa¥, 12, 13 and A, are, respectively, given by

1
A = EXp), 2= EE (X2:2 — X1:2)
1

/13 = é E (X3:3 — 2X2;3 + Xl:3) and
1
Ay = ZE ()(4:4 — 3X3z.4 + 3Xp.4 — >(1:4) .

We can obtain tha'’s for X from equation (16) withg = 1.
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4 Maximum Likelihood Estimation

We consider the estimation of the unknown parameters of the WBXIlI model from complete
samples only by maximum likelihood. The MLEs of the parameters of the WBXIB,(@, b)
model is now discussed. Led,..., X, be a random sample of this distribution with parameter
vectorf = (,f,a,b)T.

The log-likelihood function fop, say¢ = £(6), is given by

¢ = nloga +nlogps +nloga+ nlogb+(a—1)ZIog>q
+(b-1) > log(1+ %) +(0-1) > logs —a >, (17)
i=1 i=1 i=1

wheres = [1 - (1 + xl.")_'g].

The last equation can be maximized either by using tier@int programs lik& (optim func-
tion), SAS (PROC NLMIXED) or by solving the nonlinear likelihood equations obtained lifedén-
tiating (17).

The score vector elementd, () = (g—f; g—/‘;, g, %) , are given by

—:E+Zlogx.+(ﬁb 1)2 gx, +(b - 1)Zﬂ—abzp§bl

o n ( +x) & 9 tlog(1+ %)
—+b » log(1+ x")+(b—-1) ab
B P Z IZ-:‘S( ) Z:‘ (1)

== __Zsb d — = E+ﬂZ|og(1+>q’)+Z logs- az $logs.

b

respectively, wherg; = Sx¢ (1 + xi“)_ " log(x).
We can obtain the estimates of the unknown parameters by setting the score vector to zero,
U@ = 0. By solving these equations simultaneously gives the I\/E‘y;@?a‘andﬁ For the WBXII

distribution all the second order derivatives exist.
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The interval estimation of the model parameters requires ¥ dbserved information matrix
J(0) = {J;) for i, ] = a,B,a b. The multivariate normalN4(0, J(@‘l) distribution, under standard
regularity conditions, can be used to provide approximate confidence intervals for the unknown
parameters, whenﬂz@) is the total observed information matrix evaluated.athen, approximate
100(1- 6)% confidence intervals far, 8, a andb can be determined by:

@+ Zsa\ Joar B * Zoj2+|Jgsr A% 252y Jaa and b = z;2 4/ Ipp, Wherez;, is the uppewth

percentile of the standard normal model.

4.1 Simulation Study

In this section, we assess the performance of the MLEs of the WBXII parameters using Monte
Carlo simulations. For dlierent combinations at, 8, a andb, samples of sizes = 100, 200, 500
and 1000 are generated from the WBXII model. We repeat the simullatiori, 000 times and
evaluate the MLEs and their standard errors (in parentheses). The empirical results are given in
Table 1. Itis evident that the estimates are quite stable and close to the true values of the parameters
for these sample sizes. Additionally, as the sample size increases, the biases and the standard errors

of the MLESs decrease as expected.

5 The Log-Weibull Burr XII Regression Model with Censored

Data

Henceforth X is a random variable following the WBXII density function ( 3) avids defined by

Y = log(y X), wherey > 0 is a new parameter. It is easy to verify that the density functiori of
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obtained by replacing = 1/0- andy = exp({u) reduces to
Bb-1 _ -8 Pt
fly) = ﬁexp( )[1+ exp(y “)] {1— [1+ exp(y—’u)] } X
ag g a g
b
exp{ {1 + exp(y 'u)} 1] } —00 <Y < 00, (18)
o

wherea > 0,b > 0,8 > 0,u € R ando > 0. We refer to equation (18) as the n&g-Weibull

Burr X1l (LWBXII) distribution, sayY ~ LWBXII( a, b, 3, o, 1), whereu is the location parameter,

o is the dispersion parameter aad andg are shape parameters. Thus,
if X~WBXIll(a,b,8,a) then Y =log(yX)~LWBXII(ab,s,o,u).

