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Abstract 

A new lifetime class of distributions is introduced by compounding the exponential Pareto and power series 

distributions. The compounding procedure follows the same set-up carried out by Adamidis and Loukas 

(1998). We obtain several properties of the new class including ordinary and conditional, mean deviations, 

Bonferroni and Lorenz curves, residual and reversed residual lifes and order statistics. The maximum 

likelihood estimation procedure is carried out to estimate the model parameters. We present three special 

models of the proposed class. 

Keywords:  Exponential Pareto Distribution, Power Series Distribution, Maximum 

Likelihood Estimation, Moments.  

1.   Introduction 

Statistical distributions are very useful in describing the real world phenomena. Although 

a modest number of distributions have been developed, there are always scope for 

developing distributions, studying their properties which are either more flexible or for 

fitting real world scenarios. There are always an increased interest among statisticians for 

developing new and more flexible distributions. As a result, the statistical literature 

contains many new distributions.  

 

The modeling and analysis of lifetimes is an important aspect of statistical work in a wide 

variety of technological fields. Several distributions have been proposed in the literature 

to model lifetime data by compounding some useful lifetime distributions. Adamidis and 

Loukas (1998) proposed the exponential-geometric (𝐸𝐺) distribution by compounding 

the exponential distribution with the geometric distribution. Wang (2013) introduced the 
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exponentiated Lindley geometric distribution. In a similar manner, the exponential 

logarithmic (𝐸𝐿) distribution is introduced by Tahmasbi and Rezaei (2008). Barreto-

Souza et al. (2011) and Lu and Shi (2012) proposed the Weibull-geometric (𝑊𝐺) and 

Weibull-Poisson (𝑊P) distributions which extend the 𝐸𝐺 and 𝐸𝑃 distributions, 

respectively. Further, Rodrigues et al. (2011) defined the Weibull negative binomial 

(𝑊𝑁𝐵) distribution which includes the 𝑊𝐺 and 𝑊𝑃 distributions as special models. 

 

In the same way, several families of distributions were proposed by compounding some 

useful lifetime and power series distributions in the last few years. Chahkandi and Ganjali 

(2009) introduced the exponential power series (𝐸𝑃𝑆) family of distributions. Morais and 

Barreto-Souza (2011) defined the Weibull power series (𝑊𝑃𝑆) family. Mahmoudi and 

Jafari (2012) defined the generalized exponential power series (𝐺𝐸𝑃𝑆) distributions. 

Silva et al. (2013) studied the extended Weibull power series (𝐸𝑊𝑃𝑆) family. Bagheri et 

al. (2016) proposed the generalized modified Weibull power series distribution.  

 

Al-Kadim and Boshi (2013) introduced a new distribution called the exponential Pareto 

distribution with cumulative distribution function (CDF) given by  

𝐺(𝑥) = 1 − 𝑒
−𝛼(

𝑥

μ
)𝜆

, 𝑥 > 0.       (1) 

 

The associated probability density function (PDF) is given by 

𝑔(𝑥) =
𝛼𝜆

𝜇
(

𝑥

𝜇
)𝜆−1𝑒

−𝛼(
𝑥

𝜇
)𝜆

,       (2) 

where 𝛼 > 0 and 𝜆 > 0 are shape parameters and 𝜇 > 0 is a scale parameter. 

 

In this paper, we propose and study a new family of exponential Pareto power series 

(𝐸𝑃𝑃𝑆) models obtained by compounding the exponential Pareto and power series 

distributions. The new class contains several lifetime models as special cases such the 

complementary exponential Pareto geometric (𝐶𝐸𝑃𝐺), exponential Pareto Poisson 

(𝐸𝑃𝑃), exponential Pareto binomial (𝐸𝑃𝐵) and exponential Pareto logarithmic (𝐸𝑃𝐿) 

models.   

 

Consider a lifetime of a system with 𝑁 (discrete random variable) components and the 

positive continuous random variable, say Xi (the lifetime of ith component), can be 

denoted by the non-negative random variable, 𝑋(1) = 𝑚𝑖𝑛(𝑋1, 𝑋2. . . , 𝑋𝑁) and 𝑋(𝑛) =

𝑚𝑎𝑥(𝑋1, 𝑋2. . . , 𝑋𝑁) based on whether the components are series or parallel. By taking a 

system with parallel components in which the random variable N has the power series 

distributions and the random variable Xi follows the exponential Pareto (𝐸𝑃) distribution. 

 

In addition to the new class of distributions is well-motivated for industrial applications 

and biological organisms studies. For example, consider the time to relapse of cancer 

under the first-activation scheme. Suppose that the number, say 𝑁, of carcinogenic cells 

for an individual left active after the initial treatment follows a power series distribution 

and let 𝑋𝑖 be the time spent for the ith carcinogenic cell to produce a detectable cancer 

mass, for 𝑖 ≥ 1. If {𝑋𝑖}, 𝑖 ≥ 1 is a sequence of iid 𝐸𝑃 random variables independent of 

𝑁, then the time to relapse of cancer of a susceptible individual can be modeled by the 

𝐸𝑃𝑃𝑆 class of distributions. Second example suppose that the hazard of a component 

(item) occurs due to the presence of an unknown number, say 𝑁, of initial defects of the 
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same kind, which can be identifiable only after causing hazard and are repaired perfectly. 

