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Abstract

This paper introduces a new four-parameter lifetime model called the Weibull Burr XII

distribution. The new model has the advantage of being capable of modeling various shapes

of aging and failure criteria. We derive some of its structural properties including ordinary

and incomplete moments, quantile and generating functions, probability weighted moments

and order statistics. The new density function can be expressed as a linear mixture of Burr

XII densities. We propose a log-linear regression model using a new distribution so-called the

log-Weibull Burr XII distribution. The maximum likelihood method is used to estimate the

model parameters. Simulation results to assess the performance of the maximum likelihood

estimation are discussed. We prove empirically the importance and flexibility of the new model

in modeling various types of data.
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1 Introduction

The statistical literature contains hundreds of continuous univariate distributions which have sev-

eral applications from finance, economics, environmental, biomedical sciences and engineering,

among others. These applications have shown that data sets following the well-known models are

more often the exception rather than the reality. So, a significant progress has been made towards

the generalization of some classical distributions and their successful applications in several areas.

The Burr-XII (BXII) distribution originally proposed by Burr (1942) has many applications in

different areas including reliability, failure time modeling and acceptance sampling plans. Shao

(2004) extended the three-parameter BXII distribution and used it to model extreme events with

applications to flood frequency. Tadikamalla (1980) studied the BXII model and its related mod-

els, namely: Pareto II (Lomax), log-logistic, compound Weibull gamma and Weibull exponential

distributions.

Recently, many authors constructed generalizations of the BXII distribution. For example,

Paranáıbaet al. (2011) proposed the beta BXII, Paranaı́baet al. (2013) studied the Kumaraswamy

BXII, Gomeset al. (2015) proposed the McDonald BXII, Mead (2014) introduced the beta expo-

nentiated BXII, Al-Saiarieet al. (2014) studied the Marshall-Olkin extended BXII and Mead and

Afify (2016) investigated the Kumaraswamy exponentiated BXII distributions.

The cumulative distribution function (cdf) and probability density function (pdf) of the two

parameter BXII distribution are given by (forx > 0)

G(x;α, β) = 1− (1+ xα)−β and g(x;α, β) = αβxα−1 (1+ xα)−β−1 , (1)

respectively, whereα andβ are positive shape parameters.

The aim of this paper is to define and study a new lifetime model called theWeibull Burr

XII (WBXII) distribution. Its main feature is that two additional shape parameters are inserted

in equation (1) to provide more flexibility for the generated model. Using the Weibull-G (W-G)

2
ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

family of distributions (Bourguignonet al., 2014), we construct the four-parameter WBXII model

and give a comprehensive description of some of its mathematical properties. In fact, the WBXII

model can provide better fits than at least eight other models, each one having the same number of

parameters.

Further, the WBXII model due to its flexibility in accommodating all forms of the hazard rate

function (hrf) (see Figure 2) seems to be an important distribution that can be used to serve as an

alternative model to other lifetime distributions available in the literature for modeling positive real

data in many areas. We prove that the WBXII distribution is capable of modelling various shapes

of data using two different data sets. It can provide better fits to these data sets.

Let g(x; ξ) andG(x; ξ) denote the density and cumulative functions of the baseline model with

parameter vectorξ and consider the Weibull cdfΠ(x) = 1 − exp(−axb) (for x > 0) with positive

parametersa andb. Based on this density, Bourguignonet al. (2014) replaced the argumentx by

G(x; ξ)/G(x; ξ), whereG(x; ξ) is the reliability function and defined the cdf of their W-G family by

F(x; a,b, ξ) = a b
∫ [

G(x;ξ)
G(x;ξ)

]

0
tb−1 e−atbdt = 1− exp




−a

[
G (x; ξ)

G(x; ξ)

]b



. (2)

The corresponding pdf of (2) is given by

f (x; a,b, ξ) = ab g(x; ξ)

[
G(x; ξ)b−1

G(x; ξ)b+1

]

exp




−a

[
G(x; ξ)

G(x; ξ)

]b



, (3)

wherea andb are two additional positive shape parameters. In general a random variableX with

pdf (3) is denoted byX ∼W-G(a,b, ξ). If b = 1, the W-G class reduces to the exponential-G (Ex-G)

family.

To this end, we use equations (1) and (2) to obtain the four-parameter WBXII cdf (forx ≥ 0)

F(x;α, β, a,b) = 1− exp
{
−a

[
(1+ xα)β − 1

]b
}
. (4)
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The corresponding pdf of (4) is given by

f (x;α, β, a,b) = α β a b xα−1 (1+ xα)βb−1
[
1− (1+ xα)−β

]b−1
×

exp
{
−a

[
(1+ xα)β − 1

]b
}
, (5)

whereα, β, a andb are positive shape parameters. Henceforth, we denote a random variableX

having pdf (5) byX ∼WBXII(α, β, a,b). The WBXII model reduces to the exponential BXII

distribution whenb = 1. Forα = 1 andβ = 1, we obtain the Weibull Lomax and Weibull log-

logistic distributions, respectively. The caseb = α = 1 refers to the exponential Lomax distribution

and the caseb = β = 1 refers to the exponential log-logistic distribution. Fora = b = α = 1 and

a = b = β = 1, we have the standard Lomax and standard log-logistic distributions, respectively.

The survival function (sf), hrf and cumulative hazard rate function (chrf) ofX are, respectively,

given by

S(x;α, β, a,b) = exp
{
−a

[
(1+ xα)β − 1

]b
}
,

h(x;α, β, a,b) = α β a b xα−1 (1+ xα)βb−1
[
1− (1+ xα)−β

]b−1

and

H(x;α, β, a,b) = a
[
(1+ xα)β − 1

]b
.

