
Text2VRScene: Exploring the Framework of Automated Text-driven
Generation System for VR Experience

Zhizhuo Yin *

The Hong Kong University of
Science and Technology

(Guangzhou)

Yuyang Wang †

The Hong Kong University of
Science and Technology

(Guangzhou)

Theodoros Papatheodorou ‡

The Hong Kong University of
Science and Technology

(Guangzhou)

Pan Hui§
The Hong Kong University of

Science and Technology
(Guangzhou)

ABSTRACT

With the recent development of the Virtual Reality (VR) industry,
the increasing number of VR users pushes the demand for the mas-
sive production of immersive and expressive VR scenes in related
industries. However, creating expressive VR scenes involves the
reasonable organization of various digital content to express a coher-
ent and logical theme, which is time-consuming and labor-intensive.
In recent years, Large Language Models (LLMs) such as ChatGPT
3.5 and generative models such as stable diffusion have emerged
as powerful tools for comprehending natural language and gener-
ating digital contents such as text, code, images, and 3D objects.
In this paper, we have explored how we can generate VR scenes
from text by incorporating LLMs and various generative models
into an automated system. To achieve this, we first identify the
possible limitations of LLMs for an automated system and propose
a systematic framework to mitigate them. Subsequently, we devel-
oped Text2VRScene, a VR scene generation system, based on our
proposed framework with well-designed prompts. To validate the
effectiveness of our proposed framework and the designed prompts,
we carry out a series of test cases. The results show that the proposed
framework contributes to improving the reliability of the system and
the quality of the generated VR scenes. The results also illustrate the
promising performance of the Text2VRScene in generating satisfy-
ing VR scenes with a clear theme regularized by our well-designed
prompts. This paper ends with a discussion about the limitations of
the current system and the potential of developing similar generation
systems based on our framework.

Index Terms: Human-centered computing—Human com-
puter interaction (HCI)—Interaction paradigms—Virtual reality;
Human-centered computing—Human computer interaction (HCI)—
Interaction techniques—Text input

1 INTRODUCTION

The popularity and easy accessibility of commercial head-mounted
displays (HMDs) have encouraged a rising demand for immersive
and high-quality virtual reality (VR) content creation. With the surg-
ing needs, how to massively produce high-quality VR experiences
becomes a valuable problem.

However, the VR experience is a cohesion of creativity from di-
verse fields, which requires collaboration among various disciplines.
In the creative disciplines, a high-quality VR experience generally
consists of 3D models and 2D textures and images. The creation of
these digital contents is labor-intensive even for proficient creators.
Moreover, the collaboration between creative artists and engineers
is also important since expressing aesthetic themes with the above

*e-mail: zyin190@connect.hkust-gz.edu.cn
†e-mail: yuyangwang@hkust-gz.edu.cn (Corresponding author)
‡e-mail: theodoros@ust.hk
§e-mail: panhui@ust.hk (Corresponding author)

digital content should be via the medium of computer codes. The
above features of the VR experience make it a complex undertaking
and hard to automate for massive production.

Recently, some advances in artificial intelligence shed light on
the possibility of automating such complex collaborative processes.
The rapid emergence of digital assets generation techniques such
as diffusion models [12, 36, 38], Generative Adversarial Networks
(GANs) [22,25,35], etc. has enabled automatic generation of digital
contents such as 2D images and 3D models using natural language.
These studies showcase the potential for automatically and efficiently
creating high-quality digital content. However, they still fail to
generate large-scale virtual scenes with massive interrelated objects
due to limited ability to conduct logic reasoning and analyze the
spatio-temporal relations among different objects.

The breakthroughs in Large Language Models (LLMs), like Ope-
nAI’s GPT-4, have achieved the advanced capability to comprehend
natural language [3, 19, 27], generate a reasonable, and rational re-
sponse or even decent coding [8, 9, 15, 17, 32]. We notice that with
the extraordinary capability [19,27] of LLMs to comprehend natural
language and conduct logical reasoning, the LLMs can be utilized to
comprehend the user prompt about the desired VR scene, instruct the
generation of digital assets through text prompts, and generate the
source code that organizes different digital contents with reasonable
storytelling. We gain inspiration and further propose that LLMs can
be utilized as a core in an automated text-driven generation system
and is able to organize all kinds of digital assets to construct creative
expression. In such LLMs-based system, developers should only
manually define and fine-tune the prompts for LLMs. Once the
prompts are confirmed, the generation process is fully automated by
LLMs without extra interference.

However, several concerns about the limitation of existing LLMs
such as randomness in response, inconsistent capability in reasoning
tasks, and hallucination have been raised by recent literature [3, 5,
29,47], posing a significant threat to the reliability of existing LLMs
for developing automated system.

To address the above problem, we first conduct a qualitative
research study on the limitations of LLMs as a component in an
automated system. We combined the study with the analysis of
existing literature to reach a more systematic insight for identifying
the limitations of LLMs. Then we propose a pioneering LLM-
based automated system framework for increasing reliability and
optimizing the utilization of LLMs.

With the proposed LLM-based automated system framework, we
have meticulously crafted and engineered a VR scene generation
system based on the above principles called Text2VRScene. The
Text2VRScene system is capable of robustly generating immersive
virtual experiences based on a simple text. To validate the capabili-
ties of the Text2VRScene system and evaluate the effectiveness of
the proposed framework, we have conducted a series of case studies,
including a reliability study and performance analysis.