Define by 𝑋𝑖 the time to the hazard of the device due to the 𝑖𝑡ℎ defect, for 𝑖 ≥ 1. If we 

assume that the Xi′s are independent and identically distributed (iid) 𝐸𝑃 random variables 

independent of 𝑁, which follows a power series distribution, then the time to the first 

hazard is appropriately modeled by the EPPS family. Further, the first activation scheme 

may be questionable for certain diseases. Consider that the number 𝑁 of latent factors 

that must all be activated by failure follows a power series distribution and assume that 𝑋𝑖 

represents the time of resistance to a disease manifestation due to the ith latent factor has 

the EP model . In the last-activation scheme, the failure occurs after all 𝑁 factors have 

been activated. So, the new class of distributions is able for modeling the time to the 

failure under last-activation scheme.  

 

The remainder of our paper is organized as follows: In Section 2, we define the new 

𝐸𝑃𝑃𝑆 class of distributions. Some statistical properties of the 𝐸𝑃𝑃𝑆 distribution 

including the ordinary and conditional, mean deviations, residual and reversed residual 

lifes and order statistics are obtained In Section 3. Maximum likelihood estimates of the 

unknown parameters are presented in Section 4. In Section 5, we investigate three special 

cases of the 𝐸𝑃𝑃𝑆 class of distributions. In Section 6, we demonstrate the flexibility and 

applicability of one special model using a real data set. We provide some concluding 

remarks in Section 7. 

2.   The new class 

Consider a discrete random variable, 𝑁, with a power series probability mass function 

(pmf) defined by 

𝑃𝑛 = 𝑃(𝑁 = 𝑛) =
𝑎𝑛𝜃𝑛

𝐶(𝜃)
, 𝑛 = 1,2, . . .,      (3) 

where 𝑎𝑛 ≥ 0 depends only on 𝑛, 𝐶(𝜃) = ∑ 𝑎𝑛𝜃𝑛 ∞
𝑛=1 and 𝜃 > 0 is such that 𝐶(𝜃) is 

chosen in a way such that 𝐶(𝜃) is finite and its first, second and third derivatives with 

respect to 𝜃 are defined and shown by 𝐶/(. ), 𝐶//(. ) and 𝐶///(. ), respectively. Let 𝑋1, 𝑋2 

, 𝑋𝑁 be iid random variables having the 𝐸𝑃 distribution (2). 
 

Let 𝑋(1) = min{𝑋𝑖}𝑖=1
𝑁 , then the conditional CDF of 𝑋(1)|𝑁 = 𝑛 is given by  

𝐺 𝑋(1)|𝑁=𝑛
(𝑥) = 1 − [1 − 𝐺(𝑥)]𝑛 = 1 − 𝑒

−𝑛𝛼(
𝑥

𝜇
)𝜆

, 

which has a 𝐸𝑃 distribution with parameters 𝜆, 𝜇 and 𝑛𝛼. Then, we get  

𝑃(𝑋(1) ≤ 𝑥, 𝑁 = 𝑛) =
𝑎𝑛𝜃𝑛

𝐶(𝜃)
[1 − 𝑒

−𝑛𝛼(
𝑥

𝜇
)𝜆

] , 𝑥 > 0, 𝑛 ≥ 1. 

 

The 𝐸𝑃𝑃𝑆 family of distributions is defined by the marginal CDF of 𝑋(1) (for 𝑥 > 0) as  

𝐹(𝑥) = 1 −
𝐶[𝜃𝑒

−𝛼(
𝑥
𝜇

)𝜆
]

𝐶(𝜃)
.       (4) 

 

The corresponding survival function reduces (for 𝑥 > 0) to 

𝐹(𝑥) =
𝐶 [𝜃𝑒

−𝛼(
𝑥

𝜇
)𝜆

]

𝐶(𝜃)
. 
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The associated PDF of the 𝐸𝑃𝑃𝑆 family is given (for 𝑥 > 0) by 

𝑓(𝑥) = 𝜃𝑔(𝑥)
𝐶/[𝜃−𝜃𝐺(𝑥)]

𝐶(𝜃)
=

𝜃𝛼𝜆

𝜇
(

𝑥

𝜇
)𝜆−1𝑒

−𝛼(
𝑥

𝜇
)𝜆 𝐶/[𝜃e

−𝛼(
𝑥
𝜇

)𝜆
]

𝐶(𝜃)
.   (5) 

 

We denote a random variable 𝑋 with PDF (5) by 𝑋~𝐸𝑃𝑃𝑆(𝛼, 𝜆, 𝜇, 𝜃). 