The remainder of the paper is organized as follows: in Section 2, we provide some plots for the

pdf and hrf of the WBXII model and derive useful mixture representations for the pdf and cdf. We

obtain in Section 3 some mathematical properties of the WBXII distribution including ordinary

and incomplete moments, quantile and generating functions, moments of the residual, reversed

residual life and probability weighted moments (PWMs), order statistics and their moments. The

maximum likelihood estimates (MLEs) of the model parameters are determined in Section 4, as

well as simulation results to assess the performance of the MLEs are discussed. In Section 5,

we propose the log-Weibull BXII (LWBXII) regression model and estimate the parameters by the

method of maximum likelihood. In Section 6, the WBXII distribution is applied to two real data
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sets to illustrate its potentiality. Finally, in Section 7, we provide some concluding remarks.

2 Plots and Linear Representation

In this section, we provide some plots of the pdf and hrf of the WBXII model to show its flexibility.

Figure 1 displays some plots of the WBXII density for some parameter valuesα, β, a andb. Plots

of the hrf of the WBXII model for selected parameter values are given in Figure 2, where the hrf

can be bathtub, upside down bathtub (unimodal), increasing, decreasing or constant.

2.1 Linear Representation

The WBXII density function (5) can be expressed as

f (x) = αβ a b xα−1 (1+ xα)−β−1

[
1− (1+ xα)−β

]b−1

[
(1+ xα)−β

]b+1
×

exp




−a

[
1− (1+ xα)−β

]b

[
(1+ xα)−β

]b





︸                             ︷︷                             ︸
A

. (6)

By expandingA, we can write

A =

∞∑

k=0

(−1)k ak

k!

[
1− (1+ xα)−β

]bk

[
(1+ xα)−β

]bk
.

Inserting this expansion in (6) and, after some algebra, we have

f (x) = α β b xα−1 (1+ xα)−β−1
∞∑

k=0

(−1)kak+1
[
1− (1+ xα)−β

]b(k+1)−1

k!
[
(1+ xα)−β

]b(k+1)+1
.

Consider the power series

(1− z)−q =

∞∑

j=0

Γ (q+ j)
j! Γ (q)

zj , (7)

which holds for|z| < 1 andq > 0 real non-integer.
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After applying the power series (7) to
[
(1+ xα)−β

]−[b(k+1)+1]
, the last equation can be rewritten

as

f (x) = α β xα−1 (1+ xα)−β−1
∞∑

k, j=0

(−1)k bak+1Γ (b (k+ 1) + j + 1)
k! j! Γ (b (k+ 1) + 1)

×

[
1− (1+ xα)−β

]b(k+1)+ j−1
. (8)

Next, consider the generalized binomial series given by

(1− z)α−1 =

∞∑

r=0

(−1)r Γ (α)
r! Γ (α − r)

zr , (9)

which holds for|z| < 1 andα > 0 real non-integer.

Applying the generalized binomial (9) to the last term of (8) and after some simplifications, the

WBXII density (8) can be expressed as a linear mixture of the BXII densities as

f (x) =
∞∑

r=0

υr g(x;α, β (r + 1)), (10)

where

υr = υr (a,b) =
∞∑

k, j=0

(−1)k+r bak+1Γ (b (k+ 1) + j) Γ (b (k+ 1) + j + 1)
k! j! (r + 1)!Γ (b (k+ 1) + 1) Γ (b (k+ 1) + j − r)

andg(x;α, β (r + 1)) is the BXII density with parametersα andβ (r + 1).

Let W be a random variable having the BXII distribution (1) with parametersα andβ. For

r < αβ, therth ordinary and incomplete moments ofW are, respectively, given by

μ′r = β B
(
β −

r
α
,

r
α
+ 1

)
and ϕr(z) = β B

(
zα; β −

r
α
,

r
α
+ 1

)
,

whereB(a,b) =
∫ ∞

0
ta−1 (1 + t)−(a+b)dt andB(z; a,b) =

∫ z

0
ta−1 (1 + t)−(a+b)dt are the beta and the

incomplete beta functions of the second type, respectively. So, several structural properties of the

WBXII model can be obtained from (10) and those properties of the BXII distribution.
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Similarly, the cdf (4) ofX can be expressed in the mixture form

F(x) =
∞∑

r=0

υr G(x;α, β (r + 1)),

whereG(x;α, β(r + 1)) is the BXII cdf with parametersα andβ(r + 1).

3 The WBXII Properties

We investigate mathematical properties of the WBXII distribution including ordinary and in-

complete moments, quantile and generating functions and PWMs. It is better to obtain some struc-

tural properties of the WBXII distribution by establishing algebraic expansions than computing

those directly by numerical integration of its density function.

3.1 Ordinary Moments

Thenth ordinary moment ofX is given by

μ′n = E(Xn) =
∞∑

r=0

υr

∫ ∞

0
xn g(x;α, β (r + 1))dx.

For n < αβ, we obtain

μ′n = E(Xn) =
∞∑

r=0

υr β (r + 1) B
(
β (r + 1) −

n
α
,

n
α
+ 1

)
. (11)

Settingn = 1 in (11), we have the mean ofX.

Thesth central moment (Ms) and cumulants (κs) of X, are, respectively, given by

Ms = E(X − μ′1)
s =

s∑

i=0

(−1)i
(
s
i

)

(μ′1)
sμ′s−i

and

κs = μ
′
s−

s−1∑

i=0

(
s− 1
i − 1

)

κr μ
′
s−r ,
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whereκ1 = μ′1. The skewness and kurtosis measures can be calculated from the ordinary moments

using well-known relationships. The effects of the parametersa and b on the mean, variance,

skewness and kurtosis for given values ofα andβ are displayed in Figures 3 and 4, respectively.

3.2 Quantile and Generating Functions

The quantile function (qf) ofX is obtained by inverting (4) as

xq =






1+

(
−1
a

log(1− q)

) 1
b




1
β

− 1





1
α

, 0 < q < 1. (12)

By settingq = 0.5 in (12) gives the median ofX. Simulating the WBXII random variable

is straightforward. IfU is a uniform variate on the unit interval (0,1), then the random variable

X = xq atq = U follows (5).