All studies demonstrate the effectiveness of our proposed frame-
work in increasing the reliability of an automated system. Mean-
while, these studies also demonstrate the effectiveness of the crafted
prompts in our system in generating expressive VR experiences.

701

2024 IEEE Conference Virtual Reality and 3D User Interfaces (VR)

2642-5254/24/$31.00 ©2024 IEEE
DOI 10.1109/VR58804.2024.00090

In this paper, we identified the potential of LLMs in an automated
generation system, which prompts text-based AIGC models and
organizes the generated assets with code. The contributions of this
paper can be summarized as follows:

• We summarize the major pain points of utilizing LLMs for
automated code generation by performing a review of exist-
ing literature and a semi-structured interview with experts on
LLMs. Then we propose a pioneering LLM-based automated
system framework that aims to address the summarized pain
points from existing literature and a semi-structured interview.
The framework can mitigate the pain points of using ChatGPT
for an automated generation system.

• We developed Text2VRScene based on our proposed frame-
work, an LLMs-based VR experience generation system, by
meticulous prompt tuning. Text2VRScene is able to depict
the scene from a user prompt, determine digital assets needed,
prompt AI generation models, generate source code to orga-
nize the scene based on the previously determined scene, and
thus generate the VR scene the user desires.

• We conducted a series of case studies on our developed
Text2VRScene, which validate the effectiveness of our pro-
posed automated system framework in improving the reliability
and consistency of LLMs and demonstrate the feasibility of
our Text2VRScene in generating expressive VR scenes.

2 RELATED WORK

2.1 Generation Models
Diffusion models [20, 38, 42,43] employ a UNet backbone to enable
image generation, by adding noise as a forward diffusion process
and reversing this process to recover the data and learn the latent
distribution of the data sets. [40] treat diffusion model for image
generation and transformers as a language encoder. By generating
images based on encoded text, it achieves state-of-the-art perfor-
mance in text-to-image synthesis tasks. Furthermore, advances in
diffusion models have also spurred the development of text-to-3D
methods [11,26,36,49]. [22] is a text-to-3D synthesis method, which
is capable of generating latent vectors of 3D models after a two-stage
training in an encoder and diffusion model. Then the latent vectors
can be rendered as both textured meshes and neural radiance fields.

Generative models [12, 22–24, 48] are based primarily on the
framework of generative adversarial networks (GAN) [18]. GANs
consist of a generator that produces items and a discriminator that
distinguishes between real and generated inputs. After training, the
generator becomes capable of generating realistic items. In image
generation tasks, [23] proposes using a mapping network to generate
style and a synthesis network to generate images, both under the
structure of a progressive growing GAN (PG-GAN). The results
demonstrate the high quality of the generated images.

All of the above asset generation models require a language model
to encode the natural language into a latent vector. The language
model is a classic type of AI model with a long history [7, 39]. For
the task of language generation, it is typically implemented as a con-
ditional probabilistic model that predicts the next token of an incom-
plete sentence based on previous tokens: ci ∼ p(ci|c1, . . . ,ci−1;θ),
where ci represents the i-th token in the text sequence, and θ denotes
the parameters of the language model.

LLMs are a specific kind of language model that possesses
over a hundred billion parameters, such as GPT-3, Gopher [37],
LaMDa [46], and others. LLMs demonstrate powerful capabilities
in understanding natural language, logic analysis, and reasoning [27],
benefiting from the emergent effect [50]. To fully exploit the capa-
bilities of LLMs, prompt engineering [3, 51] is required.

In addition to generating natural language responses, LLMs can
be equipped with automatic techniques such as code generation

[9, 15], program repair [15, 21], and code summarization [1]. These
techniques further enhance the ability of LLMs to manage and
organize automated generation systems.

2.2 Content generation in VR
Content generation is of paramount importance for virtual reality,
as it lays the foundation for immersive experiences that define the
essence of this technology. The current generation of VR experi-
ences is heavily based on manual operations [30] within software
development tools such as Blender [4], 3ds Max [2], Unity [45], and
others. This process necessitates collaboration among 3D modeling
artists, texture artists, painters, programmers, and script designers.

Although some studies [10, 16, 28, 52] are focused on generating
3D scenes, which is applicable to VR scenarios, these methods are
limited to generating static indoor scenes without dynamics. Conse-
quently, they fail to deliver the fantastic and immersive experiences
that users have yet to witness, and they are unable to express creativ-
ity through the dynamic of objects. [10] is a 3D scene generation
system with natural language. It utilizes a probabilistic model to
parse natural language and employs a spatial knowledge base to
infer the arrangement of objects. However, this system can only
generate indoor scenes limited to several pre-defined objects such
as tables, desks, chairs, etc., which will cause limited diversity and
unsatisfying topics of the scene to users.

In more recent research [13, 14, 44], attempts have been made to
generate VR scenes. [14] propose to use the indoor environment to
generate the virtual world, by manipulating the database of Unity’s
default VR world. [13] propose a method that generates staircases
according to the physical world that allows users to walk continu-
ously on them. However, the range of scene types of these methods
remains constrained in the Unity database and cannot be customized
by users, resulting in a gradual loss of freshness.

As a result, these studies fall short of meeting the growing demand
for diversified VR experiences that users are looking for. We propose
that the main reason for the lack of diversity is that existing studies
cannot generate arbitrary digital assets that users require. In our
proposed system, with the help of text-prompted digital content
generation models, the digital models that users require can be
generated in real-time and reasonably organized to express the story.