 

The hazard rate function of 𝑋 is 

 ℎ(𝑥) =
𝜃𝛼𝜆

𝜇
(

𝑥

𝜇
)𝜆−1𝑒

−𝛼(
𝑥

𝜇
)𝜆 𝐶/(𝜃𝑒

−𝛼(
𝑥
𝜇

)𝜆
)

𝐶(𝜃𝑒
−𝛼(

𝑥
𝜇

)𝜆
)

. 

 

This new class of distributions contains several lifetime models distributions which has 

been introduced and studied in the literature. Table 1 lists some special models that can 

be derived from the 𝐸𝑃𝑃𝑆 distribution: 

Table 1:   Sub-models from the 𝑬𝑷𝑷𝑺 distribution 

 Model  𝑪(𝜽)   𝜶   𝝁   𝝀   Author(s)  

𝑾𝑷𝑺  −   −   1   −   Morais and Barreto-Souza (2011)  

𝑬𝑷𝑺  −   −   1   1   Chahkandi and Ganjali (2009)  

𝑹𝑷𝑺  −   1   −   −   Morais and Barreto-Souza (2011)  

𝑬𝑷𝑮  𝜃(1 − 𝜃)−1 −   −   −   −    

𝑾𝑮  𝜃(1 − 𝜃)−1 −   −   1   −   Barreto-Souza et al. (2011)  

𝑬𝑮  𝜃(1 − 𝜃)−1   −   1   1   Adamidis and Loukas (1998)  

𝑹𝑮  𝜃(1 − 𝜃)−1   −   1   2    

𝑬𝑷𝑷  𝑒𝜃 − 1   −   −   −    

𝑾𝑷  𝑒𝜃 − 1   −   1   −   Lu and Shi (2012)  

𝑬𝑷  𝑒𝜃 − 1   −   1   1   –  

𝑹𝑷  𝑒𝜃 − 1   −   1   2     

𝑬𝑷𝑩  (𝜃 + 1)𝑚 − 1   −   −   −     

𝑾𝑩  (𝜃 + 1)𝑚 − 1   −   1   1     

𝑬𝑩  (𝜃 + 1)𝑚 − 1   −   1   1     

𝑹𝑩  (𝜃 + 1)𝑚 − 1   −   1   2     

𝑬𝑷𝑳  −log(1 − 𝜃)   −   −   −     

𝑾𝑳  −log(1 − 𝜃)   −   1   −     

𝑬𝑳  −log(1 − 𝜃)     1   1     

𝑹𝑳  −log(1 − 𝜃)     1   2     

Abbreviations: 𝑅= Rayleigh, 𝐸= Exponential, 𝐿= Logarithmic and 𝐵= Binomial.  

 

Remark 1: If 𝑋(𝑛) = max𝑋𝑖=1
𝑁  then the CDF of 𝑋(1𝑛) is given by 

𝐹 𝑋(𝑛)
(𝑥) =

𝐶(𝜃𝐺(𝑥))

𝐶(𝜃)
=

𝐶 (𝜃(1 − 𝑒
−𝛼(

𝑥

𝜇
)𝜆

))

𝐶(𝜃)
, 𝑥 > 0 
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and   

𝑓(𝑥) =
𝜃𝛼𝜆

𝜇
(
𝑥

𝜇
)𝜆−1𝑒

−𝛼(
𝑥

𝜇
)𝜆

𝐶/ {𝜃 [1 − 𝑒
−𝛼(

𝑥

𝜇
)𝜆

]}

𝐶 {𝜃 [1 − 𝑒
−𝛼(

𝑥

𝜇
)𝜆

]}
. 

 

Remark 2: The 𝐸𝑃 distribution with parameters 𝛼, 𝜇 and 𝑛𝜆 is a limiting case of the 

𝐸𝑃𝑃𝑆 class of distributions when 𝜃 → 0+.  

 

Proof: 

Using 𝐶(𝜃) = ∑ 𝑎𝑛𝜃𝑛∞
𝑛=1  in (4) , we have that 

lim
𝜃→0+

𝐹(𝑥) = lim
𝜃→0+

1 − lim
𝜃→0+

∑ 𝑎𝑛 (𝜃
−𝛼(

𝑥

𝜇
)𝜆

)𝑛∞
𝑛=1

∑ 𝑎𝑛 𝜃𝑛∞
𝑛=1

 

 

Using 𝐿′𝐻𝑂̂𝑝𝑖𝑡𝑎𝑙′𝑠 𝑟𝑢𝑙𝑒 , it follows that  

lim
𝜃→0+

𝐹(𝑥) = lim
𝜃→0+

1 − lim
𝜃→0+

𝑎1𝑒
−𝛼(

𝑥

𝜇
)𝜆

+ ∑ 𝑛𝑎𝑛𝜃𝑛−1𝑒
−𝑛𝛼(

𝑥

𝜇
)𝜆

∞
𝑛=2

𝑎1 + ∑ 𝑛𝑎𝑛𝜃𝑛−1∞
𝑛=2

= 1 − 𝑒
−𝛼(

𝑥

𝜇
)𝜆

. 

