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Abstract: After defining a new log-logistic model and studying its properties, some new bivariate
type versions using “Farlie-Gumbel-Morgenstern Copula”, “modified Farlie-Gumbel-Morgenstern
Copula”, “Clayton Copula”, and “Renyi’s entropy Copula” are derived. Then, using the
Bagdonavicius-Nikulin goodness-of-fit (BN-GOF) test for validation, we proposed a goodness-of-fit
test for a new log-logistic model. The modified test is applied for the “right censored” real dataset of
survival times. All elements of the modified test are explicitly derived and given. Three real data
applications are presented for measuring the flexibility and the importance of the new model under
the uncensored scheme. Two other real datasets are analyzed for censored validation.

Keywords: Bagdonavičius-Nikulin; Farlie-Gumbel-Morgenstern; Clayton Copula; censored validation;
log-logistic distribution; Barzilai-Borwein; Burr XII Distribution; Censored Maximum Likelihood

1. Introduction

A new univariate version of the log-logistic (LL) model called the Rayleigh generalized log-logistic
(RG-LL) distribution (see Equations (3) and (4) and their corresponding details) is introduced, studied,
and checked in modeling censored and uncensored real datasets. Following the mathematical approach
to the development of the RG-LL distribution, some new bivariate RG-LL type distributions using
Farlie-Gumbel-Morgenstern (FGM) Copula ([1–4]), modified Farlie-Gumbel-Morgenstern Copula [5],
Clayton Copula, and Renyi’s entropy Copula [6] are derived in this paper (see Section 3). Two major
reasons as to why copulas are of interest to statisticians ([7]): “Firstly, as a way of studying scale-free
measures of dependence; and secondly, as a starting point for constructing families of bivariate
distributions.” Specifically, copulas are an important part of the study of dependence between two
variables since they allow us to separate the effect of dependence from the effect of the marginal
distributions. Further future articles could be allocated to study the new bivariate RG-LL type.
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The new model is used for modeling three real datasets. The 1st data are an “engineering
real-life data” and consist of 100 observations of “breaking stress of carbon fibers” given by [8].
The 2nd data are a “reliability survival data” and called the “survival times”, in days, of 72 guinea
pigs infected with virulent tubercle bacilli, this data were originally observed and reported by [9].
The 3rd data are medical data and called leukemia data. This real dataset gives the survival times,
in weeks, of 33 patients suffering from acute myelogenous leukemia. These applications are used to
illustrate the importance, potentiality, and flexibility of the RG-LL model. The hazard rate function
(HRF) of the 1st and 2nd real datasets is “monotonically increasing”. However, the HRF of the 3rd is
“decreasing-constant-increasing”. These read datasets are analyzed by [10–17].

The RG-LL model has only three parameters. However, its competitive models have at least three
parameters (or more) as illustrated in Section 5 (Tables A3–A5). It is worth mentioning that, the lifetime
model with a smaller number of parameters is a favorable one especially when if it gives a better
(or same) fit. The RG-LL model has the lowest (best) value of the used criteria (see Tables A3–A5).
Therefore, it is recommended to apply the RG-LL model in modeling instead of all the other competitive
models. For the applied purposes, especially in the mathematical modeling, the RG-LL model could
be useful in the following applied cases:

1. Modeling the “asymmetric monotonically right skewed” heavy tail data sets (see second and
third applications).

2. Modeling the “asymmetric monotonically right skewed” heavy tail data sets for the first time
ever (see [18]).

3. In the engineering field, the RG-LL distribution can be applied for modeling the “breaking stress
data” which have “monotonically increasing” HRF. As shown in Table A3, the RG-LL model
proved its superiority against many competitive models.

4. In “survival analysis”, the RG-LL distribution could be chosen for modeling the “survival times
data” which have a “monotonically increasing” HRF as illustrated in Table A4.

5. In the medical field, the RG-LL distribution could be considered in modeling the “leukemia data”
which have “decreasing-constant-increasing” HRF (see Table A5).

For these reasons, we are motivated to introduce and study the RG-LL distribution.
For simulation purposes, the algorithm of “Barzilai-Borwein” (BB) (see [19]) is used via a simulation

study for assessing the performance of the estimators with different sample sizes as the sample size
tends to∞ (for more details, see [20–22]). For validation purposes and using the BN-GOF test under
the right censored data, we propose a modified chi-square GOF test for the RG-LL model. Based on
the maximum likelihood estimators (MLEs) on initial data, the modified BN-GOF test recovers the loss
in information while grouping data and follow chi-square distributions. All elements of the modified
BN-GOF criteria tests are explicitly derived and given (for more details see [20,23,24]).

Generally, the LL distribution is a continuous model for a non-negative random variables (RVs).
It is used in survival analysis as a parametric model for events whose rate increases initially and
decreases later such as mortality rate from cancer following diagnosis or treatment (for more details
see [25–31]). The LL model has also been used in hydrology in modeling stream flow and precipitation.
In economics, the LL is employed as a simple distribution of the distribution of wealth or income.
A RV Z is said to have the one parameter LL distribution if its cumulative distribution functions (CDF)
can be written as:

Ga2(z)|(z>0,a2>0) = 1−
1

1 + za2
(1)

here a2 > 0 refers to the shape parameter. A scale and location parameter can be introduced in many
ways to make (1) a three-parameter distribution. It is worth mentioning that the model in (1) is a
member of the Pareto Type I distribution. The corresponding probability density function (PDF) of (1)
is given by

ga2(z) = a2
za2−1

(1 + za2)2 . (2)
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The PDF in (2) is a special member from the well-known Burr type XII (BXII) model (see [25–31]).
Based on the family of [15] and using (1), the CDF of the Rayleigh generalized LL (RG-LL) is defined by

Fθ,a1,a2(z)|(z,θ,a1,a2>0) = 1− exp
{
−a1

[
(1 + za2)θ − 1

]2
}

(3)

the corresponding PDF to (3) is given as

fθ,a1,a2(z)|(z,θ,a1,a2>0) = 2θa1a2
za2−1(1 + za2)θ−1

[
(1 + za2)θ − 1

]
exp

{
a1

[
(1 + za2)θ − 1

]2
} (4)

For a1 = 1, the RG-LL model reduces to the two parameter RG-LL model. For θ = 1, the RG-LL
model reduces to the R-LL model (with three parameters). For θ = a1 = 1, the RG-LL model reduces

to the R-LL model (with two parameters). The HRF can be derived from hθ,a1,a2(z) =
fθ,a1,a2 (z)

1−Fθ,a1,a2 (z)
.