The moment generating function (mgf) ofX, sayMX (t) = E
[
exp(tX)

]
, can be obtained from

(9) as

MX (t) =
∞∑

r=0

υr Mr+1 (t) ,

whereMr+1 (t) is the mgf of the BXII distribution with parametersα, β (r + 1). Paranáıba et al.

(2011) provided a simple representation for the mgf of the three-parameter BXII distribution. In a

similar manner, we provide another representation for the mgf, sayM(t), of the BXII(α, β) model.

For t < 0, we can write

M (t) = αβ
∫ ∞

0
exp(yt) yα−1 (1+ yα)−β−1 dy.

Next, we require the Meijer G-function defined by

Gm,n
p,q



x|

a1, ..., ap

b1, ..., bq



=

1
2πi

∫

L

∏m
j=1 Γ

(
bj + t

)∏n
j=1 Γ

(
1− aj − t

)

∏p
j=n+1 Γ

(
aj + t

)∏p
j=m+1 Γ

(
1− bj − t

) x−tdt,
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wherei =
√
−1 is the complex unit andL denotes an integration path (Gradshteyn and Ryzhik,

2000, Section 9.3). The Meijer G-function contains as particular cases many integrals with ele-

mentary and special functions (Prudnikovet al., 1986). We now assume thatα = m/β, wherem

andβ are positive integers. This condition is not restrictive since every positive real number can be

approximated by a rational number.

We have the following result, which holds for m and k positive integers,μ > −1 andp > 0

(Prudnikovet al., 1992, p. 21),

I

(

p, μ,
m
β
, v

)

=

∫ ∞

0
exp(−px) xμ

(
1+ x

m
β

)v
dx

= VGβ,β+m
β+m,β



mm

pm
|
4 (m,−μ) ,4 (β, v+ 1)

4 (β, 0)



,

whereV =
β−vmμ+

1
2

(2π)
m−1

2 Γ(−v)pμ+1
and4 (β, a) = a

β
, a+1
β
, ..., a+β

β
. We can write (fort < 0)

M (t) = mI

(

−t,
m
β
− 1,

m
β
,−β − 1

)

.

Hence, the mgf ofX can be expressed as

MX (t) = m
∞∑

r=0

υr I

(

−t,
m

β (r + 1)
− 1,

m
β (r + 1)

,−β (r + 1) − 1

)

.

3.3 Incomplete Moments

Thesth incomplete moment, sayϕs(t), of the WBXII distribution is given byϕs(t) =
∫ t

0
xs f (x)dx.

We can write from equation (10)

ϕs(t) =
∞∑

r=0

υr

∫ t

0
xs g(x;α, β (r + 1))dx,

and then using the lower incomplete gamma function, we obtain (fors< αβ)

ϕs(t) =
∞∑

r=0

υr β (r + 1) B
(
tα; β (r + 1) −

s
α
,

s
α
+ 1

)
.
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The first incomplete moment ofX, denoted byϕ1 (t) , is simply determined from the above

equation by settings= 1.

The first incomplete moment has important applications related to the Bonferroni and Lorenz

curves and the mean residual life and the mean waiting time. Furthermore, the amount of scatter

in a population is evidently measured to some extent by the totality of deviations from the mean

and median. The mean deviations, about the mean and about the median ofX, depend onϕ1 (t).

3.4 Residual and Reversed Residual Life Functions

Thenth moment of the residual life, denoted bymn(t) = E[(X − t)n | X > t], n = 1,2, . . . ,

uniquely determineF(x) (see Navarroet al., 1998). Thenth moment of the residual life ofX is

given by

mn(t) =
1

1− F(t)

∫ ∞

t
(x− t)ndF(x).

Then, we can write

mn(t) =
1

R(t)

n∑

i=0

∞∑

r=0

(−1)n−i n! tn−i

i!Γ(n− i + 1)
υr β (r + 1) B

(
tα; β (r + 1) −

i
α
,

i
α
+ 1

)
.

Another interesting function is the mean residual life (MRL) function or the life expectation at

agex defined bym1(x) = E [(X − x) | X > x], which represents the expected additional life length

for a unit which is alive at agex. The MRL of the WBXII distribution can be obtained by setting

n = 1 in the last equation.

Navarroet al. (1998) proved that thenth moment of the reversed residual life, sayMn(t) =

E [(t − X)n | X ≤ t] for t > 0 andn = 1,2,. . . , uniquely determinesF(x).

Then,Mn(t) is defined by

Mn(t) =
1

F(t)

∫ t

0
(t − x)ndF(x).
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Thenth moment of the reversed residual life ofX

Mn(t) =
1

F(t)

n∑

i=0

∞∑

r=0

(−1)in!
i!(n− i)!

υr β (r + 1) B
(
tα; β (r + 1) −

i
α
,

i
α
+ 1

)
.

The mean inactivity time (MIT) or mean waiting time (MWT), also called the mean reversed

residual life function, sayM1(t) = E[(t − X) | X ≤ t], represents the waiting time elapsed since

the failure of an item on condition that this failure had occurred in (0, x). The MIT of X can be

obtained by settingn = 1 in the above equation.

3.5 Probability Weighted Moments

The PWMs are expectations of certain functions of a random variable and they can be defined

for any random variable whose ordinary moments exist.

The (s, r)th PWM of X following the WBXII model,ρs,r , is defined by

ρs,r = E {Xs F(X)r} =
∫ ∞

−∞
xs F(x)r f (x) dx.

Using (4) we can write

F(x)r =



1− exp




−a

[
1− (1+ xα)−β

]b

[
(1+ xα)−β

]b








r

=

∞∑

i=0

(−1)i Γ (r + 1)
i!Γ (r − i + 1)

exp




−ia

[
1− (1+ xα)−β

]b

[
(1+ xα)−β

]b




.