 

Proposition 1: The densities of 𝐸𝑃𝑃𝑆 class can be expressed as an infinite number of 

linear combination (mixture) of density of order statistics of 𝐸𝑃 densities with parameters 

𝜆, 𝜇 and 𝑛𝛼.  
 

Proof: Using 𝐶/(𝜃) = ∑ 𝑛𝑎𝑛
∞
𝑛=1 𝜃𝑛−1, we have 

 𝑓(𝑥) =
𝜃𝛼𝜆

𝜇
(

𝑥

𝜇
)𝜆−1𝑒

−𝛼(
𝑥

𝜇
)𝜆 𝐶/[𝜃𝑒

−𝛼(
𝑥
𝜇

)𝜆
]

𝐶(𝜃)
 

 = ∑
𝑎𝑛𝜃𝑛

𝐶(𝜃)

𝑛𝛼𝜆

𝜇
(

𝑥

𝜇
)𝜆−1𝑒

−𝑛𝛼(
𝑥

𝜇
)𝜆

∞
𝑛=1  

 = ∑ 𝑃(𝑁 = 𝑛)𝑔(1)(𝑥; 𝑛).∞
𝑛=1  

 

where 𝑔(1)(𝑥; 𝑛) is the PDF of 𝑋(1) = min(𝑋1, 𝑋2 , 𝑋𝑛), given by 

𝑔(1)(𝑥; 𝑛) = 𝑛𝑔(𝑥)[1 − 𝐺(𝑥)]𝑛−1 =
𝑛𝛼𝜆

𝜇
(
𝑥

𝜇
)𝜆−1𝑒

−𝑛𝛼(
𝑥

𝜇
)𝜆

 

 

i.e: 𝑔(1)(𝑥; 𝑛) is PDF of 𝐸𝑃 distribution with parameters 𝜆, 𝜇 and 𝑛𝛼. Thus 

𝑓(𝑥) = ∑ 𝑃(𝑁 = 𝑛)𝑔 (1)
(𝑥; 𝑛)∞

𝑛=1 = ∑ 𝑃𝑛𝑔(𝑥; 𝜆, 𝜇, 𝑛𝛼)∞
𝑛=1 .  (6) 

 

Hence, we can obtain some mathematical properties of the 𝐸𝑃𝑃𝑆 distribution, from those 

properties of the exponential Pareto distribution. 

3.   Statistical properties 

In this section, we derive some properties of the 𝐸𝑃𝑃𝑆 distribution including ordinary 

and conditional moments, moment generating function, mean deviations, Bonferroni and 

Lorenz curves, residual and reversed residual life functions and order statistics. 
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3.1 Moments 

The 𝑟th moment of 𝑋 follows from (6) as 

𝜇𝑟
/

= 𝐸(𝑋𝑟) = ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥
∞

0

=𝑛=1
∞ ∑ 𝑃𝑛 ∫ 𝑥𝑟𝑔(𝑥; 𝜆, 𝜇, 𝑛𝛼)𝑑𝑥

∞

0

∞

𝑛=1

 

∑ 𝑃𝑛𝑛𝛼𝜆𝜇𝑟−1
∞

𝑛=1
∫ (

𝑥

𝜇
)𝑟+𝜆−1𝑒

−𝑛𝛼(
𝑥

𝜇
)𝜆

𝑑𝑥
∞

0

 

= ∑
𝑎𝑛𝜃𝑛

𝑛
𝑟

𝜆

Γ(
𝑟

𝜆
+ 1)𝜇𝑟

𝐶(𝜃)𝛼
𝑟

𝜆

.
∞

𝑛=1
 

 

The conditional moments for 𝐸𝑃𝑃𝑆 distribution is given by  

𝜐𝑠 = 𝐸(𝑋𝑠|𝑋 < 𝑡) = ∫ 𝑥𝑠𝑓(𝑥)𝑑𝑥
𝑡

0

= ∑ 𝑃𝑛
∞

𝑛=1
∫ 𝑥𝑠𝑔(𝑥; 𝜆, 𝜇, 𝑛𝛼)𝑑𝑥

𝑡

0

 

=
𝛾(

𝑠

𝜆
+ 1, 𝑛𝛼(

𝑡

𝜇
)𝜆)𝜇𝑠

𝐶(𝜃)𝛼
𝑠

𝜆

∑
𝑎𝑛𝜃𝑛

𝑛
𝑠

𝜆

∞

𝑛=1
 

where 𝛾(𝑎, 𝑡) = ∫ 𝑧𝛼−1(1 − 𝑧)𝑏−1𝑑𝑧
𝑡

0
 is the lower incomplete gamma function. 