Let B = in f
{
z|Ga2(z) >0

}
, the asymptotics of the CDF, PDF, and HRF as z→ B are given by

Fθ,a1,a2(z) |(z→B,a1=1) ∼ θ
2
(
1−

1
1 + za2

)2
,

fθ,a1,a2(z) |(z→B,a1=1) ∼ 2a2θ2 za2−1

(1 + za2)2

[
1−

1
1 + za2

]
,

and

hθ,a1,a2(z) |(z→B,a1=1) ∼ 2a2θ
2 za2−1

(1 + za2)2

(
1−

1
1 + za2

)
.

The asymptotics of CDF, PDF and HRF as z→∞ are derived by

1− Fθ,a1,a2(z) |(z→∞,a1=1) ∼ exp
[
−

( 1
1 + za2

)−2θ]
fθ,a1,a2(z) |(z→∞),a1=1 ∼ 2a2θ

za2−1

(1 + za2)2

( 1
1 + za2

)−2θ−1
exp

[
−

( 1
1 + za2

)−2θ]
and

hθ,a1,a2(z) |(z→∞,a1=1) ∼ 2a2θ
za2−1

(1 + za2)2

[ 1
1 + za2

]−2θ−1

Figure 1 gives some plots of PDF and HRF for the RG-LL model. From Figure 1 (left panel),
we conclude that the proposed PDF of the RG-LL model can be “uniform”, “unimodal”, “symmetric”
or “asymmetric left skewed” (or asymmetric right skewed (see Table A1)). From Figure 1 (right panel),
the HRF can be “asymmetric monotonically increasing” (θ = 0.95, a1 = 0.01, a2 = 1.5) or
“decreasing-constant” (θ = 1.5, a1 = 0.01, a2 = 0.35) or “J shaped” (θ = 1, a1 = 1, a2 = 20) or
“constant” (θ = 1.5, a1 = 0.1, a2 = 0.45).
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Figure 1. Plots of probability density function (PDF) and hazard rate function (HRF) for the Rayleigh
generalized log-logistic (RG-LL) model.

The rest of the paper is organized as follows. In Section 2, some mathematical properties of the new
model are derived. In Section 3, some new bivariate type versions using “Farlie-Gumbel-Morgenstern
Copula”, “modified Farlie-Gumbel-Morgenstern Copula”, “Clayton Copula” and “Renyi’s entropy
Copula” are obtained. In Section 4, we provided three applications to real data to illustrate the flexibility
of the new model. The modified BN-GOF test is presented and applied in Section 5. Simulation
experiments under censorship for assessing the new test are performed in Section 6. Censored validation
under real data is considered in Section 7. Finally, some concluding remarks are addressed in Section 8.

2. Properties

2.1. Moments and Generating Function

The PDF of the RG-LL model in (4) can be expressed as:

F(z) = 1− exp

−a1

1−
(

1
1+za2

)θ(
1

1+za2

)θ


2︸                          ︷︷                          ︸
Aa1,a2,θ(z)

.

Expanding Aa1,a2,θ(z) using the power series, we get:

F(z) = 1−
∞∑

ii=0

(−a1)
i1

i1!

[
1−

( 1
1 + za2

)θ]2i1

︸                 ︷︷                 ︸
Ba2,θ,2i1 (z)

( 1
1 + za2

)−θ2i1
.

Applying the generalized binomial expansion to the quantity Ba2,θ,2i1(z), we have

F(z) = 1−
∞∑

i1,i2=0

(−a1)
i1+i2

i1!

(
2i1
i2

)( 1
1 + za2

)θ(i2−2i1)

︸               ︷︷               ︸
Ca2,θ(i2−2i1)

(z)

.

Again, applying the generalized binomial expansion to the quantity Ca2,θ(i2−2i1)(z), we arrive at
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F(z) = 1−
∞∑

i3=0

qi3 [Ga2(z)]
i3 ,

where qi3 =
∑
∞

i1,i2=0
(−a1)

i1+i2+i3

i1!

(
2i1
i2

)(
θ(i2 − 2i1)

i3

)
and [Ga2(z)]

i3 =
[
1− 1

1+za2

]i3 is the CDF of the

exponentiated LL (Exp-LL) model. By differentiating the last equation, we get

f (z) =
∞∑

i4=0

Y[i4] ga2,(1+i4)(z), (5)

where Y[i4] = −b[i4] and b[i4] =
∑
∞

i1,i2,i3=0
(−1)i1+i2+i3+i4

i1!i4!

(
2i1
i2

)(
θ(i2 − 2i1)

i3

)(
1 + i3

i4

)
, the PDF

ga2,(1+i4)(z) = (1 + i4)a2za2−1(1 + za2)−2−i4 (6)

is the LL PDF with parameters a2 and (1 + i4). Similarly, the CDF (2) of RG-LL can be re-expressed as
F(z) =

∑
∞

i4=0 Y[i4]Ga2,(1+i4)(z), where Ga2,(1+i4)(z) = 1− (1 + za2)−1−i4 is the CDF of the LL model with
parameters a2 and (1 + i4). In terms of beta function of the second type, B(a1, a2), where B(a1, a2) =∫
∞

0 ta1−1(1 + t)−(a1+a2)dt, the pth ordinary moment of Z can be expressed as (see [10,11,16,32–34]):

µ′p|(p<(1+i4)a2) =
∞∑

i4=0

Y[i4](1 + i4) B
(
1 +

p
a2

, (1 + i4) −
p
a2

)
, (7)

By setting p = 1 in (7), we get the mean of Z. Similarly, in terms of incomplete beta function of the
second type, B(q; a1, a2), where B(q; a1, a2) =

∫ q
0 ta1−1(1 + t)−(a1+a2)dt, the pth incomplete moment of Z

can be written as:

Ip(t)|(p<(1+i4)a2) =
∞∑

i4=0

Y[i4](1 + i4) B
(
ta2 ; 1 +

p
a2

, (1 + i4) −
p
a2

)
,

The moment generating function (MGF) Mz(t) = E(exp(tz)) of z can be derived from (5) as

Mz(t) =
∞∑

i4,p=0

Y[i4](1 + i4) B
(
1 +

p
a2

, (1 + i4) −
p
a2

)
|(p<(1+i4)a2).

2.2. Probability Weighted Moments (PWMs)

The (p, q)th PWM of Z following the RG-LL model, say mp,q, is formally defined by mp,q = E
{
zpF(z)q

}
.