3 FRAMEWORK OF LLMS-BASED AUTOMATED SYSTEM

In this section, our goal is to identify the main limitations of LLMs
in an automated system. Then we will propose a framework to
mitigate the above-identified limitations and ensure the reliability of
LLM in automated VR generation systems.

Recently, some literature [3, 5, 29, 47] discredits current LLMs
due to some limitations, such as their poor performance in multi-hop
reasoning, potential bias, inability to process long-term dependen-
cies, etc. However, in the context of the deployment of LLMs in
automated systems, these limitations may not perfectly match the
requirements of automated systems, as the conclusions of the exist-
ing limitations of LLMs are derived primarily from experimental
dialogues with researchers instead of machines. As a result, we con-
ducted qualitative research as a domain-specific reference combined
with the analysis of the existing literature, which helped us to gain a
more specific vision to identify the influential limitations of LLMs
in the automatic generation system.

To mitigate the effect of the limitations identified in the interview,
we propose a framework with several designed techniques such
as multi-stage sub-tasks division, error detection, retry and error
reporting, and information passing techniques, which can effectively
mitigate the limitations outlined above as validated by experiments.

3.1 Expert Interviews
Consequently, considering the aforementioned literature, we con-
ducted semi-structured interviews with LLMs and/or ChatGPT ex-

702

perts (3 males, 1 female, Age: M=26/SD=2.16 years, experience:
M=3.63/SD=1.38 years) to explore other potential weaknesses of
LLMs that could impede the reliability and performance of auto-
matic generation systems.

3.1.1 Interview Process
The interviews were conducted in the experts’ native language, with
translated citations provided in English. Participants were recruited
through the laboratory’s research network. For the interview ques-
tions, we first asked experts about their overview of LLMs’ weak-
nesses in an automated system. We summarize the major concerns
about the use of LLMs through the experts’ responses1 – (1) abil-
ity to address complex questions, (2) stability of input and output,
(3) long conversation situation, (4) possibility of full automation
through self-instruction. This summarizing is also supported by a
review of the relevant literature [3, 5, 29, 47].

During the interview, our objective was to gain comprehensive
insights into the perspectives of domain experts on the potential
challenges associated with the implementation of Language Models
(LLMs) in automated systems. To begin each session, we provide
an introduction explaining the concept of LLM-based automated
systems. The interviews were conducted via Zoom, and prior to the
sessions, the participants consented to the recording. These record-
ings were securely stored and processed in accordance with the
General Data Protection Regulation (GDPR). The average duration
of the interviews was 9.28 min (SD = 1.9 min).

We employed a thematic analysis methodology, as outlined by
Braun and Clarke [6], to examine the participants’ responses. Each
response was individually labeled with distinct codes, which were
subsequently clustered into various themes in section 3.2.2.

3.1.2 Results
From interviews and existing analyses in the literature, we summa-
rize four main aspects that might affect the reliability and correctness
of the LLM-based automated system.

Lack of Ability in Dealing with Multi-hop Reasoning In the inter-
view, all experts (N=4) expressed their concern about the ability of
LLMs to correctly understand and respond to multi-hop reasoning
questions such as “... It has the ability to deal with simple questions;
however, according to my experience, it performs still unsatisfactory
toward complex questions that require multi-hop logic analysis...”.
Though LLMs have exceptional capability in general natural lan-
guage understanding and responding, it is still doubtful whether
LLMs are able to generate an in-depth and high-quality response to
multi-hop reasoning tasks. Correspondingly, existing work [3] also
argues that LLMs can rarely accomplish multi-hop reasoning tasks.
This deficit might lead to an illogical and unreasonable arrangement
of the generated content, causing unsatisfying outputs.

The Randomized Response from LLMs In the interview, most ex-
perts (N = 3) complained that the response of LLMs might not be
stable enough in an automated parsing process like “... If you want
to incorporate LLMs as part of a system by formatting its input and
output, it is important to be aware that its randomness may cause
system crashes...”. It might affect the reliability of the whole system
since the unparsable response might cause a systematic breakdown.
Some experts also mentioned that the randomness of LLMs might
also cause wrongly generated programming code, leading to an un-
satisfactory experience or even system breakdown. The unreliability
of LLMs in generating expected code is also reported in [47].

Memory Loss For a system that requires long conversations to ad-
dress complex tasks. Many experts (N=3) expressed their concerns
about the ability of LLMs to remember the information from existing
conversations, and utilize them in the current dialog: “...However,

1Anonymized transcripts can be accessed in the github page

https://github.com/Williamy946/Text2VRScene

LLMs

Executor

Retry with Error
Reporting

 Prompt

Output

Pre-defined
System Prompt
Prompt Stage 1

...

Prompt Stage N

N-1 Stages
Response

Parser

Stage 1

Key
Information

LLMs

Executor

Retry with Error
Reporting

Output

Pre-defined
System Prompt
Prompt Stage 1

...

Prompt Stage N

Response
Parser

Stage N

Key
Information

Figure 1: Illustration of Proposed Framework

LLMs may suffer from forgetting or conflating previous dialogue his-
tory in long-term conversations, leading to issues in understanding
and responding to the context. This can result in the model providing
incorrect or inconsistent answers, or being unable to accurately
address specific questions within the conversation...”, “...As the
conversation continues, the model may fail to understand the task
requirements from earlier ones. This can result in the model being
unable to effectively accomplish the task in long conversations...”,
and they think it is a disastrous problem for an automatic generation
system since it causes unsatisfying results or system breakdown.