 

The moment generating function of 𝐸𝑃𝑃𝑆 distribution is given by 

𝑀 𝑋
(𝑡) = 𝐸(𝑒𝑡𝑋) = ∑

𝑡𝑟

𝑟!0

∞∞

𝑟=0
𝑥𝑟𝑓(𝑥) = ∑

𝑡𝑟

𝑟!
𝜇𝑟

/
∞

𝑟=0
 

= ∑
𝑡𝑟

𝑟!

∞

𝑟=0
∑

𝑎𝑛𝜃𝑛

𝑛
𝑟

𝜆

Γ(
𝑟

𝜆
+ 1)𝜇𝑟

𝐶(𝜃)𝛼
𝑟

𝜆

∞

𝑛=1
. 

3.2 Mean deviations 

In statistics, mean deviation about the mean and mean deviation about the median 

measure the amount of scatter in a population. the mean deviation from the mean is a 

robust statistic , being more resilient to outliers in a data set than standard deviation . For 

random variable 𝑋 with PDF 𝑓(𝑥), distribution function 𝐹(𝑥) , mean 𝜇 = 𝐸(𝑋) and 𝑀 =
Median(X), the mean deviation about the mean and mean deviation about the median, are 

defined by  

𝛿1(𝑥) = ∫ |𝑥 − 𝜇|𝑓(𝑥)𝑑𝑥 = 2𝜇𝐹(𝜇) − 2𝐼(𝜇).
∞

0

 

and 

𝛿2(𝑥) = ∫ |𝑥 − 𝑀|𝑓(𝑥)𝑑𝑥 = 2𝑀𝐹(𝑀) − 𝑀 + 𝜇 − 2𝐼(𝑀).
∞

0

 

respectively, where  

𝐼(𝑧) = ∫ 𝑥𝑓(𝑥)𝑑𝑥
𝑧

0
= ∑ 𝑃𝑛

𝛾(
1

𝜆
+1,𝑛𝛼(

𝑍

𝜇
)𝜆)𝜇

𝛼
1
𝜆

∞
𝑛=1     (7) 
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The Bonferroni and Lorenz curves and the Bonferroni and Gini indices have applications 

in economics, reliability, demography, insurance and medicine. The Bonferroni and 

Lorenz curves of 𝐸𝑃𝑃𝑆 distribution are defined, respectively, by 

𝐵(𝑝) =
1

𝑝𝜇
∫ 𝑥𝑓(𝑥)𝑑𝑥

𝑞

0

  and    𝐿(𝑝) =
1

𝜇
∫ 𝑥𝑓(𝑥)𝑑𝑥

𝑞

0

. 

 

Using (7), we can write 

𝐵(𝑝) =
1

𝑝𝜇
[∑ 𝑃𝑛

𝛾(
1

𝜆
+ 1, 𝑛𝛼(

𝑞

𝜇
)𝜆)𝜇

𝛼
1

𝜆

∞

𝑛=1
] 

and 

𝐿(𝑝) =
1

𝜇
[∑ 𝑃𝑛

𝛾(
1

𝜆
+ 1, 𝑛𝛼(

𝑞

𝜇
)𝜆)𝜇

𝛼
1

𝜆

∞

𝑛=1
]. 

3.3 Residual and reversed residual lifes 

Given that a component survives up to time 𝑡 ≥ 0, the residual life is the period beyond 𝑡 

until the time of failure and defined by the conditional random variable 𝑋 − 𝑡|𝑋 > 𝑡. In 

reliability, it is well known that the mean residual life function and ratio of two 

consecutive moments of residual life determine the distribution uniquely. Therefore, the 

𝑟th order moment of the residual lifetime can be obtained via the general formula 

𝜇𝑟(𝑡) = 𝐸((𝑋 − 𝑡)𝑟|𝑋 > 𝑡) =
1

𝐹(𝑡)
∫ (𝑥 − 𝑡)𝑟𝑓(𝑥)𝑑𝑥, 𝑟 ≥ 1

∞

𝑡

. 

 

Applying the binomial series and using (6), we obtain  

𝜇𝑟(𝑡) =
1

𝐹(𝑡)
∑ ∑ (−𝑡)𝑑 (

𝑟
𝑑

)
𝑃𝑛𝑛𝛼𝜆

𝜇𝜆
𝑡

∞

𝑥𝑟+𝜆−𝑑−1𝑒
−𝑛𝛼(

𝑥

𝜇
)𝜆

𝑑𝑥
𝑟

𝑑=0

∞

𝑛=1
 

           =
1

𝐹(𝑡)
∑ ∑ (−𝑡)𝑑 (

𝑟
𝑑

)
𝑛𝜇𝜆−𝑑

(𝑛𝛼)
𝑟−𝑑

𝜆

Γ (
𝑟 − 𝑑

𝜆
+ 1, 𝑛𝛼(

𝑡

𝜇
)𝜆)

𝑟

𝑑=0

∞

𝑛=1
, 

where Γ(𝑎, 𝑡) = ∫ 𝑧𝑎−1(1 − 𝑧)𝑏−1𝑑𝑧
∞

𝑡
 is the upper incomplete gamma function. 