The (p, q)th PWM of Z can be expressed as:

mp,q =
∞∑

q=0

Y[q](1 + q) B
( p

a2
+ 1, (1 + q) −

p
a2

)
|(p<(1+q)a2),

where

Y[q] = 2θa1

∞∑
i,i1,i2,i3=0

(−1)i+i1+i2+i3(1 + i)i1

Γ(1 + q)Γ(1 + i1)!
(q)i3

(
1 + i3

r

)(
(1 + i1)2− 1

i2

)(
θ[−(1 + i1)2 + i2] − 1

i3

)
,

and (a1)a2
= a1(a1 − 1) . . . (1 + a1 − a2) is the “descending factorial” and a2 is a positive integer.
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2.3. Moment of the Reversed Residual Life

The pth moment of the reversed residual life, say Ap(t) = E
[
(t− z)p

|(z≤t, t>0,p=1,2,...)

]
. Then, we have

Ap(t) = F−1(t)
∫ t

0 (t− z)pdF(z). Then, the pth moment of the reversed residual life of Z becomes

Ap(t) = F−1(t)
∞∑

r=0

Y∗
[i4]

(1 + i4) B
(
ta2 ; (1 + i4) −

p
a2

, 1 +
p
a2

)
,

where Y∗
[i4]

= Y[i4]

p∑
r=0

(
p
r

)
(−1)rtp−r.

2.4. Numerical Analysis for Skewness and Kurtosis

The effects of the three parameters for the RG-LL model on the mean (µ′1), variance (Var(Z)),
skewness (Ske(Z)), and kurtosis (Kur(Z)) are listed in Table A1 (see the Appendix A). The effects of the
parameter a2 for the standard LL model on the µ′1, Var(Z), Ske(Z), and Kur(Z) are listed in Table A2
(see the Appendix A). From Tables A1 and A2 we note that, the new additional shape parameters θ
and a1 have an effect on µ′1, Var(Z), Ske(Z), and Kur(Z). For the RG-LL model, Ske(Z) can range in the
interval (−10.8325, 3601.587). However, for the LL model, Ske(Z) can range in the interval (0.087169,
2.485276). Therefore, the new model can be left skewed and also right skewed, however, the LL model
can only be right skewed. For the RG-LL model, Kur(Z) can range in the interval (−174.8386, 13223681).
However, for the LL model, Kur(Z) can range only in the interval (3.7409, 29.5562).

3. Copula

3.1. Bivariate RG-LL Using FGM Copula

First, we start with CDF for the FGM family (see [1–4]) of two random variables (Z1, Z2)

which has the following form Fϕ(z1, z2)|(|ϕ|≤1) = uw(1 +ϕu∗w∗). Let u∗ = (1− u) ∈ (0, 1) and

w∗ = (1−w) ∈ (0, 1). Setting u∗ = 1−F1(z1) and w∗ = 1−F2(z2)where u∗ = exp
{
−a1

[(
1 + za2

1

)θ1
− 1

]2
}

,

and w∗ = exp
{
−b1

[(
1 + zb2

2

)θ2
− 1

]2
}

.

3.2. Via Clayton Copula

The Bivariate Extension

The bivariate extension via Clayton Copula can be considered as a weighted version of the Clayton

Copula which is in the form C(u, v) = [u−ϕ + v−ϕ − 1]−
1
ϕ . Let us assume that X ∼ RG-LL (θ1, a1, a2)

and Z ∼ RG-LL (θ2, b1, b2). Then, setting u = uθ1,a1,a2(x) = F1 and v = vθ2,b1,b2(z) = F2, the associated
CDF of the bivariate RG-LL type distribution will be:

H(x, z) =



(
1− exp

{
−a1

[
(1 + xa2)θ1 − 1

]2
})−ϕ

+

(
1− exp

{
−b1

[(
1 + zb2

)θ2
− 1

]2
})−ϕ

−1



−
1
ϕ

.

The “m-dimensional extension” can be written as:

H(zi) =

 m∑
i=1

(
1− exp

{
−ai

[(
1 + zai

i

)θi
− 1

]2
})−ϕ

+ 1−m

−
1
ϕ

,



Mathematics 2020, 8, 1508 7 of 20

where zi = z1, z2, · · · , zm.

3.3. Bivariate RG-LL Type via Modified FGM Copula

Following [5], the (joint CDF) J-CDF of the bivariate modified FGM copula can be expressed as

Cε(u, w) = uw + εϑ̃(u)ϕ̃(w), where ϑ̃(u) = uϑ(u), and ϕ̃(w) = wϕ(w). Here ϑ(u) and ϕ(w) are two
absolutely continuous functions on (0, 1) with the following conditions: (I)-The “boundary” condition:
0 = ϑ(1) = ϑ(0) = ϕ(1) = ϕ(0). (II)-Let

L1 = in f
{
∂
∂u
ϑ̃(u)|C1(u)

}
< 0,H1 = sup

{
∂
∂u
ϑ̃(u)|C1(u)

}
< 0,

L2 = in f
{
∂
∂w
ϕ̃(w)|C2(w)

}
> 0,H2 = sup

{
∂
∂w
ϕ̃(w)|C2(w)

}
> 0.

Then, 1 ≤ min(L1H1,L2H2) ≤ ∞, where

∂
∂u
ϑ̃(u) = ϑ(u) + u

∂
∂u
ϑ(u),

C1(u) =
{

u : u ∈ (0, 1) |
∂
∂u
ϑ̃(u) exists

}
,

and

C2(w) =

{
w : w ∈ (0, 1) |

∂
∂w
ϑ̃(w) exists

}
.

3.3.1. Bivariate RG-LL-FGM (Type-I) Model

Here, we consider the following functional form for both ϑ(u) and ϕ(w) as

Cε(u, w) =


(
1− exp

{
−a1

[
(1 + ua2)θ1 − 1

]2
})

×

(
1− exp

{
−b1

[(
1 + wb2

)θ2
− 1

]2
}) + ε

[
ϑ̃(u)ϕ̃(w)

]
,

where
ϑ̃(u)

1
u
= exp

{
−a1

[
(1 + ua2)θ1 − 1

]2
}
|θ1,a1,a2>0,

and

ϕ̃(w)
1
v

= exp
{
−b1

[(
1 + wb2

)θ2
− 1

]2
}
|θ2,b1,b2>0.