Hardness for Self-Instruction Since LLMs can automatically parse
text and generate responses, it is natural to consider requesting
LLMs to analyze a given question, generate the required steps to
address the question and execute the steps sequentially. Such a
fully automated manner is attractive but faces several challenges
resulting from the limited capability of current LLMs. Accord-
ing to the literature [3, 31], sophisticated prompt engineering is
encouraged to maximize the ability of LLMs. Similarly, some ex-
perts (N=3) proposed that the prompt generated by LLMs might
not be well-designed enough to ensure the quality of the LLMs’
response generated. “...Because ChatGPT’s responses are sensi-
tive to the prompts it receives, it requires explicit instructions to
generate higher-quality responses...”. Moreover, for an automated
system that requires long conversations with LLMs, those experts
said that “...As the conversation progresses, the semantics between
questions and answers may change, causing the model to generate
responses that are inconsistent with the original task or question re-
quirements....”,“...If there are errors, ambiguities, or semantic drift
in the formatted output generated by large-scale language models,
parsing such output may lead to erroneous or inaccurate results
during task execution.....”, it means that once a misunderstanding
happened in the middle of the long conversation, the results might
largely differ from the expectation.

3.2 Framework Design

In this section, we present several techniques to address the afore-
mentioned problems associated with LLMs, thereby enhancing the
reliability of the system. Subsequently, we introduce a framework
for developing LLMs-based automated generation systems for com-
plex creative digital content, as illustrated in 1.

Multi-Stage Sub-tasks Division LLMs have shown acceptable per-
formance in simple tasks such as causal and analogical tasks. How-
ever, they fail to handle complex tasks, particularly those that require
multi-hop reasoning proposed by existing work [3, 34] and expert
interviews. To fully exploit the capabilities of LLMs, we propose
manually dividing the complex task into several simple tasks will be
more suitable for an LLMs-based system. By doing so, we can de-
velop well-designed prompts for each simple task, thereby ensuring
the quality of the response from LLMs for each sub-task. Finally, by
integrating each sub-task together, the automated system will reach
a satisfying result purely generated by LLMs.

The effectiveness of this technique relies on the task division

703

by humans, particularly their domain knowledge regarding how to
effectively divide the targeted complex task into several simple tasks.

Retry and Error Report Prompting The formatted response plays a
crucial role in automating LLMs as it facilitates automated parsing
of the response for subsequent operations. However, due to the
inherent randomness of LLMs, even when a formatted response is
requested at the prompt, the generated response often fails to be
fully formatted, posing a challenge to the reliability of the system.
To mitigate this issue, we present a retry and error report prompting
technique. Whenever LLMs produce an unparsable response, the
system should treat the incorrect response as historical information
and provide a reminder prompt such as ”Please check the correctness
of your answer and respond in the required format.”

This technique offers additional guidance to LLMs by treating the
unparsable response as a negative instance, aiding them in generating
responses in the correct format.

Key Information Message Passing As concluded in the expert in-
terview, the memory loss issue in LLMs can lead to incorrect output,
particularly in tasks involving the comprehension of lengthy conver-
sations. To tackle this issue, we propose the implementation of a
key information message-passing technique. This technique aims
to alleviate the risk of memory loss by distilling crucial information
from the previous conversation and integrating it into the subsequent
prompt. By doing so, LLMs can maintain a more comprehensive
understanding of the ongoing discourse, thus improving the accuracy
and reliability of their responses.

Prompt Engineering Based on the findings derived from previous
interviews and literature [3, 31], it is unlikely that a fully automated
self-instruction-based system is feasible due to the inherent limi-
tations of LLM in understanding ambiguous instructions. Conse-
quently, in order to attain an automated generation process while
preserving the reliability and accuracy of the system, this paper
proposes to utilize a predefined system prompt at each stage.

Practically, the prompt in each stage will be meticulously crafted
to properly leverage the key information passed from the historical
stages and achieve the specific requirements of each stage, thereby
ensuring that the responses generated by the LLMs meet the require-
ments for the system’s automatic parsing and processing.

4 THE VR EXPERIENCE GENERATION SYSTEM

This section presents a detailed design of the Text2VRScene system
shown in 2, which is based on the aforementioned framework.

To showcase the advanced performance of LLMs, we employ
ChatGPT-3.5 [33] as the backbone of our Large Language Mod-
els(LLMs). Regarding the executor component, we utilize the Shap-
E model [22] as the 3D object generator and use the Blockad Skybox
as the text-based skybox image generator. For the generation of the
virtual reality (VR) scene, we leverage A-Frame, a web framework
specifically designed for building immersive VR experiences, as the
VR experience engine in our system.

For prompt engineering, our designed prompts in each stage are
based on the JSON template as follows for the convenience of task
determining and key information passing:

{
‘‘Task’’: ‘‘{Determine the task and passed
information that should be inferred}’’,
‘‘Key Information1’’: ‘‘{Passed Information}’’,
...

‘‘Constraints’’: ‘‘{Pre-defined Task
Constraints}’’,
}

In the template, we first define the task and mention the possible
useful key information passed from historical conversations. Then

list all the key information one by one. Finally, we add the pre-
defined task constraints to regulate the response of ChatGPT in this
step. Specifically, in the task constraints of each step, we require
ChatGPT to respond in JSON format as follows.