 

On the other hand, we analogously discuss the reversed residual life and some of its 

properties. The reversed residual life can be defined as the conditional random variable 

𝑡 − 𝑋|𝑋 ≤ 𝑡 which denotes the time elapsed from the failure of a component given that 

its life is less than or equal to 𝑡. 
 

The 𝑟th order moment of the reversed residual life is defined by 

𝑚𝑟(𝑡) = 𝐸((𝑡 − 𝑋)𝑟|𝑋 ≤ 𝑡) =
1

𝐹(𝑡)
∫ (𝑡 − 𝑥)𝑟𝑓(𝑥)𝑑𝑥, 𝑟 ≥ 1

∞

𝑡

. 

 

Applying the binomial series and using (6), we can write 

𝑚𝑟(𝑡) =
1

𝐹(𝑡)
∑ ∑ (−𝑡)𝑑 (

𝑟
𝑑

)
𝑃𝑛𝑛𝛼𝜆

𝜇𝜆
0

𝑡

𝑥𝑟+𝜆−𝑑−1𝑒
−𝑛𝛼(

𝑥

𝜇
)𝜆

𝑑𝑥
𝑟

𝑑=0

∞

𝑛=1
 

            =
1

𝐹(𝑡)
∑ ∑ (−𝑡)𝑑 (

𝑟
𝑑

)
𝑛𝜇𝜆−𝑑

(𝑛𝛼)
𝑟−𝑑

𝜆

Γ (
𝑟 − 𝑑

𝜆
+ 1, 𝑛𝛼(

𝑡

𝜇
)𝜆)

𝑟

𝑑=0

∞

𝑛=1
. 
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3.4 Order statistics 

Let 𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤. . . ≤ 𝑋𝑛:𝑛 be a random sample of size 𝑛 from 𝐸𝑃𝑃𝑆 distribution. The 

PDF of the 𝑖th order statistic 𝑋𝑖:𝑛, say 𝑓𝑖:𝑛(𝑥), 𝑖 = 1,2, . . . , 𝑛 , is given by 

𝑓𝑖:𝑛(𝑥) =
𝑓(𝑥)

𝛽(𝑖, 𝑛 − 𝑖 + 1)
[𝐹(𝑥)]𝑖−1[1 − 𝐹(𝑥)]𝑛−𝑖𝑓(𝑥) 

             =
𝑓(𝑥)

𝛽(𝑖, 𝑛 − 𝑖 + 1)
[1 −

𝐶 {𝜃𝑒
−𝛼(

𝑥

𝜇
)𝜆

}

𝐶(𝜃)
]

𝑖−1

{
𝐶 [𝜃𝑒

−𝛼(
𝑥

𝜇
)𝜆

]

𝐶(𝜃)
}

𝑛−𝑖

. 

where 𝑓(𝑥) is the PDF given by (6). 

 

An alternative form for the PDF of the 𝑖th order statistic is 

𝑓𝑖:𝑛(𝑥) =
1

𝛽(𝑖, 𝑛 − 𝑖 + 1)
∑ ∑ (−1)𝑗 (

𝑛 − 𝑖
  𝑗

) [𝐹(𝑥)]𝑖+𝑗−1𝑃𝑛𝑔(𝑥, 𝛼, 𝜇, 𝑛𝜆)
𝑛−1

𝑗=0

∞

𝑛=1
. 

4.   Estimation 

In this section, we determine the maximum likelihood estimates (MLEs) of the 

parameters of the 𝐸𝑃𝑃𝑆 distribution from complete samples only. Let 𝑥1, . . . , 𝑥𝑛 be a 

random sample of size 𝑛 from the 𝐸𝑃𝑃𝑆 distribution given by (6). Let 𝜙 = (𝛼, 𝜇, 𝜆, 𝜃)𝑇 

be 𝑝×1 vector of parameters. The total log-likelihood function for 𝜙 is given by  

𝐿 = 𝑛log𝛼 + 𝑛log𝜆 + 𝑛log𝜃 − 𝑛log𝜇 − 𝑛(𝜆 − 1)log𝜇 + (𝜆 − 1) ∑ log𝑥𝑖

𝑛

𝑖=1
 

 −𝛼 ∑ (
𝑥𝑖

𝜇
)𝜆𝑛

𝑖=1 − 𝑛log𝐶(𝜃) + ∑ log𝐶/ [𝜃𝑒
−𝛼(

𝑥𝑖
𝜇

)𝜆

]𝑛
𝑖=1 . 