3.3.2. Bivariate RG-LL-FGM (Type-II) Model

Consider the following functional form for both ϑ(u) and ϕ(w) which satisfy all the conditions
stated earlier where ϑ(u)|(ε1>0) = uε1(1− u)1−ε1 and ϕ(w)|(ε2>0) = vε2(1−w)1−ε2 .

The corresponding bivariate RG-LL-FGM (Type-II) copula can be derived from:

Cε,ε1,ε2(u, w) = uw
[
1 + εuε1 wε2(1− u)1−ε1(1−w)1−ε2

]
.

3.3.3. Bivariate RG-LL-FGM (Type-III) Model

Consider the following functional form for both ϑ(u) and ϕ(w) which satisfy all the conditions
stated earlier where ϑ(u) = u[log(1 + u)] and ϕ(w) = w[log(1 + w)].

In this case, one can also derive a closed form expression for the associated CDF of the bivariate
RG-LL-FGM (Type-III).
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3.3.4. Bivariate RG-LL-FGM (Type IV) Model

The J-CDF of the bivariate RG-LL-FGM (Type-IV) model can be derived from C(u, w) = uF−1(w) +

wF−1(u) − F−1(u)F−1(w).

3.4. Bivariate RG-LL Type Using Renyi’s Entropy Copula

Due to [6], The J-CDF of the Renyi’s entropy Copula can be expressed as C(u, w) = z2u+ z1w− z1z2,
then, the associated bivariate MOLBX will be

C(z1, z2) = C
(
FV1

(y1), FV2
(y2)

)
= −z1z2

+z2

(
1− exp

{
−a1

[(
1 + za2

1

)θ1
− 1

]2
})

+z1

(
1− exp

{
−b1

[(
1 + zb2

2

)θ2
− 1

]2
})

.

(8)

Many useful details and other similar work can be found in [35–39].

4. Uncensored Real Data Applications

The log-likelihood function (`n(ξ)) for ξ is given by

`n
(
ξ
)
= nlog2 + nlogθ+ nloga1 + nloga2 + (θ− 1)

n∑
i=1

log
(
1 + za2

i

)
+ (2− 1)

n∑
i=1

log
[(

1 + za2
i

)θ
− 1

]
− a1

n∑
i=1

[(
1 + za2

i

)θ
− 1

]2
.

The above `n(ξ) can be maximized numerically via “SAS (PROC NLMIXED)” or “R (optim)” or
“Ox program (via sub-routine MaxBFGS)”, among others. The components of the score vector

U
(
ξ
)
=
∂`
∂ξ

=

∂`n
(
ξ
)

∂θ
,
∂`n

(
ξ
)

∂a1
,
∂`n

(
ξ
)

∂a2


T

can be derived easily.
We provide three real applications to illustrate the importance, potentiality and flexibility of the

RG-LL model. For these data, we compare the RG-LL distribution, with BXII, Topp-Leone-BXII (TLBXII),
Zografos-Balakrishnan-BXII (ZBBXII), Marshall-Olkin-BXII (MOBXII), Five Parameters beta-BXII
(FBBXII), Beta-BXII (BBXII), Beta exponentiated-BXII (BEBXII), Five Parameters Kumaraswamy-BXII
(FKwBXII), and the KwBXII distributions given in [11–15].

The 1st data: Called “breaking stress data”: {0.98, 5.56, 5.08, 0.39, 1.57, 3.19, 4.90, 2.93, 2.85, 2.77,
2.76, 1.73, 2.48, 3.68, 1.08, 3.22, 3.75, 3.22, 3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.40,
3.15, 2.67,3.31, 2.81, 2.56, 2.17, 4.91, 1.59, 1.18, 2.48, 2.03, 1.69, 2.43, 3.39, 3.56, 2.83, 3.68, 2.00, 3.51, 0.85,
1.61, 3.28, 2.95, 2.81, 3.15, 1.92, 1.84, 1.22, 2.17, 1.61, 2.12, 3.09, 2.97, 4.20, 2.35, 1.41, 1.59, 1.12, 1.69, 2.79,
1.89, 1.87, 3.39, 3.33, 2.55, 3.68, 3.19, 1.71, 1.25, 4.70, 2.88, 2.96, 2.55, 2.59, 2.97, 1.57, 2.17, 4.38, 2.03,
2.82, 2.53, 3.31, 2.38, 1.36, 0.81, 1.17, 1.84, 1.80, 2.05, 3.65}. This dataset consists of 100 observations of
“breaking stress of carbon fibers” (in Gba).

The 2nd data: Called “survival times”, in days, of 72 guinea pigs infected with virulent tubercle
bacilli: {0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 07, 1.08, 1.08, 1.08,
1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63,
1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54,
2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55}.

The 3rd data: {65, 156, 100, 134, 16, 108, 121, 4, 39, 143, 56, 26, 22, 1, 1, 5, 65, 56, 65, 17, 7, 16, 22, 3, 4,
2, 3, 8, 4, 3, 30, 4, 43} is called “leukemia data”. This real data set gives the survival times, in weeks,
of 33 patients suffering from acute myelogenous leukemia. The total time test (TTT) plot (see [40]) is an
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important graphical approach to verify whether the data can be applied to a specific distribution or not.
The TTT plots of the three real datasets are presented in Figure 2. This plot indicates that the empirical
HRFs of the 1st and 2nd datasets are increasing. The empirical HRF is the bathtub for the 3rd dataset.

We consider the following goodness-of-fit statistics: The “Akaike information criterion”
(CAI), “Bayesian information criterion” (CBayes), “consistent Akaike information criterion” (CCA),
and “Hannan-Quinn information criterion” (CHQ). Tables A3–A5 (see the Appendix A) give the MLEs,
standard errors (SEs), and confidence interval (CIs) for all datasets. The same tables give the statistics
CAI, CBayes, CHQ, and CCA values for these datasets.

Based on the values in Table A3, we conclude that the RG-LL model provides the best fit as
compared to other competitive models in the three applications with the smallest values of CAI = 302.75,
CBayes = 301.17, CHQ = 299.18, and CCA = 300.92. Based on the values in Table A4, it is noted that the
RG-LL model provides the best fit as compared to other competitive models in the three applications
with the smallest values of CAI = 208.01, CBayes = 211.11, CHQ = 207.12, and CCA = 209.53.
Based on the values in Table A5, it is noted that the RG-LL model provides the best fit as compared
to other competitive models in the three applications with the smallest values of CAI = 313.44,
CBayes = 316.41, CHQ = 313.11, and CCA = 313.02. Figures 2–5 give the total time in test (TTT)
plots, the estimated CDFs plots, the estimated PDFs plots, and the estimated HRFs plots, respectively.
Based on Figure 2, the HRF of the three data are “monotonically increasing”, “monotonically increasing”,
and “decreasing-constant-increasing”, respectively. Figures 3–5 are provided for illustrating the
superiority on the new model graphically.
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Based on the values in Tables A3–A5 and Figures 2–5, we conclude that the RG-LL model provides
good (and also the best) fits as compared to other competitive models in the three applications with
smallest values of CAI, CBayes, CHQ and CCA.