In Figure 5, we plot this density function for selected values of the paramatdrand g
showing that the LWBXII density could be very flexible for modeling its kurtosis, skewness and
bimodal forms.

The corresponding survival function is

{1 ; exp(yo_'u )} 1]b} . (19)

The random variabl& = (Y — u)/o has density function

S(y) = exp{

f@ = abgexp@[l+exp@{1-[1+exp@]”)  x
exp{-al(1-+exp(a) -1} (20)

In many practical applications, the lifetimes aféeated by explanatory variables such as the
cholesterol level, blood pressure, weight and many others. Parametric models to estimate univariate
survival functions and for censored data regression problems are widely used. A parametric model
that provides a good fit to lifetime data tends to yield more precise estimates of the quantities

of interest. Based on the LWBXII density, we propose a linear location-scale regression model

ACCEPTED MANUSCRIPT
16



ACCEPTED MANUSCRIPT

linking the response variabjg and the explanatory variable vectdr = (X1, ..., Xip) as follows
Yi=Vit+oz,i=1...,n (21)

where the random errag has density function (20% = (71,...,7p)", 0 > 0,a > 0,8 > 0
andg > 0 are unknown parameters. The paramgtet vt is the location ofy;. The location
parameter vectqe = (u1,...,un)" is given by a linear modet = Vr, whereV = (vy,...,v,)" is
a known model matrix. The LWBXII model (21) opens new possibilities for fitting maffedint
types of data. It contains as special models the following new regression models:

e Log-exponential Burr X1l (LEBXII) regression model

Forb = 1, the survival function is

(ven(22)f 1))

e Log-Weibull Lomax (LWLomax) regression model

S() = exp{—a

Foro = 1, the survival function is
b
S(y) = exp{-a[(1+ exp(y - )V’ - 1]'}.

e Log-Weibull log-logistic (LWLLogistic) distribution

Forp = 1, the survival function becomes

Sy) = exp{—aexp[b (y_—“)]}

(o

Consider a sampley{, v1), ..., (Vn, Va) Of nindependent observations, where each random re-
sponse is defined by, = min{log(x),log(c)}. We assume non-informative censoring such that
the observed lifetimes and censoring times are independent- batdlC be the sets of individ-

uals for whichy; is the log-lifetime or log-censoring, respectively. Conventional likelihood esti-
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mation techniques can be applied here. The log-likelihood function for the vector of parameters
0 = (a,b,8,0,7") from model (21) has the forhig) = > I;(6)+ 3 Ii(c)(O), wherd;(6) = log[f(y)],

ieF ieC
Ii(c)(O) = log[S(y;)], f(y;) is the density (18) an8(y;) is the survival function (19) of;. The total

log-likelihood function foré reduces to

1(6) = rlog(¥)+22,-+(ﬁb—1)ZIog[1+exp®)]

ieF ieF
+(b—1) ) log{1 - [1 + exp@)] *} — a ) {[1 + exp@))’ - 1)°
ieF ieF
-a ) {[1+exp@))’ - 1 (22)

ieC
wherez = y; — v/ /o andr is the number of uncensored observations (failures). The WIDE
the vector of unknown parameters can be determined by maximizing the log-likelihood (22). We
use the NLMixed procedure in SAS to calculate the estirdateitial values forB ando are taken
from the fit of the log-Weibull regression model. The fit of the LWBXII regression model gives

the estimated survival function fegr

_vTT\) P b
{1 + exp(—yl — i T)} -1
g

Under conditions that are fulfilled for the parameter veéan the interior of the parame-

T

S(y;;4,b,8,5,7') = exp{ -a

ter space but not on the boundary, the asymptotic distributio@efﬁ() is multivariate normal

Np.4(0, K(6)™1), whereK(0) is the information matrix. The asymptotic covariance malki@)*

of 6 can be approximated by the inverse of tpe-@) x (p+4) observed information matrixL (6).