{
xxxx‘‘Responses’’:

xxxx{‘‘Response1’’: ‘‘{Response Content}’’, ...}
}

After receiving the responses, we utilize a response parser to
automatically extract the information for the next stage. Following
the source code of Auto-GPT, a self-managing AI agent, the response
parser employs a regular expression to capture the outermost curly
braces, ignoring tedious explanations in ChatGPT’s response, and
then uses the json.loads() function in python to parse the JSON
formatted content within. In this process, the parser provides some
degree of robustness to the automatic system.

4.1 Overall Workflow

Following the principles of the Multi-Stage Sub-tasks Division, we
split the VR scene generation task into seven sub-tasks to handle the
complexity of the whole task. The structure of prompts for each step
is also given below.

Scene Description: In the first task, ChatGPT is required to de-
termine the topic of the scene described by the user based on the
user prompt. Then ChatGPT will be required to expand the topic
to a detailed description that includes several key elements such as
background, main characters, main objects, etc. In this step, the key
information is the user prompt.

{
‘‘Task’’: ‘‘Generate the main topic of the User

Prompt, and generate the description follows the

constraints.’’,

‘‘User Prompt’’: ‘‘{User Prompt}’’,
‘‘Constraints’’: ‘‘{Pre-defined constraints}’’,
}

Skybox Generation: This sub-task involves generating a description
of the sky-box for the scene. The generated description will be
passed to the skybox generator to generate the background of our
VR scene. As a result, it is essential for our prompt design to regulate
the response of ChatGPT and ensure that it can be comprehended
by the skybox generation model. In this task, the scene description
response from the last task is added to the key information set.

{
‘‘Task’’: ‘‘Respond the short description of

the skybox based on the Scene Description based

on the content in Literature, following the

Constraints.’’,

‘‘Scene Description’’: ‘‘{Previous Responded
Scene Description}’’,
‘‘Literature’’: ‘‘{Name of Determined
Literature}’’,
‘‘Constraints’’: ‘‘{Pre-defined Constraints}’’,
}

3D Model Generation: In this subtask, ChatGPT should determine
the main characters and objects in the scene according to the Scene
Description generated in the first stage, then generate the text de-
scription of these 3D models. These descriptive texts will be passed

704

LLMs

Retry with Error
Reporting

 Prompt

Pre-defined
System Prompt

Prompt Stage 1

Prompt Stage 2

...

Response
Parser

Stage 1 : Task Description

Key
Information

LLMs

Skybox
Generator

Retry with Error
Reporting

Pre-defined
System Prompt

Prompt Stage 1

Prompt Stage 2

...

Response
Parser

Stage 2 : Skybox Generation

Key
Information

LLMs

3D model
Generator

Retry with Error
Reporting

Response
Parser

Stage 3 : 3D model Generation

Key
Information

Store Locally Store Locally

Pre-defined
System Prompt

...

Prompt Stage 3

...

LLMs

Code
Executor

Retry with Error
Reporting

Response
Parser

Stage 5 : Position Determination

Key
Information

Pre-defined
System Prompt

...

Prompt Stage 5

...

Store Locally

LLMs

Code
Executor

Retry with Error
Reporting

Response
Parser

Stage 6 : Code Generation

Key
Information

Pre-defined
System Prompt

...

Prompt Stage 6

Prompt Stage 7

Local Assets

LLMs

Code
Executor

Retry with Error
Reporting

Response
Parser

Stage 4 : Scale Determination

Key
Information

Pre-defined
System Prompt

...

Prompt Stage 4

...
Store Locally

LLMs

Code
Executor

Retry with Error
Reporting

Response
Parser

Stage 7 : Animation Adding

Key
Information

Pre-defined
System Prompt

...

Prompt Stage 6

Prompt Stage 7

Local Assets

Figure 2: Workflow of Text2VRScene System

to the text-driven 3D model generator, Shap-E, to generate the cor-
responding 3D models. As a result, the format of the generated
descriptive texts is carefully crafted in our constraint to avoid senti-
mental unalignment between the ChatGPT and the Shap-E model.

{
‘‘Task’’: ‘‘Based on the Scene Description and

the description of the skybox. Respond the

mentioned and possible characters and objects

STRICTLY following the Constraints.’’,

‘‘Scene Description’’: ‘‘{Previous Responded
Scene Description}’’,
‘‘Skybox Description’’: ‘‘{Previous Responded
Skybox Description}’’,
‘‘Literature’’: ‘‘{Name of Determined
Literature}’’,
‘‘Constraints’’: ‘‘{Pre-defined Constraints}’’,
}

Scale Determination: With all the digital assets generated, this
sub-task requires ChatGPT to determine the scale of the generated
3D models according to the scene descriptions and their physical
size. Key information includes the generated models and the scene
descriptions. The determined scales will be set as the scale attributes
of the corresponding 3D models in the generated codes.

{
‘‘Task’’: ‘‘Based on the given scene description,

you should generate the SIZE of all characters

and objects in the given Model List STRICTLY

following the Constraint.’’,

‘‘Scene Description’’: ‘‘{Generated Scene
Description}’’,
‘‘Model List’’: ‘‘{Generated Models}’’,
‘‘Constraints’’: ‘‘{Pre-defined Constraints}’’,
}

Position Determination: In this sub-task, ChatGPT should deter-
mine the position of each 3D model in the scene according to the
scene description in the previous response. It is crucial to take the
previous scale into consideration during the generation of positions
to prevent overlapping between different 3D models.