5. The Modified BN-GOF Test

5.1. Censored Maximum Likelihood

Suppose that Z1, Z2, . . . .., Zn is a RS with right censoring from the RG-LL
(
ξ
)

distribution.

The observed data zi|(i=1,2,..,n) = min(Zi, Ci) are the “minimum of the survival time” Zi and censoring
time Ci for each subject in the sample. Therefore, zi can be written as (zi,∇i)i=1,2,...,n where ∇i = 1
if Zi is the moment of failure (complete observation) and ∇i = 0 if Zi is the “moment of censoring”.
The likelihood function can be written as:

l
(
z, ξ

)
= Πn

i=1hθ,a1,a2(zi)
∇iSθ,a1,a2(zi)| (∇i=1Zi<Ci )

.

The log-likelihood function of RG-LL
(
ξ
)

distribution is:

LCi

(
ξ
)
=

n∑
i=1

∇i

[
ln(θa1a2) + (a2 − 1) ln zi

+(θ− 1) ln$i + ln($2
i − 1)

]
− a1

n∑
i=1

(
$θi − 1

)2
,

where $i = 1 + za2
i , and the score functions are obtained as follows:

∂LCi

(
ξ
)

∂θ
=

n∑
i=1

∇i

[ 1
θ
+ ln($i)

]
− 2a1

n∑
i=1

$θi ln($i)
(
$θi − 1

)
,
∂L
∂a1

=
n∑

i=1

∇i
a1
−

n∑
i=1

(
$θi − 1

)2
,

and

∂LCi

(
ξ
)

∂a2
=

n∑
i=1

∇i

 1
a2

+ ln zi + (θ− 1)
za2

i ln zi

$i
+

2za2
i ln zi$i

$2
i − 1

− 2a1a2θ
n∑

i=1

za2
i ln zi$

θ−1
i

(
$θi − 1

)
.

The MLEs of the unknown parameters can be obtained using various techniques, either software
R, “EM algorithm”, or “Newton Raphson” method.

5.2. The Modified BN-GOF Test for Right Censored Data

Based on [23,24], the statistic test is defined as:

Y2
n =

n∑
j=1

1
U j

(
U j − e j

)2
+ Q,

where U j and e j are the observed and the expected numbers of failure in grouping intervals,
other elements were defined in [20,23,24]. The endpoints ρ j of k random gouging intervals I j =

[
ρ j−1,ρ j[

are chosen so that the expected failure times to fall into these intervals are the same for each j = 1, .., k− 1,
ρ̂k = max

(
z(l), τ

)
. The estimated ρ̂ j is defined by

ρ̂ j = H−1

E j −
∑i−1

l=1 Hθ,a1,a2(zl)

n− i + 1
, ξ

,

and ρ̂k = max
(
z(n),τ

)
where Hθ,a1,a2(zl) is the cumulative HRF (CHRF) of the model distribution.

This statistic test Y2
n follows a chi-squared model.
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5.3. Choice of Random Grouping Intervals

Suppose that Z1, Z2, . . . .., Zn is a RS with right censoring from the RG-LL
(
ξ
)

model and a finite
time τ. The estimated ρ̂ j is obtained as follows:

ρ̂ j =

1−
1 +

√
E j −

∑i−1
l=1 Hθ,a1,a2(zl)

a1(n− i + 1)


1/θ

1/a2

where Hθ,a1,a2(zl) is the CHRF of the RG-LL
(
ξ
)

distribution.

5.4. Quadratic Form of Q of the Statistic Y2
n

To calculate the quadratic form Q of the statistic Y2
n, and as its distribution does not depend on

the parameters, so we can use the estimated matrices Ŵ, Ĉ and the estimated information matrix Î The
elements of Ĉ are defined in [20].

5.5. Estimated Information Matrix Î

We need also the information matrix Î of the RG-LL
(
ξ
)

model with the right censoring.
After difficult calculations and some simplifications, we have obtained the elements of the matrix
as follows:

ı̂11 =
1
n

n∑
i=1

∇i

[ 1
θ
+ ln($i)

]2
, ı̂22 =

1
n

n∑
i=1

∇i

a2
1

ı̂33 =
1
n

n∑
i=1

∇i

 1
a2

+ lnzi + (θ− 1)
za2

i lnzi

$i
+

2za2
i lnzi$i

$2
i − 1

2

, ı̂12 =
1
n

n∑
i=1

∇i
a1

[ 1
θ
+ ln($i)

]

ı̂13 =
1
n

n∑
i=1

∇i

[ 1
θ
+ ln($i)

] 1
a2

+ lnzi + (θ− 1)
za2

i lnzi

$i
+

2za2
i lnzi$i

$2
i − 1

,
and

ı̂23 =
1
n

n∑
i=1

∇i
a1

 1
a2

+ lnzi + (θ− 1)
za2

i lnzi

$i
+

2za2
i ln zi$i

$2
i − 1

.

Then, we obtain the statistic test for the RG-LL
(
ξ
)

distribution with the “right censored” data.
This statistic follows a chi-squared distribution with k degrees of freedom.

Y2
n

(
ξ
)

=
∑r

j=1

1
U j

(
U j − e j

)2
+ ŴT

[
ı̂ll′ −

∑r

j=1
Ĉl jĈl′ jÂ

−1
j

]−1
Ŵ.

6. Simulations under Censorship

In this section we perform a simulation study to consolidate our results. For this purpose,
N = 10, 000 censored samples (with sizes: n = 25, 50, 130, 350, 500, 1000) from the RG-LL

(
ξ
)

distribution is simulated.

6.1. Maximum Likelihood Estimation

We generate the simulated samples with various parameters. Using the R software and BB
algorithm, means simulated MLEs and their mean squared errors (MSEs) are calculated and given in
Table 1. As shown in these results, the MLEs are convergent.
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Table 1. The maximum likelihood estimators (MLEs) and their mean squared errors (MSEs).