The elements of the observed information matrix(6), namely—L aa, —L ap, —Lgs, —Lar, —Lar,

—Loby =L g, —Lbos —Lbrjs —Lgss =Lgor =Lpris —Loos Lo and—LTm,, forj,jy =1,...,p, can

be evaluated numerically. The approximate multivariate normal distribijos(0, —L (6) %) for 6

can be used in the classical way to construct approximate confidence intervals for some parameters
iné.

We can use the likelihood ratio (LR) statistic for comparing some special models with the
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LWBXII model. We consider the partitiod = (6],6;)", whered is a subset of parameters of
interest and), is a subset of remaining parameters. The LR statistic for testing the null hypothesis
Ho : 6: = 6 versus the alternative hypothesis : 6; # 6 is given byw = 2(¢(6) — ¢(6)}, where

6 and# are the estimates under the null and alternative hypotheses, respectively. The stiistic
asymptotically (a® — oo) distributed ag?Z, wherek is the dimension of the subset of parameters

6, of interest.

6 Applications

6.1 Application 1: Glass Fibre Data

The importance and flexibility of the WBXII distribution are illustrated by means of a real data
set. It consists of 63 observations of the strengths of 1.5 cm glass fibres (the units of measurement
are not given) originally obtained by workers at the UK National Physical Laboratory (see, Smith
and Naylor, 1987).

For the glass fibre data, we shall compare the fits of the WBXII and BXII distributions and the
following competitive non-nested models: Kumaraswamy exponentiated Burr Xll (KwEBXII)
(Mead and Afify, 2016), transmuted complementary Weibull geometric (TCWG) (Afifgl.,
2014), exponentiated transmuted generalized Rayleigh (ETGR) (&ffi, 2015), transmuted
Marshall-Olkin Féchet (TMOFr) (Afify et al., 2015), beta exponentiated Burr Xl (BEBXII)
(Mead, 2014), transmuted exponentiated generalized Weibull (TExGW) (Yaisalf 2015),
Weibull Frechet (WFr) (Afifyet al., 2016), Weibull Lomax (WL) (Tahiet al,, 2015), and beta
Burr Xl (BBXII) (Parandbaet al., 2014) with corresponding densities (for> 0) given in Ap-
pendix A.

In order to compare the distributions, we consider the following criteria:—ﬂ@maximized

log-likelihood), AIC (Akaike information criterion),CAIC (consistent Akaike information cri-
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terion), BIC (Bayesian information criterion) and QIC (Hannan-Quinn information criterion).
Also, we apply formal goodness-of-fit tests in order to verify which distribution fits better to these
data. In particular, we consider the Cramvon Mises {V*) and Anderson-DarlingX*)statistics.
TheW* andA* statistics are described in details in Chen and Balakrishnan (1995). The model with
minimum values for these statistics could be chosen as the best model to fit the data.

Table 2 lists the values of the MLEs and their corresponding standard errors (in parentheses)
of the model parameters. These results are obtained using the MATHCAD PROGRAM.

In Table 3, we compare the WBXII model with the KWEBXII, TCWG, ETGR, TMOFr, BE-
BXII, TEXGW, BBXII and BXII distributions. We note that the WBXII model gives the lowest
values for thlC, BIC, CAIC, HQIC, W* andA* statistics among all fitted models. So, the WBXII
model could be chosen as the best model to explain the current data. It is clear from the plots in
Figure 6 that the WBXII density provides a better fit to the histogram of the data. The plots in

Figure 7 support the fitted WBXII distribution than the other nested and non-nested models.