{
‘‘Task’’: ‘‘Considering the scale of all

characters and objects in the given Scales

and considering the relative position of all

characters and objects described in the given

Scene Descriptions, generate the position of all

characters and objects listed in given Models

STRICTLY following the Constraints below.’’,

‘‘Scene Description’’: ‘‘{Generated Scene
Description}’’,
‘‘Model’’: ‘‘{Generated Models}’’,
‘‘Constraints’’: ‘‘{Pre-defined Constraints}’’,
}

Code Generation: After generating all the digital assets needed and
determining the scales and positions of all 3D models, in this task,
ChatGPT is required to organize all the digital assets into a scene
using programming codes to express the main theme of the VR
experience the user desires. To avoid the influence of randomness in
generating arbitrary source codes or generating source codes section
by section, we regulate the response of ChatGPT by providing a
code template in our designed constraints. In this task, the key
information is the scene description and the attributes of all the
digital assets generated in the previous steps.

Animation Adding: After generating the source code, in this section,
ChatGPT is required to polish the source code by adding animation
to each 3D model according to the description of the scene.

705

{
‘‘Task’’: ‘‘Based on the given Constraints,

generating the source code USING the 3D objects

in given Models, skybox image file in given

Skybox. Set the scale and position of the above

models with the given Scale and Position. Then

output the AFrame code based on the given AFrame

template in the given constraints.’’,

‘‘Models’’: ‘‘{Generated Models}’’,
‘‘Skybox’’: ‘‘{Generated Skybox Image}’’,
‘‘Scene Description’’: ‘‘{Generated Scene
Description}’’,
‘‘Scale’’: ‘‘{Generated Model Scale}’’,
‘‘Position’’: ‘‘{Generated Model Position}’’,
‘‘Constraints’’: ‘‘{Pre-defined Constraints}’’,
}

{
‘‘Task’’: ‘‘Based on the given Constraints,

generating the source code USING the 3D objects

in given Models, skybox image file in given

Skybox. Set the scale and position of the above

models with the given Scale and Position. Then

output the AFrame code based on the given AFrame

template in the given constraints.’’,

‘‘Scene Description’’: ‘‘{Generated Scene
Description}’’,
‘‘Generated Code’’: ‘‘{Generated Code}’’,
‘‘Constraints’’: ‘‘{Pre-defined Constraints}’’,
}

4.2 Framework Implementations
The above Text2VRScene system is developed based on our pro-
posed framework. In this section, we will elaborate on how the
framework is implemented in our Text2VRScene system.

It is obvious that the above system follows the principles of the
Multi-Stage Sub-tasks Division techniques to divide the complex
VR experience generation task into several subtasks.

For the Retry and Error Report Prompting technique, we have
set the maximum number of retries for each sub-task to five. This
means that if ChatGPT’s response could not be parsed, we would
initiate a retry and add an error report prompt to the new prompt,
tailored to the specific error type encountered. Furthermore, we
have implemented a response parser that automatically identifies the
outermost curly brackets in the response, which further improves
the reliability of the entire system.

Regarding the Key Information Message Passing technique, we
can see from the prompt design above that we store the response
of the historical subtask as the key information. Then we pass the
needed key information to the prompt of the following subtasks as
the implementation of key information message passing.

In terms of Prompt Engineering, the formatted prompt design
and the pre-defined constraints of each task are the main parts of
our prompt engineering. Moreover, in the text of constraints, we
utilized the few-shot prompting technique to enhance the reliability
of ChatGPT’s response.

5 CASE STUDY

Based on the above framework, we developed the Text2VRScene
system2, which is able to automatically generate the VR experience
with a clear theme based on a simple text. In this section, we will
evaluate the effectiveness of the proposed framework in increasing

2The source code of this system is available at

https://github.com/Williamy946/Text2VRScene

the reliability and performance of the system with several case
studies. The developing environment is Python 3.10 on Ubuntu
Server. The 2D Skybox Image generation task is conducted by
calling the commercial text-based skybox generation API of Skybox
AI in BlockAde Labs. The 3D model generation method is Shap-
E [22] implemented on an Ubuntu server with 1xNVIDIA GeForce
RTX 3090 Ti.

5.1 Evaluation Metrics
To evaluate the reliability of the system and the quality of the gener-
ated VR scenes, we employ an Error Rate (ER) metric as [41].

Considering the inherent randomness of LLMs, we believe that
the reliability of an LLMs-based generation system is crucial, and
the possibility of generating eccentric experiences or encountering
system breakdowns is a necessary metric for evaluating the reliability
and robustness of the system.

Hence, we define the Error Rate (ER) in our system as the proba-
bility of failure, such as generating target-unrelated experiences or
experiencing system breakdowns. Furthermore, to accurately assess
the reliability of the system, we exclude failures caused by external
factors such as network errors or overload errors originating from
OpenAI servers or generator servers.

5.2 Comparison Systems
To validate the effectiveness of our proposed framework, we intro-
duce several comparison systems by discarding one of the techniques
from our framework for each comparison system. Moreover, we
also introduce the Web-based ChatGPT as the baseline method.

• Text2VRScene-SinglePrompt: This variant discards the multi-
stage technique and use a single prompt to ask LLMs to generate
the description, sky-box, 3D models, and source code.