Using (5) and the above equation, and after some simplifications, we obtain

f (x) F(x)r = αβxα−1
∞∑

i,k, j,m=0

(−1)i+k+m bak+1

i!k! j!m!
(1+ xα)−β(m+1)−1

×
(i + 1)k Γ (r + 1) Γ (b (k+ 1) + j + 1) Γ (b (k+ 1) + j)
Γ (r − i + 1) Γ (b (k+ 1) + 1) Γ (b (k+ 1) + j −m)

.
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After some algebra, we have

f (x) F(x)r =

∞∑

m=0

Υm g(x;α, β (m+ 1)),

where

Υm =
b (−1)m

(m+ 1)!

∞∑

i,k, j=0

(−1)i+k ak+1 (i + 1)k Γ (r + 1)
i!k! j!Γ (r − i + 1)

×

Γ (b (k+ 1) + j + 1) Γ (b (k+ 1) + j)
Γ (b (k+ 1) + 1) Γ (b (k+ 1) + j −m)

.

Then, the (s, r)th PWM of X can be expressed as

ρs,r =

∞∑

m=0

β (m+ 1)Υm B
(
β(m+ 1)−

s
α
,

s
α
+ 1

)
.

3.6 Order Statistics

Let X1, . . . ,Xn be a random sample of sizen from the WBXII distribution andX(1), . . . ,X(n) be the

corresponding order statistics. Then, the pdf of theith order statisticXi:n, say fi:n(x), is given by

fi:n(x) =
f (x)

B(i,n− i + 1)

n−i∑

j=0

(−1)j

(
n− 1

j

)

F(x)i+ j−1. (13)

We can write

F(x)i+ j−1 =

∞∑

w=0

(−1)w Γ (i + j)
i!Γ (i + j − w)

exp




−aw

[
1− (1+ xα)−β

]b

[
(1+ xα)−β

]b




. (14)

By inserting (5) and (14) in equation (13), we obtain

fi:n(x) =
∞∑

m=0

tm g(x;α, β (m+ 1)) , (15)

where
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tm =
b (−1)m

(m+ 1)!

∞∑

w,k,l=0

n−i∑

j=0

(−1)w+k+ j ak+1 (w+ 1)k
(
n−1

j

)

w! k! l! B(i,n− i + 1)
×

Γ (i + j) Γ (b (k+ 1) + l + 1) Γ (b (k+ 1) + l)
Γ (i + j − w) Γ (b (k+ 1) + 1) Γ (b (k+ 1) + l −m)

andg(x;α, β (m+ 1)) denotes the BXII density function with parametersα andβ (m+ 1). Thus,

the density function of the WBXII order statistics is a linear mixture of two-parameter BXII den-

sities. Based on equation (15), we can obtain some structural properties ofXi:n from those BXII

properties.

Theqth moment ofXi:n is given by

E(Xq
i:n) =

∞∑

m=0

tmβ (m+ 1) B
(
β (m+ 1) −

q
α
,

q
α
+ 1

)
. (16)

The L-moments are analogous to the ordinary moments and can be estimated by linear com-

binations of the order statistics. Then, using the moments in equation (16), we can derive explicit

expressions for the L-moments ofX as infinite weighted linear combinations of the means of suit-

able WBXII distributions. They are defined by (s≥ 1)

λs =
1
s

s−1∑

d=0

(−1)d
(
s− 1

d

)

E(Xs−d:s), s≥ 1.

The first four L-moments, sayλ1, λ2, λ3 andλ4 are, respectively, given by

λ1 = E (X1:1) , λ2 =
1
2

E (X2:2− X1:2) ,

λ3 =
1
3

E (X3:3− 2X2:3 + X1:3) and

λ4 =
1
4

E (X4:4− 3X3:4 + 3X2:4− X1:4) .

We can obtain theλ’s for X from equation (16) withq = 1.
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4 Maximum Likelihood Estimation

We consider the estimation of the unknown parameters of the WBXII model from complete

samples only by maximum likelihood. The MLEs of the parameters of the WBXII (α, β, a,b)

model is now discussed. Letx1, . . . , xn be a random sample of this distribution with parameter

vectorθ = (α, β, a,b)ᵀ.

The log-likelihood function forθ, say` = `(θ), is given by

` = n logα + n logβ + n loga+ n logb+ (α − 1)
n∑

i=1

log xi

+ (βb− 1)
n∑

i=1

log
(
1+ xαi

)
+ (b− 1)

n∑

i=1

log si − a
n∑

i=1

sb
i , (17)

wheresi =

[
1−

(
1+ xαi

)−β]
.

The last equation can be maximized either by using the different programs likeR (optim func-

tion), SAS (PROC NLMIXED) or by solving the nonlinear likelihood equations obtained by differen-

tiating (17).

The score vector elements,U (θ) = ∂`
∂θ

=
(
∂`
∂α
, ∂`
∂β
, ∂`
∂a,
∂`
∂b

)ᵀ
, are given by

∂`

∂α
=

n
α
+

n∑

i=1

log xi+(βb− 1)
n∑

i=1

xαi log xi
(
1+ xαi

)+(b− 1)
n∑

i=1

pi

si
−ab

n∑

i=1

pi s
b−1
i ,

∂`

∂β
=

n
β
+b

n∑

i=1

log
(
1+ xαi

)
+(b− 1)

n∑

i=1

log
(
1+ xαi

)

si

(
1+ xαi

)β −ab
n∑

i=1

sb−1
i log

(
1+ xαi

)

(
1+ xαi

)β ,

∂`

∂a
=

n
a
−

n∑

i=1

sb
i and

∂`

∂b
=

n
b
+β

n∑

i=1

log
(
1+ xαi

)
+

n∑

i=1

log si−a
n∑

i=1

sb
i log si ,

respectively, wherepi = βxαi
(
1+ xαi

)−β−1
log(xi).