 

The corresponding score function is given by 𝑈𝑛(𝜙) = (
∂𝐿

∂𝛼
,

∂𝐿

∂𝜇
,

∂𝐿

∂𝜆
,

∂𝐿

∂𝜃
)

𝑇

, where   

∂𝐿

∂𝛼
=

𝑛

𝛼
− ∑ (

𝑥𝑖

𝜇
)𝜆

𝑛

𝑖=1
− θ ∑ (

𝑥𝑖

𝜇
)𝜆𝑒

−𝛼(
𝑥𝑖
𝜇

)𝜆
𝐶// [𝜃𝑒

−𝛼(
𝑥𝑖
𝜇

)𝜆

]

𝐶/ [𝜃𝑒
−𝛼(

𝑥𝑖
𝜇

)𝜆

]

𝑛

𝑖=1
, 

∂𝐿

∂𝜇
=

−𝑛

𝜇
−

𝑛(𝜆 − 1)

𝜇
−

𝛼𝜆

𝜇2
∑ (

𝑥𝑖

𝜇
)𝜆−1

𝑛

𝑖=1
−

𝜃𝛼𝜆

𝜇2
∑ (

𝑥𝑖

𝜇
)𝜆−1

𝐶// [𝜃𝑒
−𝛼(

𝑥𝑖
𝜇

)𝜆

]

𝐶/ [𝜃𝑒
−𝛼(

𝑥𝑖
𝜇

)𝜆

]

𝑛

𝑖=1
, 

∂𝐿

∂𝜆
=

𝑛

𝜆
− 𝑛log𝜇 + ∑ log𝑥𝑖

𝑛

𝑖=1
− α ∑ (

𝑥𝑖

𝜇
)𝜆log(

𝑥𝑖

𝜇
)

𝑛

𝑖=1
 

−𝜃α ∑ (
𝑥𝑖

𝜇
)𝜆𝑒

−𝛼(
𝑥𝑖
𝜇

)𝜆
𝐶// [𝜃𝑒

−𝛼(
𝑥𝑖
𝜇

)𝜆

]

𝐶/ [𝜃𝑒
−𝛼(

𝑥𝑖
𝜇

)𝜆

]

𝑛

𝑖=1
log(

𝑥𝑖

𝜇
) 

and 

∂𝐿

∂𝜃
=

𝑛

𝜃
− 𝑛

𝐶/(𝜃)

𝐶(𝜃)
+ ∑ 𝑒

−𝛼(
𝑥𝑖
𝜇

)𝜆
𝐶// [𝜃𝑒

−𝛼(
𝑥𝑖
𝜇

)𝜆

]

𝐶/ [𝜃𝑒
−𝛼(

𝑥𝑖
𝜇

)𝜆

]

𝑛

𝑖=1
. 
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The maximum likelihood estimator of 𝜙, say 𝜙̂, is obtained by solving the nonlinear 

system 𝑈𝑛(𝜙) = 0. The solution of this nonlinear system of equation has not a closed 

form. For interval estimation and hypothesis tests on the model parameters, we require 

the information matrix. 

5.   Special models 

In this section, we provide three special cases of the 𝐸𝑃𝑃𝑆 class of distributions. 

5.1 Exponential Pareto geometric (𝑬𝑷𝑮) distribution 

The 𝐸𝑃𝐺 distribution arises by taking 𝑎𝑛 = 1 and 𝐶(𝜃) = 𝜃(1 − 𝜃)−1, (0 < 𝜃 < 1). The 

CDF and PDF of the 𝐸𝑃𝐺 distribution are given by 

𝐹(𝑥) =
(1 − 𝜃)𝑒

−𝛼(
𝑥

𝜇
)𝜆

1 − 𝜃𝑒
−𝛼(

𝑥

𝜇
)𝜆

 

and 

𝑓(𝑥) =
(1 − 𝜃)

𝛼𝜆

𝜇
(

𝑥

𝜇
)𝜆−1𝑒

−𝛼(
𝑥

𝜇
)𝜆

[1 − 𝜃𝑒
−𝛼(

𝑥

𝜇
)𝜆

]
2 , 

respectively. The PDF plots of the 𝐸𝑃𝐺 model are displayed in Figure 1. 

 

 

Figure 1: Some possible shapes for the 𝐸𝑃𝐺 PDF  

5.2 Exponential Pareto Poisson (𝑬𝑷𝑷) distribution 

The 𝐸𝑃𝑃 distribution arises by taking 𝑎𝑛 = 𝑛!−1 and 𝐶(𝜃) =  𝑒𝜃 − 1, 𝜃 > 0. The CDF 

and PDF of 𝐸𝑃𝑃 distribution are, respectively, given by 

𝐹(𝑥) = 1 −
𝑒𝜃𝑒

−𝛼(
𝑥
𝜇

)𝜆

− 1

𝑒𝜃 − 1
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and 

𝑓(𝑥) =
𝜃

𝛼𝜆

𝜇
(

𝑥

𝜇
)𝜆−1𝑒

−𝛼(
𝑥

𝜇
)𝜆

𝑒𝜃𝑒
−𝛼(

𝑥
𝜇

)𝜆

𝑒𝜃 − 1
. 

Figure 2 shows some plots for the 𝐸𝑃𝑃 PDF. 