• Text2VRScene-NoRetry: This variant discards the retry tech-
nique and terminates the system if the response cannot be parsed.

• Text2VRScene-NoPromptEngineering: In this variant, we dep-
recate the pre-defined constraints, which are primarily used for
regulating the behavior of ChatGPT. ChatGPT in this variant is
required to generate responses based solely on the stage’s require-
ments and the need for a formatted response, without regulating
their behavior through well-designed prompts.

• ChatGPT-Web: In this variant, we directly use the ChatGPT
website to generate the source code of a web page based on the
given prompt. We employ this variant as a baseline to illustrate
the capabilities of LLMs in generating VR experiences.

Moreover, except for these variant systems, the system that depre-
cates the key-information messaging technique is not included in the
comparison variants. The main reason is that after the deprecating
of the key information messaging technique, the system is unable
to generate executable source code that organizes the generated dig-
ital assets based on the determined scene due to the memory loss
problem. As a result, the key-information messaging technique is
essential for the feasibility of our system.

5.3 Reliability Study
For the ChatGPT-based virtual reality scene generation system, en-
suring system reliability is of paramount importance due to the
inherent randomness of ChatGPT, which may lead to unexpected
system breakdowns. Therefore, we begin by conducting a reliability
study to compare the performance of the Text2VRScene system
with other variants. In this case study, we select the Text2VRScene-
SinglePrompt, Text2VRScene-NoRetry, and Text2VRScene-
NoPromptEngineering variants as the comparison methods for
Text2VRScene. The reason why ChatGPT-Web is not selected

706

is that we manually parse the HTML code for this variant, so it is
meaningless to compare the reliability between an automated system
and a human-labor-based system.

We utilize the Error Rate (ER) as the performance metric. Ad-
ditionally, we perform in-depth analysis to identify the causes of
system breakdowns or unsatisfactory experiences, categorizing er-
rors into three types. First, the Unparsable Error occurs when the
system fails to parse the response and cannot continue, typically
caused by the randomness of LLMs. Second, the Code Bug Error
occurs when the generated code cannot be executed due to bugs.
Finally, the Eccentric Topic Error occurs when the generated scene
is unrelated to the topic requested by the user. The Eccentric Topic
Error can be defined as the user cannot recognize the generated VR
scene after the user inputs the text.

5.3.1 Study Settings
This study consists of two types: stability and robustness. For the
stability assessment, we repeat the following four prompts 50 times
and calculate the Error Rate (ER) for each system.

• Prompt 1: “Generate a VR scene about the movie Star Wars.”

• Prompt 2: “Generate a VR scene about the song My Heart Will
Go On.”

• Prompt 3: “Generate a VR scene about the novel Lord of the
Rings.”

• Prompt 4: “Generate a VR scene about the movie Porco Rosso.”

For robustness evaluation, we randomly request the system to
generate scenes for 50 different literature or songs. We then calculate
the overall Error Rate (ER) value for each system.

5.4 Results
Table 1 clearly demonstrates that all variant systems exhibit higher
error rates compared to Text2VRScene, highlighting the effective-
ness of the Retry technique, Message Passing technique, and Prompt
Engineering in enhancing the system’s reliability and robustness.

Methods Pro. 1 Pro. 2 Pro. 3 Pro. 4 Ave. Robust

Text2VRScene-SinglePrompt 18% 26% 24% 18% 21.5% 24%

Text2VRScene-NoPE 34% 36% 24% 28% 30.5% 32%

Text2VRScene-NoRetry 10% 32% 14% 20% 19% 24%

Text2VRScene 2% 8% 8% 4% 5.5% 10%

Table 1: Reliability Error Rate (ER) Comparison

Notably, the variant without prompt engineering exhibits the
lowest reliability and robustness among all systems, emphasizing
the necessity of prompt engineering. Additionally, Table 1 also
presents varying distributions of error types among the different
variant systems, reflecting the distinctive characteristics of these
variants and the advantages provided by the discarded techniques.

To further investigate the effect of different techniques, we ana-
lyze the distribution of error types of the four systems in Fig. 3.

Among the three types of errors, both Unparsable Error and
Code Bug Error can lead to system breakdown, reducing the overall
reliability and robustness of the system, while Eccentric error results
in unsatisfactory user experiences.

In the variant system Text2VRScene-NoPE where pre-defined
constraints that regulate the behavior of LLMs are discarded, we
observe a significant decline in reliability and correctness, as in-
dicated by the extremely high error rate in Table 1. Furthermore,
Fig. 3 illustrates that the major types of errors in this variant are
Unparsable Error and Code Bug Error, which separately account
for nearly 40% of the errors.

Figure 3: Frequency and Distribution of Different Error Types

The occurrence of Unparsable Error can be attributed to the lack
of emphasis on the required response format due to the absence of
prompt engineering. Although the format is included in the prompt,
without prompt engineering, the LLMs may fail to strictly adhere
to the specified format, leading to Unparsable Error. On the other
hand, Code Bug Error is influenced by the randomness of LLMs. By
incorporating a basic template of source code in the pre-defined con-
straints, prompt engineering helps ensure that the generated source
code is executable. Without prompt engineering, the generated
source code may include incorrect packages or deprecated functions,
resulting in a system breakdown.