N = 10,000 a1 = 0.5 a2 = 1.5 θ = 2

n1 = 25 0.5294(0.0096) 0.4621(0.0093) 1.9597(0.0086)
n2 = 50 0.5230(0.0089) 0.4731(0.0079) 1.9623(0.0067)

n3 = 130 0.5178(0.0072) 0.4774(0.0061) 1.9738(0.0052)
n4 = 350 0.5102(0.0058) 0.4822(0.0049) 1.9894(0.0038)
n5 = 500 0.5064(0.0046) 0.4876(0.0035) 1.9912(0.0024)

n6 = 1000 0.5012(0.0033) 0.4933(0.0023) 1.9985(0.0018)
a1 = 1.2 a2 = 2.1 θ = 1.6

n1 = 25 1.7682(0.0074) 2.1296(0.0068) 1.5523(0.0113)
n2 = 50 1.1721(0.0053) 2.1233(0.0059) 1.5693(0.0096)

n3 = 130 1.1794(0.0042) 2.1188(0.0046) 1.5734(0.0084)
n4 = 350 1.1811(0.0031) 2.1113(0.0032) 1.5837(0.0073)
n5 = 500 1.1896(0.0021) 2.1095(0.0025) 1.5893(0.0058)

n6 = 1000 1.1989(0.0017) 2.1016(0.0019) 1.5974(0.0043)

6.2. Test Statistic Y2

For testing the null hypothesis H0 that the “right censored” data become from the RG-LL model,
we computed the criteria statistic Y2

n

(
ξ
)

as defined above for N = 10, 000 simulated samples from the
hypothesized distribution with different sizes (n = 25, 50, 130, 350, 500, 1000). Then, we calculated
empirical levels of significance, when Y2 > χ2

ε(r), corresponding to theoretical levels of significance
(ε = 0.10, 0.05, 0.01), we choose k = 5. The results are reported in Table 2.

Table 2. Simulated levels of significance for Y2
n

(
ξ
)

against the theoretical values.

N = 10,000 n = 25 n = 50 n = 130 n = 350 n = 500 n = 1000

ε = 1% 0.0042 0.0053 0.0076 0.0082 0.0091 0.0095
ε = 5% 0.0443 0.0459 0.0465 0.0473 0.0487 0.0496
ε = 10% 0.0941 0.0956 0.0962 0.0979 0.0986 0.0992

Based on Table 2, the test proposed in this work, can be used to fit data from this new model.

7. Censored Validation under Real Data

Example 1. Reference [41] has reported survival data on 26 psychiatric inpatients admitted to the university
of Iowa hospitals during the years 1935–1948. This sample is part of a larger study of psychiatric inpatients
discussed by [42]. Data for each patient consists of age at rest admission to the hospital, sex, number of years of
follow-up (years from admission to death or censoring), and patient status at the follow-up time. The data is
given as:

1, 1, 2, 11, 14, 22, 22, 24, 25, 26, 28, 30*, 30*, 31*, 31*, 32, 33*, 33*, 34*, 35, 35*, 35*, 36*, 37*, 39*, 40.
(*indicates the censorship). We use the statistic test provided above to verify if these data are modeled by RG-LL
distribution, and at that end, we first calculate the MLEs of the unknown parameters

ξ =
(
â1, â2, θ̂

)T
= (1.8391, 2.538, 3.748)T.

Data are grouped into k = 5 intervals I j. We give the necessary calculus in the Table 3.
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Table 3. Validation results.

ρ̂j 17.23 25.59 31.67 34.85 40

Uj 5 4 6 4 7

Ĉl j

Ĉ1 j 2.0937 1.9374 1.239 1.0846 2.0934

Ĉ2 j 2.7187 2.0646 1.0874 0.5437 1.0874

Ĉ2 j 1.0236 0.8374 0.9138 0.8631 1.3193

e j 4.6322 4.6322 4.6322 4.6322 4.6322

Then we obtain the value of the statistic test Y2
n:

Y2
n = X2 + Q = 4.9325 + 3.0031 = 7.9356

For significance level = 0.05, the critical value χ2
5 = 11.0705 is superior than the value of Y2

n = 7.9356
(see Table 4), so we can say that the proposed model RG-LL fits these data. We calculated also the test
statistics Y2

n to fit these data to the competing models.

Table 4. Y2
n statistic to all competitive models.

Model Y2
n Statistic

RG-LL 7.9356
MOBXII 8.5632
TLBXII 8.8319
KwBXII 8.3415
BEBXII 8.7196
BBXII 8.9317

FKwBXII 8.2413
WLL 9.4053

FBBXII 8.1232
BXII 8.4965

Example 2. We consider the bone marrow transplant data (see [43]) for patients suffering from acute
lymphoblastic leukemia. This data consists of time (in days) to death or on study time after an allogenic bone
marrow transplant for 38 patients. The bone marrow transplant is a standard treatment for acute leukemia.
Recovery following bone marrow transplantation is a complex process. Immediately following transplantation,
patients have depressed platelet counts and have higher hazard rate for the development of infections but as the
time passes the hazard decreases. Data are given as:

1, 86, 107, 110, 122, 156, 162, 172, 194, 226*, 243, 262, 262, 269, 276, 350*, 371, 417, 418, 466, 487, 526,
530*, 716, 781, 996*, 1111*, 1167*, 1182*, 1199*, 1279, 1330*, 1377*, 1433*, 1462, 1496*, 1602*, 2081*.

We use the statistic test provided above to verify if these data are modeled by the RG-LL
distribution. Using the BB solve software, we calculate the maximum likelihood estimators of the
unknown parameters:

ξ̂ =
(
â1, â2, θ̂

)T
= (2.6138, 4.9462, 8.643)T.

Then, we grouped the observations into r = 5 intervals I j. The intermediate calculations are given
in Table 5.
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Table 5. Values of ρ̂ j, U j,
_
C, and e j for the second data.

ρ̂j 171.865 325.593 510.362 1245.639 2081

Uj 7 8 6 9 8

Ĉl j

Ĉ1 j 0.9356 0.8269 0.8139 0.6039 0.4964

Ĉ2 j 1.4152 1.4153 1.0108 0.4043 0.2021

Ĉ2 j 1.2093 2.4136 1.5623 0.9462 0.8196

e j 4.2385 4.2385 4.2385 4.2385 4.2385

The value of the statistic test Y2
n is obtained as follows:

Y2
n = X2 + Q = 4.9563 + 3.946 = 8.9023

Based on Table 5, the value of Y2
n = 8.9023 is less than the critical value χ2

5 = 11.0705–(for
significance level ε = 0.05), so we can say that these data can be fitted by the RG-LL model.
Many useful uncensored real-life data sets in life testing, economies, medicine and engineering can be
found in [44–52].