We can obtain the estimates of the unknown parameters by setting the score vector to zero,

U(̂θ) = 0. By solving these equations simultaneously gives the MLEsα̂, β̂, â and̂b. For the WBXII

distribution all the second order derivatives exist.
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The interval estimation of the model parameters requires the 4×4 observed information matrix

J(θ) = {Ji j } for i, j = α, β, a,b. The multivariate normalN4(0, J(̂θ)−1) distribution, under standard

regularity conditions, can be used to provide approximate confidence intervals for the unknown

parameters, whereJ(̂θ) is the total observed information matrix evaluated atθ̂. Then, approximate

100(1− δ)% confidence intervals forα, β, a andb can be determined by:

α̂ ± zδ/2

√
Ĵαα, β̂ ± zδ/2

√
Ĵββ, â ± zδ/2

√
Ĵaa and b̂ ± zδ/2

√
Ĵbb, wherezδ/2 is the upperδth

percentile of the standard normal model.

4.1 Simulation Study

In this section, we assess the performance of the MLEs of the WBXII parameters using Monte

Carlo simulations. For different combinations ofα, β, a andb, samples of sizesn = 100, 200, 500

and 1000 are generated from the WBXII model. We repeat the simulationk = 1,000 times and

evaluate the MLEs and their standard errors (in parentheses). The empirical results are given in

Table 1. It is evident that the estimates are quite stable and close to the true values of the parameters

for these sample sizes. Additionally, as the sample size increases, the biases and the standard errors

of the MLEs decrease as expected.

5 The Log-Weibull Burr XII Regression Model with Censored

Data

Henceforth,X is a random variable following the WBXII density function ( 3) andY is defined by

Y = log(γ X), whereγ > 0 is a new parameter. It is easy to verify that the density function ofY
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obtained by replacingα = 1/σ andγ = exp(μ) reduces to

f (y) =
a bβ
σ

exp
(y− μ
σ

) [
1+ exp

(y− μ
σ

)]β b−1
{

1−
[
1+ exp

(y− μ
σ

)]−β}b−1

×

exp




−a

[{
1+ exp

(y− μ
σ

)}β
− 1

]b



, −∞ < y < ∞, (18)

wherea > 0, b > 0, β > 0, μ ∈ R andσ > 0. We refer to equation (18) as the newlog-Weibull

Burr XII (LWBXII) distribution, sayY ∼ LWBXII( a,b, β, σ, μ), whereμ is the location parameter,

σ is the dispersion parameter anda, b andβ are shape parameters. Thus,

if X ∼WBXII( a,b, β, α) then Y = log(γ X) ∼ LWBXII( a,b, β, σ, μ).

In Figure 5, we plot this density function for selected values of the parametersa, b and β

showing that the LWBXII density could be very flexible for modeling its kurtosis, skewness and

bimodal forms.

The corresponding survival function is

S(y) = exp




−a

[{
1+ exp

(y− μ
σ

)}β
− 1

]b



. (19)

The random variableZ = (Y− μ)/σ has density function

f (z) = a bβ exp(z)
[
1+ exp(z)

]β b−1
{
1−

[
1+ exp(z)

]−β}b−1
×

exp
{
−a

[{
1+ exp(z)

}β − 1
]b
}
. (20)

In many practical applications, the lifetimes are affected by explanatory variables such as the

cholesterol level, blood pressure, weight and many others. Parametric models to estimate univariate

survival functions and for censored data regression problems are widely used. A parametric model

that provides a good fit to lifetime data tends to yield more precise estimates of the quantities

of interest. Based on the LWBXII density, we propose a linear location-scale regression model
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linking the response variableyi and the explanatory variable vectorxT
i = (xi1, . . . , xip) as follows

yi = vT
i τ + σzi , i = 1, . . . , n, (21)

where the random errorzi has density function (20),τ = (τ1, . . . , τp)T , σ > 0, a > 0, β > 0

andβ > 0 are unknown parameters. The parameterμi = vT
i τ is the location ofyi. The location

parameter vectorμ = (μ1, . . . , μn)T is given by a linear modelμ = Vτ, whereV = (v1, . . . , vn)T is

a known model matrix. The LWBXII model (21) opens new possibilities for fitting many different

types of data. It contains as special models the following new regression models:

• Log-exponential Burr XII (LEBXII) regression model

For b = 1, the survival function is

S(y) = exp

{

−a

[{
1+ exp

(y− μ
σ

)}β
− 1

]}

.

• Log-Weibull Lomax (LWLomax) regression model

Forσ = 1, the survival function is

S(y) = exp
{
−a

[{
1+ exp(y− μ)

}β − 1
]b
}
.

• Log-Weibull log-logistic (LWLLogistic) distribution

Forβ = 1, the survival function becomes

S(y) = exp
{
−aexp

[
b

(y− μ
σ

)]}
.

Consider a sample (y1, v1), . . . , (yn, vn) of n independent observations, where each random re-

sponse is defined byyi = min{log(xi), log(ci)}. We assume non-informative censoring such that

the observed lifetimes and censoring times are independent. LetF andC be the sets of individ-

uals for whichyi is the log-lifetime or log-censoring, respectively. Conventional likelihood esti-
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mation techniques can be applied here. The log-likelihood function for the vector of parameters

θ = (a,b, β, σ, τT)T from model (21) has the forml(θ) =
∑

i∈F
li(θ)+

∑

i∈C
l(c)
i (θ), whereli(θ) = log[ f (yi)],

l(c)
i (θ) = log[S(yi)], f (yi) is the density (18) andS(yi) is the survival function (19) ofYi. The total

log-likelihood function forθ reduces to

l(θ) = r log

(
a bβ
σ

)

+
∑

i∈F

zi + (β b− 1)
∑

i∈F

log[1+ exp(zi)]

+(b− 1)
∑

i∈F

log{1− [1 + exp(zi)]
−β} − a

∑

i∈F

{[1 + exp(zi)]
β − 1}b

−a
∑

i∈C

{[1 + exp(zi)]
β − 1}b, (22)

wherezi = yi − vT
i τ/σ andr is the number of uncensored observations (failures). The MLEθ̂ of

the vector of unknown parameters can be determined by maximizing the log-likelihood (22). We

use the NLMixed procedure in SAS to calculate the estimateθ̂. Initial values forβ andσ are taken

from the fit of the log-Weibull regression model. The fit of the LWBXII regression model gives

the estimated survival function foryi

S(yi; â, b̂, β̂, σ̂, τ̂T) = exp




−â




{

1+ exp

(
yi − vT

i τ̂

σ̂

)}β̂
− 1




b̂



.