6.2 Application 2: Regression Model

In this section, we consider a data set provided by the Instituto ddeS@oletiva - Universidade
Federal da Bahia. These data were designed to evaluat&éioe @& vitamin A supplementation

on recurrent diarrheal episodes in small children (see Baete&h, 1994). Censoring times are
random, and we aim to verify the treatmeffiieet in time until the first occurrence of diarrheal
episodes. This can be done by means of an appropriate regression model with censored data.
The data from a randomized community trial that was designed to evaluatée¢bead vitamin

A supplementation on diarrheal episodes in 1,207 pre-school children, aged 6-48 months at the
baseline, who were assigned to receive either placebo or vitamin A in a small city in the Northeast
of Brazil from December 1990 to December 1991. The vitamin A dosage was 100,000 IU for

children younger than 12 months and 200,000 U for older children, which is the highest dosage
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guideline established by the World Health Organization (WHO) for the prevention of vitamin A
deficiency.

The total time is defined as the time from the first dose of vitamin A until the occurrence of
an episode of diarrhea. An episode of diarrhea is defined as a sequence of days with diarrhea
and a day with diarrhea is defined when 3 or more liquid or semi-liquid motions are reported in a
24-hour period. The information on the occurrence of diarrhea collected at each visit corresponds
to a recall period of 48-72 hours. The number of liquid and semi-liquid motions per 24 hours is
recorded.

The covariates considered in the models are:

e V1. age at baseline (in months);

e V. treatment (G= placebo, 1= vitamin A);

e V3. gender (C= girl, 1 = boy).

Next, we present results by fitting the model
Yi = To+ T1Vi1 + TaVi2 + T3Vis + 07,

where variabley; follows the LWBXII distribution given in (18)i = 1,2,...,1207. The MLEs of
the model parameters are evaluated using the NLMixed procedure in SAS. Iterative maximization
of the logarithm of the likelihood function (22) starts with initial values foand o, which are
taken from the fit of the log-Weibull regression model.
We note from the fitted LWBXII regression model thatis significant at 1% and that there is
a significant diference between the age for the survival times.
A summary of the values of th&lC, BIC andCAIC to compare the LWBXII, LEBXII, LWLo-
max and LWLogistic regression models is given in Table 5. The LWBXII and LEBXII regression
models outperform the LWLomax and LWLogistic models irrespective of the criteria and then they

can be usedftectively in the analysis of these data.
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A comparison of the proposed regression model with some of its sub-models using LR statistics
is addressed in Table 6. The figures in this table, specially the p-values, indicate that the new

LWBXIl and LEBXII regression models yield better fits to the current data than its two null models.

7 Conclusions

In this paper, we propose a new four-parameter model called the Weibull Burr XII (WBXII)
distribution, which extends the Burr XII (BXIl) distribution. The WBXII density function can
be expressed as a linear mixture of BXIl densities. We derive explicit expressions for some of its
mathematical and statistical quantities including the ordinary and incomplete moments, cumulants,
guantile and generating functions and probability weighted moments. We also obtain the density
function of the order statistics and their moments. We discuss maximum likelihood estimation.
The proposed distribution provides better fits than some other nested and non-nested models by
using two real data sets. We hope that the proposed model will attract wider applications in areas

such as survival and lifetime data, meteorology, hydrology, engineering and others.
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Appendix A:
In this appendix we provide the densities used in the applications.

o KwWEBXII distribution

_abcopxt

f(X) - (1 + XC)6+1

[1- @] {1 “[1-a+ xc)—g]aﬁ}b_l .
e TCWG distribution

F0) = By G e [o+(1-a) 0] x

le(@-D)-(@-a1-1-1) ™.

e ETGR distribution

ad—

f0 = 2068 xe® [1-e®" " 1+ 1-2[1- ]} x

ay0-1

{1+2-a[1-e®

e TMOFr distribution

f(x) _ aﬁ aﬁx—ﬁ—le_(%)ﬁ

1+A- 21e () } .

a+(1-a)e )

a+(1-a) e—(%)ﬁ]2

e BEBXII distribution

cop

'0=5&b

X 1+ XC)_H_l [1 -1+ XC)_Q]aﬁ_1 {1 _ [1 —(1+ Xc)—e]ﬁ}b_l '
e TEXGW distribution

ACCEPTED MANUSCRIPT
23



ACCEPTED MANUSCRIPT

e WHFr distribution

-b-1
X

f() = abgafx? et {1_e—(%)’3}

e_a{e<%>ﬁ_1}”’

e WL distribution

F() = aTE’“ (1 . g)m_l [1 _ (1 . g)_a]b_le—a{[(hé)"—lnb.