8. Conclusions

In this paper, a new three-parameter version of the log logistic model is introduced and studied.
Some of its mathematical properties are derived. The new hazard rate function can be “asymmetric
monotonically increasing”, “decreasing-constant”, “J shaped”, or “constant”. A simple type copula is
considered for deriving many bivariate and multivariate extensions using “Farlie-Gumbel-Morgenstern
Copula”, “modified Farlie-Gumbel-Morgenstern Copula”, “Clayton Copula”, and “Renyi’s entropy
Copula”. Three applications to three real data sets are provided to illustrate the flexibility and
importance of the new model. Using the approach of the “Bagdonavicius-Nikulin” goodness-of-fit
test for right censored validation, we propose a new modified chi-square goodness-of-fit test for a
new log-logistic model. The modified goodness-of-fit statistic test is applied for the right censored
real dataset of survival times of psychiatric inpatients admitted to the university of Iowa hospitals.
Based on the maximum likelihood estimators on initial data, the modified test recovers the loss in
information while grouping data and follows chi-square distributions. All elements of the modified
criteria tests are explicitly derived and given. Three real data applications are presented for measuring
the flexibility and the importance of the new model under the uncensored scheme.
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Appendix A

Table A1. Numerical results for µ′1, Var(Z), Ske(Z), Kur(Z) for the RG-LL model.

θ a1 a2 µ
′

1 Var(Z) Ske(Z) Kur(Z)

0.1 10 3 2.3014850 1.07723700 1.2469570 5.644436
0.25 1.1656230 0.09155918 0.1903485 2.984291
0.5 0.8348619 0.03179571 −0.1816630 2.910675
1 0.6320478 0.01499990 −0.3732641 3.035430
5 0.3565924 0.00409134 −0.5292522 3.217301

7.5 0.3106052 0.00306466 −0.5423596 3.235840
10 0.2817936 0.00250640 −0.5489192 3.244724

12.5 0.2613663 0.00214794 −0.5528574 3.251049
15 0.2458125 0.00189505 −0.5554835 3.258577

3.5 0.00001 1.5 2.4439090 0.126387700 −0.7106222 3.773512
0.001 1.3234170 0.058929280 −0.686609 3.627384

0.1 0.5704622 0.022007440 −0.4085326 2.92692
0.5 0.3889885 0.012877710 −0.2505082 2.728826
1 0.3246634 0.009765043 −0.1830979 2.678376
5 0.2064316 0.004609066 −0.04542067 2.635436

10 0.1678268 0.003197180 0.0019725 2.639189
50 0.1017226 0.001267371 0.0816486 2.667219

100 0.08148813 0.000830205 0.1043870 2.674599
500 0.04827376 0.000300035 0.1378587 16.01191
1000 0.03843619 0.000191606 −3.7303240 35.06832
2000 0.03057584 0.000121892 −0.1520501 −8.218386
5000 0.02257409 6.675676 × 10−5 7.694268 −35.06735

10000 0.01793546 4.224229 × 10−5 −13.52702 110.2359
20000 0.01424575 2.669551 × 10−5 −10.83246 62.76824
50000 0.01050316 1.453355 × 10−5 22.28915 −174.8386

2 10 0.1 1.662079 × 10−10 3.56035 × 10−13 3601.587 13223681
0.5 0.0209009 0.0003730464 1.688587 6.977619
1 0.1296743 0.0040855080 0.4852051 2.948691
5 0.6492678 0.0055586940 −0.7296955 3.751450
6 0.6970608 0.0045386420 −0.8017811 3.969663

Table A2. Numerical results for µ′1, Var(Z), Ske(Z), Kur(Z) for the RG-LL model.

a2 µ
′

1 Var(Z) Ske(Z) Kur(Z)

5.00 1.068959 0.17863230 2.48528 29.5562
7.50 1.029853 0.06671700 1.33004 9.18867
10.0 1.016641 0.03540090 0.93667 6.51021
12.5 1.010606 0.02206170 0.72919 5.56385
15.0 1.007348 0.01510236 0.59899 5.10838
17.5 1.005391 0.01100040 0.50908 4.85121
20.0 1.004124 0.00837532 0.44302 4.69083
25.0 1.002637 0.00532522 0.35216 4.50848
30.0 1.001830 0.00368497 0.29246 4.41214
35.0 1.001344 0.00270154 0.25017 4.35495
40.0 1.001029 0.00206550 0.21860 4.31819
45.0 1.000813 0.00163045 0.19414 4.29314
50.0 1.000658 0.00131982 0.17299 4.33383
55.0 1.000544 0.00109017 0.15866 4.26215
60.0 1.000457 0.00091569 0.14538 4.25213
65.0 1.000389 0.00078000 0.13416 4.24442
70.0 1.000336 0.00067239 0.12455 4.23827
75.0 1.000292 0.00058562 0.11623 4.23332
80.0 1.000257 0.00051462 0.10895 4.22928
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Table A2. Cont.

a2 µ
′

1 Var(Z) Ske(Z) Kur(Z)

85.0 1.000228 0.00045580 0.10253 4.22593
90.0 1.000203 0.00040652 0.09682 4.22313
95.0 1.000182 0.00036482 0.09171 4.22077
100 1.000164 0.00032925 0.08717 3.74092

Table A3. MLEs, SEs and CIs with CAI, CBayes, CHQ and CCA for the breaking stress of carbon fibers data.