Under conditions that are fulfilled for the parameter vectorθ in the interior of the parame-

ter space but not on the boundary, the asymptotic distribution of (θ̂ − θ) is multivariate normal

Np+4(0,K(θ)−1), whereK(θ) is the information matrix. The asymptotic covariance matrixK(θ)−1

of θ̂ can be approximated by the inverse of the (p+4)× (p+4) observed information matrix−L̈ (θ).

The elements of the observed information matrix−L̈ (θ), namely−Laa, −Lab, −Laβ, −Laσ, −Laτ j ,

−Lbb, −Lbβ, −Lbσ, −L bτ j , −L ββ, −L βσ, −L βτ j , −Lσσ, −Lστ j and−L τ jτ j′
, for j, j′ = 1, . . . , p, can

be evaluated numerically. The approximate multivariate normal distributionNp+4(0,−L̈ (θ)−1) for θ̂

can be used in the classical way to construct approximate confidence intervals for some parameters

in θ.

We can use the likelihood ratio (LR) statistic for comparing some special models with the
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LWBXII model. We consider the partitionθ = (θT
1 , θ

T
2 )T , whereθ1 is a subset of parameters of

interest andθ2 is a subset of remaining parameters. The LR statistic for testing the null hypothesis

H0 : θ1 = θ
(0)
1 versus the alternative hypothesisH1 : θ1 , θ

(0)
1 is given byw = 2{`(̂θ) − `(̃θ)}, where

θ̃ andθ̂ are the estimates under the null and alternative hypotheses, respectively. The statisticw is

asymptotically (asn→ ∞) distributed asχ2
k, wherek is the dimension of the subset of parameters

θ1 of interest.

6 Applications

6.1 Application 1: Glass Fibre Data

The importance and flexibility of the WBXII distribution are illustrated by means of a real data

set. It consists of 63 observations of the strengths of 1.5 cm glass fibres (the units of measurement

are not given) originally obtained by workers at the UK National Physical Laboratory (see, Smith

and Naylor, 1987).

For the glass fibre data, we shall compare the fits of the WBXII and BXII distributions and the

following competitive non-nested models: Kumaraswamy exponentiated Burr XII (KwEBXII)

(Mead and Afify, 2016), transmuted complementary Weibull geometric (TCWG) (Afifyet al.,

2014), exponentiated transmuted generalized Rayleigh (ETGR) (Afifyet al., 2015), transmuted

Marshall-Olkin Fŕechet (TMOFr) (Afify et al., 2015), beta exponentiated Burr XII (BEBXII)

(Mead, 2014), transmuted exponentiated generalized Weibull (TExGW) (Yousofet al. 2015),

Weibull Fŕechet (WFr) (Afifyet al., 2016), Weibull Lomax (WL) (Tahiret al., 2015), and beta

Burr XII (BBXII) (Paranáıbaet al., 2014) with corresponding densities (forx > 0) given in Ap-

pendix A.

In order to compare the distributions, we consider the following criteria: the−2̂` (maximized

log-likelihood), AIC (Akaike information criterion),CAIC (consistent Akaike information cri-
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terion), BIC (Bayesian information criterion) andHQIC (Hannan-Quinn information criterion).

Also, we apply formal goodness-of-fit tests in order to verify which distribution fits better to these

data. In particular, we consider the Cramér-von Mises (W∗) and Anderson-Darling (A∗)statistics.

TheW∗ andA∗ statistics are described in details in Chen and Balakrishnan (1995). The model with

minimum values for these statistics could be chosen as the best model to fit the data.

Table 2 lists the values of the MLEs and their corresponding standard errors (in parentheses)

of the model parameters. These results are obtained using the MATHCAD PROGRAM.

In Table 3, we compare the WBXII model with the KwEBXII, TCWG, ETGR, TMOFr, BE-

BXII, TEXGW, BBXII and BXII distributions. We note that the WBXII model gives the lowest

values for theAIC, BIC,CAIC,HQIC,W∗ andA∗ statistics among all fitted models. So, the WBXII

model could be chosen as the best model to explain the current data. It is clear from the plots in

Figure 6 that the WBXII density provides a better fit to the histogram of the data. The plots in

Figure 7 support the fitted WBXII distribution than the other nested and non-nested models.

6.2 Application 2: Regression Model

In this section, we consider a data set provided by the Instituto de Saúde Coletiva - Universidade

Federal da Bahia. These data were designed to evaluate the effect of vitamin A supplementation

on recurrent diarrheal episodes in small children (see Barretoet al., 1994). Censoring times are

random, and we aim to verify the treatment effect in time until the first occurrence of diarrheal

episodes. This can be done by means of an appropriate regression model with censored data.

The data from a randomized community trial that was designed to evaluate the effect of vitamin

A supplementation on diarrheal episodes in 1,207 pre-school children, aged 6-48 months at the

baseline, who were assigned to receive either placebo or vitamin A in a small city in the Northeast

of Brazil from December 1990 to December 1991. The vitamin A dosage was 100,000 IU for

children younger than 12 months and 200,000 IU for older children, which is the highest dosage
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guideline established by the World Health Organization (WHO) for the prevention of vitamin A

deficiency.

The total time is defined as the time from the first dose of vitamin A until the occurrence of

an episode of diarrhea. An episode of diarrhea is defined as a sequence of days with diarrhea

and a day with diarrhea is defined when 3 or more liquid or semi-liquid motions are reported in a

24-hour period. The information on the occurrence of diarrhea collected at each visit corresponds

to a recall period of 48-72 hours. The number of liquid and semi-liquid motions per 24 hours is

recorded.