 

 

Figure 2: Some possible shapes for the 𝐸𝑃𝑃 PDF  

5.3 Exponential Pareto logarithmic (𝑬𝑷𝑳) distribution 

The 𝐸𝑃𝐿 distribution arises by taking 𝑎𝑛 = 𝑛−1 and 𝐶(𝜃) = −log(1 − 𝜃), 0 < 𝜃 < 1. 
The CDF and PDF of 𝐸𝑃𝐿 distribution are given by 

𝐹(𝑥) = 1 − log [1 − 𝜃𝑒
−𝛼(

𝑥

𝜇
)𝜆

] /log(1 − 𝜃) 

𝑓(𝑥) =
𝛼𝜆

−𝜇log(1 − 𝜃)
(
𝑥

𝜇
)𝜆−1𝑒

−𝛼(
𝑥

𝜇
)𝜆

[1 − 𝜃𝑒
−𝛼(

𝑥

𝜇
)𝜆

]
−1

, 

respectively. The PDF plots of the 𝐸𝑃𝐿 distribution are given in Figure 3. 

 

Figure 3: Some possible shapes for the 𝐸𝑃𝐿 PDF  
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6.   Application 

In this section, a real data set is used to demonstrate the flexibility and applicability of the 

exponential pareto geometric (EPG) distribution over some of generalized pareto (Burr) 

distributions. In order to compare the models, we used following two criteria:  

 

(a) Cramer Von mises test statistic (𝑊∗).  

(b) Anderson and Darling test statistic (𝐴∗).  

 

The EPG distribution is compared to some of Burr generalization with names beta Burr 

XII distribution, BBXII, (Parnaiba et al., 2011), Kumaraswamy Burr XII, KwBXII, 

(Parnaiba et al., 2012), beta Burr III, BBIII, (Gomes et al., 2013) and Kumaraswamy-

Burr Type III, KwBIII, (Behairy et al., 2016) distributions. Each distribution was fitted to 

the data set using the optim() function in R program.  

 

The data set is failure and service times for a particular model windshield given in Table 

16.11 of Murthy et al. (2004). The data are as follows: 0.040, 1.866, 2.385, 3.443, 0.301, 

1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 1.911, 2.625, 3.578, 0.943, 1.912, 

2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779, 1.248, 2.010, 2.688, 

3.924,1.281, 2.038, 2.82,3, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167, 

1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 4.278, 1.506, 

2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615, 2.223, 3.114, 4.449, 1.619, 2.224, 

3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 1.757, 2.324, 3.376 

and 4.663. The TTT plot (Aarset, 1987) of this sets of data in Figure 4 displays increasing 

hazards rate function that indicates the appropriateness of the 𝐸𝑃𝐺 distribution to fit the 

data sets.  

 

Tables 2 present the maximum likelihood estimate of parameters and mentioned criteria. 

Figure 5 shows fitted PDFs on histogram of data set. We see that 𝐸𝑃𝐺 distribution fitted 

on data better than other rivals. 

 

 

Figure 4: TTT plot of data set 
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Table 2:   Parameters estimates and goodness-of-fit statistics 𝑾∗ and 𝑨∗ 

  Model    Estimates (Standard Error)    𝑊∗    𝐴∗  

 𝐸𝑃𝐺    

 (𝛼, 𝜇, 𝜆, 𝜃) 

 1.550, 3.444, 2.393, 0.001  

(0.009), (0.019), (1.881), (0.035) 
 0.048   0.540  

 BBXII  

(𝛼, 𝛾, 𝑐, 𝑘, 𝑎) 

 0.264, 1.777, 6.252, 5.815, 5.860  

(0.031), (0.358), (0.026), (0.098), (0.027) 
 0.112   0.763  

 KwBXII  

(𝛼, 𝛾, 𝑐, 𝑘, 𝑎) 

 0.266, 1.881, 7.110, 5.566, 6.007  

(0.056), (1.474), (0.002), (7.964), (0.002) 
 0.085   0.637  

 BBIII  

(𝑎, 𝑏, 𝛼, 𝛽, 𝑠) 

 0.037, 2.743, 6.090, 7.706, 3.845  

(0.037), (1.778), (1.979), (7.280), (0.419) 
 0.076   0.597  

 KwBIII 

(𝑎, 𝑏, 𝛼, 𝛽, 𝑠)   

 0.140, 1.896, 6.129, 2.266, 4.565  

(0.118), (1.070), (2.154), (1.919), (0.913) 
 0.063   0.566  

 

 

Figure 5: Fitted PDFs on histogram  

7.   Conclusion 

We defined a new class called the exponential Pareto power series (𝐸𝑃𝑃𝑆) distributions. 

Three special models of this family are discussed. We studied its general mathematical 

properties such as ordinary and conditional, mean deviations, Bonferroni and Lorenz 

curves, residual and reversed residual lifes and order statistics. The model parameters are 

estimated using the maximum likelihood method. Its usefulness is illustrated using a real 

data set. 
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