Model θ̂, â1, â1, β̂, γ̂ CAI, CBayes, CHQ and CCA

B XII —, —, 5.942, 0.1870, — 382.94, 388.20, 383.010, 385.05
—, —, (1.28), (0.04), —

—, —, (3.4,8.5), (0.1,0.3), —

MOB XII —, —, 1.19,4.83,838.7 305.78, 313.60, 306.00, 308.96
—, —, (0.95), (4.89), (229.3)

—, —, (0, 3.1), (0,1.4), (389,1288)

TLB XII —, —, 1.35,1.06,13.73 323.50, 331.35, 323.78, 326.71
—, —, (0.38), (0.38), (8.4)

—, —, (0.6, 2.1), (0.3,1.8), (0, 30.2)

KwB XII 48.1, 79.5, 0.4, 2.7, — 303.76, 314.21, 304.20, 308.00
(19.34), (58.19), (0.1), (1.1), —

(10.1,86.0), (0,193.6), (0.16,0.5), (0.6,4.8), —

BBXII 359.68, 260.1, 0.175, 1.12, — 305.64, 316.06, 306.06, 309.85
(57.9), (132.2), (0.013), (0.24), —

(246,473), (0.96,519), (0.14,0.2), (0.6,1.6), —

BE BXII 0.38, 11.95, 0.94, 33.4, 1.71 305.81, 318.83, 306.50, 311.09
(0.1), (4.6), (0.27), (6.3), (0.48)

(0.2,0.5), (2.86,2), (0.4,1.5), (21,5), (0.8,2.6)

FKw BXII 0.54,4.22, 5.313, 0.41, 4.152 305.50, 318.55, 306.14, 310.80
(0.14), (1.88), (2.32), (0.49), (1.99)

(0.3, 0.8), (0.5,7.9), (0.9,9), (0, 1.7), (0.1,8)

ZB BXII 123.101, —,0.368, 139.247, — 302.96, 310.78, 303.21, 306.13
(243.011), —, (0.343), (318.546), —

(0, 599.40), —, (0, 1.04), (0, 763.59), —

RG-LL 2.504, 0.003, 0.739, —, — 302.75, 301.17, 299.18, 300.92
(0.158), (0.000), (0.072), —, —

(2.2, 2.8), —, (0.56, 0.84), —, —

Table A4. MLEs, SEs, and CIs with CAI, CBayes, CHQ and CCA for the survival times data.

Model θ̂, â1, â1, β̂, γ̂ CAI, CBayes, CHQ and CCA

B XII —, —, 3.102, 0.465, — 209.6, 214.2, 209.77, 211.41
—, —, (0.538), (0.077), —

—, —, (2.1, 4.2), (0.31, 0.6), —

MO BXII —, —, 2.259, 1.533, 6.760 209.74, 216.61, 210.09, 212.44
—, —, (0.864), (0.907), (4.587)

—, —, (0.5, 3.95), (0, 3.3), (0, 15.8)

TL BXII —, —, 2.39, 0.458, 1.796 211.80, 218.63, 212.15, 214.51
—, —, (0.91), (0.24), (0.92)

—, —, (0.62,4.2), (0, 0.9), (0.002,3.6)

TL BXII —, —, 2.39, 0.458, 1.796 211.80, 218.62, 212.15, 214.53
—, —, (0.91), (0.244), (0.92)

—, —, (0.6,4.2), (0, 0.9), (0.002,3.6)
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Table A4. Cont.

Model θ̂, â1, â1, β̂, γ̂ CAI, CBayes, CHQ and CCA

Kw BXII 14.11,7.42, 0.525, 2.274, — 208.80, 217.86, 209.40, 212.40
(10.81), (11.85), (0.28), (0.99), —

(0, 35.3), (0.30.65), (0, 1.1), (0.33, 4.2), —

FBB XII 0.621, 0.549, 3.838, 1.381, 1.665 206.81, 218.20, 207.73, 211.31
(0.54), (1.01), (2.79), (2.31), (0.44)

(0, 1.7), (0, 2.5), (0, 9.3), (0, 6), (0.8, 4.5)

FKwB XII 0.558,0.31, 3.999, 2.131, 1.48 206.51, 217.90, 207.42, 211.01
(0.44), (0.31), (2.08), (1.83), (0.36)

(0, 1.4), (0, 0.9), (0, 3.1), (0, 5.7), (0.76, 2.2)

RG-LL 3.3, 0.004, 0.386, —, — 208.01, 211.11, 207.12, 209.53
(0.24), (0.002), (0.041), —, —

(2.8, 3.8), (0, 0.008), (0.32, 0.48), —, —

Table A5. MLEs, SEs, and CIs with CAI, CBayes, CHQ and CCA for the leukemia data.

Model θ̂, â1, â1, β̂, γ̂ CAI, CBayes, CHQ and CCA

B XII —, —, 58.7, 0.006, — 328.21, 331.19, 328.61, 329.20
—, —, (42.4), (0.004), —

—, —, (0, 141.8), (0, 0.01), —

MOB XII —, —, 11.838, 0.078, 12.25 315.54, 320.01, 316.38, 317.04
—, —, (4.368), (0.013), (7.77)

—, —, (0, 141.8), (0, 0.01), (0, 27.5)

TLB XII —, —,0.281, 1.882, 50.215 316.30, 320.73, 317.09, 317.76
—, —, (0.29), (2.4), (176.5)

—, —, (0, 0.9), (0, 6.6), (0, 396.2)

KwB XII 9.201, 36.428, 0.242, 0.941, — 317.36, 323.31, 318.79, 319.33
(10.1), (35.7), (0.167), (1.06), —

(0, 28.9), (0, 106), (0, 0.6), (0, 3), —

BB XII 96.10, 52.12, 0.10, 1.23, — 316.50, 322.45, 317.89, 318.50
(41.20), (33.49), (0.02), (0.34), —

(15, 176.8), (0, 117.8), (0.6, 0.15), (0.6, 1.9), —

BEB XII 0.087, 5.007, 1.561, 31.270, 0.318 317.58, 325.10, 319.8, 320.10
(0.08), (3.851), (0.01), (12.9), (0.03)

(0, 0.3), (0, 13), (1.5, 2), (5.9, 57), (0.3, 0.4)

FBB XII 15.19, 32.5, 0.23, 0.58, 21.86 317.87, 325.36, 320.08, 320.37
(11.6), (9.87), (0.09), (0.07), (35.55)

(0, 38), (12.7, 51), (0.05, 0.4), (0.45, 1), (0, 92)

FKwB XII 14.7, 15.285, 0.29, 0.84, 0.03 317.76, 325.2, 319.98, 320.27
(12.39), (18.87), (0.22), (0.85), (0.08)

(0, 39), (0, 52.3), (0, 0.7), (0, 2.5), (0, 0.2)

ZBB XII 41.97, —,0.16, 44.26, — 313.85, 318.35, 314.40, 315.40
(38.79), —, (0.08), (47.65), —

(0, 118), —, (0, 0.3,) (0, 138), —

RG-LL 0.8, 0.068, 0.487, —, — 313.44, 316.41, 313.11, 313.02
(0.148), (0.033), (0.089), —, —

(0.50, 1.1), (0, 0.12), (0.32, 0.68), —, —
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