The covariates considered in the models are:

• vi1: age at baseline (in months);

• vi2: treatment (0= placebo, 1= vitamin A);

• vi3: gender (0= girl, 1 = boy).

Next, we present results by fitting the model

yi = τ0 + τ1vi1 + τ2vi2 + τ3vi3 + σzi ,

where variableYi follows the LWBXII distribution given in (18),i = 1,2, . . . , 1207. The MLEs of

the model parameters are evaluated using the NLMixed procedure in SAS. Iterative maximization

of the logarithm of the likelihood function (22) starts with initial values forτ andσ, which are

taken from the fit of the log-Weibull regression model.

We note from the fitted LWBXII regression model thatx1 is significant at 1% and that there is

a significant difference between the age for the survival times.

A summary of the values of theAIC, BIC andCAIC to compare the LWBXII, LEBXII, LWLo-

max and LWLogistic regression models is given in Table 5. The LWBXII and LEBXII regression

models outperform the LWLomax and LWLogistic models irrespective of the criteria and then they

can be used effectively in the analysis of these data.
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A comparison of the proposed regression model with some of its sub-models using LR statistics

is addressed in Table 6. The figures in this table, specially the p-values, indicate that the new

LWBXII and LEBXII regression models yield better fits to the current data than its two null models.

7 Conclusions

In this paper, we propose a new four-parameter model called the Weibull Burr XII (WBXII)

distribution, which extends the Burr XII (BXII) distribution. The WBXII density function can

be expressed as a linear mixture of BXII densities. We derive explicit expressions for some of its

mathematical and statistical quantities including the ordinary and incomplete moments, cumulants,

quantile and generating functions and probability weighted moments. We also obtain the density

function of the order statistics and their moments. We discuss maximum likelihood estimation.

The proposed distribution provides better fits than some other nested and non-nested models by

using two real data sets. We hope that the proposed model will attract wider applications in areas

such as survival and lifetime data, meteorology, hydrology, engineering and others.
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Appendix A:

In this appendix we provide the densities used in the applications.

• KwEBXII distribution

f (x) =
a b cθ βxc−1

(1+ xc)θ+1

[
1− (1+ xc)−θ

]aβ−1
{
1−

[
1− (1+ xc)−θ

]aβ
}b−1

.

• TCWG distribution

f (x) = α β γ (γx)β−1 e−(γx)β
[
α + (1− α) e−(γx)β

]−3
×

[
α (1− λ) − (α − αλ − λ − 1) e−(γx)β

]
.

• ETGR distribution

f (x) = 2α δ β2 xe−(βx)2 [
1− e−(βx)2]αδ−1 {

1+ λ − 2λ
[
1− e−(βx)2]α}

×
{
1+ λ − λ

[
1− e−(βx)2]α}δ−1

.

• TMOFr distribution

f (x) =
aβ αβx−β−1e−(

α
x)
β

[
a+ (1− a) e−(

α
x)
β
]2


1+ λ −

2λe−(
α
x)
β

a+ (1− a) e−(
σ
x )
β


 .

• BEBXII distribution

f (x) =
cθ β

B (a,b)
xc−1 (1+ xc)−θ−1

[
1− (1+ xc)−θ

]aβ−1
{
1−

[
1− (1+ xc)−θ

]β}b−1

.

• TExGW distribution

f (x) = a bβ αβxβ−1e−a(αx)
β
[
1− e−a(αx)

β
]b−1

{

1+ λ − 2λ
[
1− e−a(αx)

β
]b
}

.
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• WFr distribution

f (x) = a bβ αβx−β−1e−b( αx)
β
{
1− e−(

α
x)
β
}−b−1

×

e
−a

{
e−( αx )β−1

}−b

.

• WL distribution

f (x) =
a bα
β

(

1+
x
β

)bα−1 [

1−

(

1+
x
β

)−α]b−1

e−a
{[(

1+ x
β

)α
−1

]}b

.

• BBXII distribution

f (x) =
cθ β−c

B (a,b)
xc−1

[

1+

(
x
β

)c]−θb−1



1−

[

1+

(
x
β

)c]−θ


a−1

.

The parameters of the above densities are all positive real numbers except the parameterλ,

where|λ| ≤ 1 andx > 0.
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Table 1: MLEs and standard errors for various parameter values.

Actual Values Sample Estimated Values (Standard Deviations)

α β a b size (n) α̂ β̂ â b̂

2.5 4 2.5 5 100 2.52178 4.019508 2.511852 5.131948
(0.748566) (1.023036) (0.520946) (0.73552)

200 2.55434 4.029435 2.456489 4.962408
(0.394184) (0.475746) (0.402375) (0.557122)

500 2.474571 4.027779 2.510952 5.01093
(0.298284) (0.462672) (0.31505) (0.195476)

1000 2.521237 3.995163 2.502051 5.012125
(0.093599) (0.203402) (0.207569) (0.093944)

3 3 0.5 0.5 100 3.126232 2.895511 0.527005 0.479079
(0.722604) (0.924394) (0.290221) (0.305075)

200 2.891608 3.124661 0.488041 0.500701
(0.711989) (0.884334) (0.189888) (0.195327)

500 2.970981 2.934284 0.495323 0.508823
(0.708819) (0.771858) (0.161157 (0.183254)

1000 3.005697 2.978301 0.50048 0.499082
(0.657257) (0.49657) (0.106829) (0.10835)

2 5 1.5 1.75 100 2.142251 4.93574 1.511454 1.765754
(1.027794) (1.362116) (0.470984) (0.780493)

200 2.046017 4.904674 1.504422 1.72069
(0.505309) (1.042812) (0.41307) (0.586415)

500 1.981871 4.899376 1.48027 1.760829
(0.236126) (0.517487) (0.235757) (0.239855)

1000 1.997151 4.999491 1.498517 1.759312
(0.113938) (0.239913) (0.104453) (0.102966)
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Table 2: MLEs of the parameters from fitted models to the strengths of 1.5 cm glass fibre data and
the corresponding SEs (given in parentheses).