o BBXII distribution

~ CO,B‘C . Xc—0b—1
f(x) = B(a,b)X”[lJr(E)] {1—

a-1

c1-6
X
(3)]
B
The parameters of the above densities are all positive real numbers except the patameter

where|1] < 1 andx > 0.
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Table 1: MLEs and standard errors for various parameter values.

Actual Values Sample Estimated Values (Standardi&m®ns)
a B a b size f) a B a b
25 4 25 5 100 2.52178 4.019508 2.511852 5.131948
(0.748566) (1.023036) (0.520946) (0.73552)
200 2.55434 4.029435 2.456489 4.962408
(0.394184) (0.475746) (0.402375) (0.557122)
500 2.474571 4.027779 2.510952 5.01093
(0.298284) (0.462672) (0.31505) (0.195476)
1000 2.521237 3.995163 2.502051 5.012125
(0.093599) (0.203402) (0.207569)  (0.093944)
3 3 05 05 100 3.126232 2.895511 0.527005 0.479079
(0.722604) (0.924394) (0.290221) (0.305075)
200 2.891608 3.124661 0.488041 0.500701
(0.711989) (0.884334) (0.189888) (0.195327)
500 2.970981 2.934284 0.495323 0.508823
(0.708819) (0.771858) (0.161157 (0.183254)
1000 3.005697 2.978301 0.50048 0.499082
(0.657257) (0.49657) (0.106829) (0.10835)
2 5 15 1.75 100 2.142251 4.93574 1.511454 1.765754
(1.027794) (1.362116) (0.470984) (0.780493)
200 2.046017 4.904674 1.504422 1.72069
(0.505309) (1.042812) (0.41307) (0.586415)
500 1.981871 4.899376 1.48027 1.760829
(0.236126) (0.517487) (0.235757) (0.239855)
1000 1.997151 4.999491 1.498517 1.759312
(0.113938) (0.239913) (0.104453)  (0.102966)
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Table 2: MLEs of the parameters from fitted models to the strength$aii glass fibre data and

the corresponding SEs (given in parentheses).

Model | @ B a b
WBXII 1.6077 2.7409 0.0026 1.8888
(0.3760)  (1.0100)  (0.0032) (0.7680)
WL 17.5336 110.7104 581.4052 5.1752
102.1130 (659.3920) (28.2900) (0.2010)
WFr 0.3865 0.2436 14762 16.8561
(0.7990)  (0.2850)  (4.7820) (20.4850)
\ a b c 0 B
KwEBXII 4.022 137.8974 1.0241 1.3285 4.0102
(24.1410) (115.5110) (0.6650)  (1.2970)(26.0651)
‘ a B Y A
TCWG 55.4366 7.9096 0.3904 0.0862
(59.0080) (0.8670)  (0.0470) (0.3780)
|« B A §
ETGR 14.1641 0.9867 0.0009 0.3872
(10.9710)  (0.0540)  (0.0180) (0.2760)
|« B a A
TMOFr 0.6500 6.8744 376.268 0.1499
(0.0490)  (0.5960)  (246.8320) (0.3020)
\ a b c 0 B
BBXII 26.1629 14.7050 0.9271 5.5864 8.2620
(14.5880) (12.8850) (0.2130)  (5.2150) (8.1320)
\ a b c 0 B
BEBXII 26.5651 23.3641 0.8777 1.2975 1.6224
(26.4000) (21.1450)  (0.5920)  (1.1120) (0.9540)
|« B a b A
TEXGW 2.4230 0.5009 3.5578 647.4932 0.2361
(7.1840)  (0.0950)  (5.3180)  (497.8990)(0.2130)
|« B
BXII 7.4821 0.3207
(1.2850)  (0.0650)
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Table 3: The goodness of fit criteria for strengths & dm glass fibre data.