Model α β a b

WBXII 1.6077 2.7409 0.0026 1.8888
(0.3760) (1.0100) (0.0032) (0.7680)

WL 17.5336 110.7104 581.4052 5.1752
102.1130 (659.3920) (28.2900) (0.2010)

WFr 0.3865 0.2436 1.4762 16.8561
(0.7990) (0.2850) (4.7820) (20.4850)

a b c θ β

KwEBXII 4.022 137.8974 1.0241 1.3285 4.0102
(24.1410) (115.5110) (0.6650) (1.2970) (26.0651)

α β γ λ

TCWG 55.4366 7.9096 0.3904 0.0862
(59.0080) (0.8670) (0.0470) (0.3780)

α β λ δ

ETGR 14.1641 0.9867 0.0009 0.3872
(10.9710) (0.0540) (0.0180) (0.2760)

α β a λ

TMOFr 0.6500 6.8744 376.268 0.1499
(0.0490) (0.5960) (246.8320) (0.3020)

a b c θ β

BBXII 26.1629 14.7050 0.9271 5.5864 8.2620
(14.5880) (12.8850) (0.2130) (5.2150) (8.1320)

a b c θ β

BEBXII 26.5651 23.3641 0.8777 1.2975 1.6224
(26.4000) (21.1450) (0.5920) (1.1120) (0.9540)

α β a b λ

TExGW 2.4230 0.5009 3.5578 647.4932 0.2361
(7.1840) (0.0950) (5.3180) (497.8990)(0.2130)

α β

BXII 7.4821 0.3207
(1.2850) (0.0650)
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Table 3: The goodness of fit criteria for strengths of 1.5 cm glass fibre data.

Model −2̂` AIC BIC HQIC CAIC W∗ A∗

WBXII 28.607 36.607 45.18 39.979 37.297 0.19257 1.05507
WL 29.868 37.868 46.441 41.24 38.558 0.24429 1.31348
WFr 31.001 39.001 47.574 42.373 39.691 0.27786 1.48538

KwEBXII 39.041 49.041 59.757 53.255 50.093 0.43694 2.3495
TCWG 44.541 52.541 61.114 55.913 53.231 0.50241 2.72575
ETGR 47.858 55.858 64.43 59.229 56.547 0.54315 3.0567
TMOFr 48.46 56.46 65.032 59.831 57.149 0.56541 3.10166
BBXII 51.71 61.71 72.426 65.925 62.763 0.64538 3.50125

BEBXII 57.044 67.044 77.76 71.259 68.097 0.71739 3.91975
TExGW 76.435 86.435 97.151 90.65 87.488 0.43694 2.3495

BXII 97.442 101.442 105.729 103.128 101.642 1.17788 7.36685
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Table 4: MLEs of the parameters from the LWBXII regression model fitted to the vitamin A data
set, the corresponding SEs (given in parentheses), p-values in [.].

Model a b β σ τ0 τ1 τ2 τ3

LWBXII 0.4472 0.6699 0.1966 0.2111 2.0220 0.0223 0.09480.0363
(0.1718) (0.2901) (0.0768) (0.0639) (0.2508) (0.0027) (0.0579)(0.0600)

[<0.001] [<0.001] [0.1016] [0.5452]
LEBXII 0.7936 1 0.1231 0.2700 1.7892 0.0224 0.09500.0489

(0.2723) (0.0212) (0.0305) (0.1311) (0.0027) (0.0586)(0.0588)
[<0.001] [<0.001] [0.1061] [0.4051]

LWLomax 41.1704 2.5441 0.0785 1 0.7760 0.0315 0.13890.0427
(5.0098) (0.2548) (0.0154) (0.3903) (0.0027) (0.0637)(0.0638)

[0.0470] [<0.001] [0.0295] [0.5042]
LWLogistic 0.0184 0.3101 1 0.2807 -0.2161 0.0324 0.14650.0199

(0.0393) (0.6093) (0.5513) (1.9295) (0.0025) (0.0597)(0.0597)
[0.9108] [<0.001] [0.0142] [0.7376]
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Table 5:−2l̂, AIC,CAIC, BIC andHQIC statistics for comparing the LWBXII, LEBXII, LWLo-
max and LWLogistic regression models.

Model −2l̂ AIC CAIC BIC HQIC

LWBXII 3207.7 3219.7 3219.8 3260.5 3235.1
LEBXII 3204.4 3218.4 3218.5 3254.1 3231.8
LWLomax 3296.0 3283.0 3283.1 3318.7 3296.4
LWLogistic 3396.8 3410.8 3410.9 3446.43324.2
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Table 6: LR statistics for the vitamin A data.

Comparison Hypotheses LRstatistic p-value

LWBXII vs LEBXII H0 : b = 1 vsH1 : H0 is false 0.7 0.4027
LWBXII vs LWLomax H0 : σ = 1 vsH1 : H0 is false 65.3 <0.0001
LWBXII vs LWLogistic H0 : β = 1 vsH1 : H0 is false 193.1 <0.0001
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Figure 1: Plots of the WBXII pdf for some parameter values.
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Figure 2: Plots of the WBXII hrf for some parameter values.
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Figure 3: Plots of mean and variance of the WBXII model.
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Figure 4: Plots of skewness and kurtosis of the WBXII model.
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Figure 5: The LWBXII density curves: (a) For some values ofa andb with β = 0.5, μ = 0.0 and
σ = 1.0. (b) For some values ofa andβ with b = 0.5, μ = 0.0 andσ = 1.0. (c) For some values of
b andβ with a = 0.5, μ = 0.0 andσ = 1.0.
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Figure 6: Estimated pdfs for the WBXII model and other competitive models.
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Figure 7: (a) The estimated cdf of the WBXII model. (b) QQ-plot of the WBXII model.
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