Model -2 AlIC BIC HQIC  CAIC w A
WBXII 28607 36607 4518 39979 37297 Q19257 105507
WL 29868 37868 46441 4124 38558 024429 131348
WFr 31001 39001 47574 42373 39691 027786 148538
KwEBXIl 39041 49041 59757 53255 50093 Q43694 23495
TCWG 44541 52541 61114 55913 53231 050241 272575
ETGR 47.858 55858 6443 59229 56547 (054315 30567
TMOFr 4846 5646 65032 59831 57149 056541 310166
BBXII 5171 6171 72426 65925 62763 Q64538 350125
BEBXIl 57044 67044 7776 71259 68097 Q71739 391975
TEXGW 76435 86435 97151 9065 87488 Q43694 23495
BXII 97442 101442 105729 103128 101642 117788 136685
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Table 4: MLEs of the parameters from the LWBXII regression model fitted to the vitamin A data
set, the corresponding SEs (given in parentheses), p-valugs in |

Model ‘ a b B o 70 T1 T T3

LWBXII 0.4472 0.6699 0.1966 0.2111 2.0220 0.0223 0.0948.0363
(0.1718) (0.2901) (0.0768) (0.0639) (0.2508) (0.0027) (0.057®@).0600)

[<0.001] [<0.001] [0.1016] [0.5452]

LEBXII 0.7936 1 0.1231  0.2700 1.7892 0.0224 0.09500.0489
(0.2723) (0.0212) (0.0305) (0.1311) (0.0027) (0.05860.0588)

[<0.001] [<0.001] [0.1061] [0.4051]

LWLomax | 41.1704 2.5441  0.0785 1 0.7760 0.0315 0.1389.0427
(5.0098) (0.2548) (0.0154) (0.3903) (0.0027) (0.06370.0638)

[0.0470] [<0.001] [0.0295] [0.5042]

LWLogistic | 0.0184 0.3101 1 0.2807 -0.2161 0.0324 0.1465.0199
(0.0393) (0.6093) (0.5513) (1.9295) (0.0025) (0.05979.0597)

[0.9108] [<0.001] [0.0142] [0.7376]
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Table 5:-2i, AIC, CAIC, BIC andHQIC statistics for comparing the LWBXII, LEBXII, LWLo-
max and LWLogistic regression models.

Model -2 AlC CAIC BIC HQIC
LWBXII 3207.7 3219.7 3219.8 3260.5 3235.1
LEBXII 3204.4 3218.4 32185 3254.1 3231.8

LWLomax 3296.0 3283.0 3283.1 3318.7 3296.4
LWLogistic 3396.8 3410.8 3410.9 3446.8324.2

ACCEPTED MANUSCRIPT
32



ACCEPTED MANUSCRIPT

Table 6: LR statistics for the vitamin A data.
Comparison | Hypotheses | LRtatistic| p-value
LWBXII vs LEBXII Ho: b=1vsH; : Hyis false 0.7 0.4027
LWBXIl vs LWLomax | Hg: o = 1 vsH; : Hgis false 65.3 <0.0001
LWBXII vs LWLogistic | Hp : 8= 1vsH; : Hpis false 193.1 <0.0001
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Figure 1: Plots of the WBXII pdf for some parameter values.
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Figure 2: Plots of the WBXII hrf for some parameter values.
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Figure 3: Plots of mean and variance of the WBXII model.
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Figure 5: The LWBXII density curves: (a) For some values@ndb with 8 = 0.5, u = 0.0 and

o = 1.0. (b) For some values @fandg with b = 0.5, u = 0.0 ando- = 1.0. (c) For some values of
b andg with a = 0.5, 4 = 0.0 ando = 1.0.
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Figure 6: Estimated pdfs for the WBXII model and other competitive models.
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Figure 7: (a) The estimated cdf of the WBXII model. (b) QQ-plot of the WBXII model.
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