In the variant system Text2VRScene-SinglePrompt, we observe
that it has the most similar performance in the parable error rate
compared to the Text2VRScene system. It can be linked to the
elimination of the randomness of ChatGPT by the one-turn response
in this variant. Fig. 3 indicates that the major types of errors in this
variant are Eccentric Error and Code Bug Error. Upon investigating
the causes of these two errors, we find that ChatGPT might have
limited attention to the given long prompt. It means that ChatGPT
might ignore some requirements in the prompt and focus on satis-
fying the demand in the other part of the prompt. As a result, if the
code requirements are not the focus of ChatGPT, ChatGPT might
generate codes that cannot be executed. While once the attention
of ChatGPT is not about the position and scale of models, then the
object might overlap, causing unsatisfying experience.

In the variant system Text2VR-NoRetry, Fig. 3 demonstrates that
the primary error type is Unparsable Error. Surprisingly, though
with the repeated emphasis on response format in the pre-defined
constraints, format issues still persist as the main cause of errors in
this system. In comparison to the complete system Text2VRScene,
where most format errors can be addressed by retries with error
report prompts such as ”You should check the correctness of the
JSON format of your response again,” this finding highlights the
inherent randomness of LLMs and emphasizes the necessity of the
Retry with Error Report Prompting in enhancing the reliability and
robustness of LLMs-based generation systems.

Indeed, the above analysis reports that the system Text2VRScene
has the lowest error rate. Moreover, it is worth noting that the major
error type in this system is the Eccentric Error, which primarily
affects the user experience rather than causing system breakdown.
This finding validates the effectiveness of our proposed framework
in enhancing the reliability and robustness of LLMs-based systems.

In conclusion, based on the above analysis, we can affirm that our
proposed framework has the capability to significantly increase the
reliability and robustness of LLMs-based automated systems.

707

(a) ChatGPT-Web

(b) Text2VRScene-no Prompt Engineering

(c) Text2VRScene-Single

(d) Text2VRScene

Figure 4: Performance Illustration. For each system, we generate four scenes as illustrations: Star Wars, My Heart Will Go On, Lord of the Rings,
and Porco Rosso. The above illustrations show that the Text2VRScene system generates the scenes that best meet the requirements of the user.

5.5 VR Scene Illustration

Fig. 5 presents the screenshots of the generated VR scenes,
providing a visual representation of the performance of
our Text2VRScene system compared to the selected vari-
ants. The variants Text2VRScene-SinglePrompt, Text2VRScene-
NoPromptEngineering, and Text2VRScene-Manual were chosen
as the comparison methods to showcase the performance differences.
And Text2VRScene-NoRetry is not selected as the comparison
method because once a parse error occurs in this system, it will
break down, while if no parse error occurs, the output of this variant
system will be the same as the complete Text2VRScene system.
So we believe that it is meaningless to compare the illustration
performance of Text2VRScene-NoRetry with Text2VRScene.

For each screenshot shown in Fig. 5, we have executed the VR
scene generation system ten times and selected the most representa-
tive images of the system for the following analysis.

The results in Fig. 5 demonstrate that our Text2VRScene system is
capable of capturing the essence of the desired scene. The generated
sky-box and 3D models align with the theme specified in the prompt,
and the scale and position of the models are accurately set. Although
not visible in the figure, the animations of the 3D models also express
the topic of the prompt through the dynamics of 3D objects.

In Fig. 5, we first illustrate the performance of the variant
ChatGPT-Web. In this study, we appended the phrase ”using primi-

tives” to the prompt. Otherwise, the generated source code would
contain references to skybox images and 3D models that do not
exist in the local database. We can observe that ChatGPT possesses
the ability to comprehend the relative positions and scales of 3D
objects, enabling them to combine various objects to convey a theme.
To further enhance the expressiveness of the ChatGPT, it is natu-
ral to consider the collaboration between text-based digital asset
generation models and the ChatGPT, as is evident in other variants.

In the Text2VRScene-NoPromptEngineering variant, where
only the response format and stage tasks are retained, it is evident
that the generated VR scenes lack environmental information, as the
skybox appears as a plain color. This is primarily due to the absence
of any instructions in the prompt regarding the use of skybox images.
Consequently, the generated source code utilizes pure colors as the
background instead. Furthermore, the positioning of objects in these
scenes is often illogical, failing to convey the intended theme.

In the Text2VRScene-SinglePrompt variant, we have integrated
the prompts from each stage into a single prompt file, which is then
provided to the system. However, upon examining the resulting VR
scenes, it becomes apparent that ChatGPT struggles to comprehend
and generate responses and fully satisfy the complex requirements
encompassed within a single response. These requirements include
scene description, skybox depiction, identification of potential 3D
models, and the generation of source code to arrange and activate
these models in a cohesive manner. Consequently, the generated 3D

708

model scenes suffer from issues such as overlapping and undersized
objects, which hinder the expression of the user prompt.

Both of the aforementioned variants overlook one or some of
the crucial techniques in our proposed framework, leading to a
noticeable decline in performance in terms of understanding the
logical structure of the described scene and accurately translating
that logic into source code. This highlights the effectiveness and
necessity of the multi-stage technique and prompt engineering in
our proposed framework for developing a reliable and expressive
generation system based on ChatGPT.

In the comprehensive system, Text2VRScene, we integrate all the
techniques from our proposed framework and showcase the gener-
ated results in Fig. 4(d). It is evident that the Text2VRScene system
successfully associates literature or song names with representative
scenes, followed by generating detailed descriptions of these scenes.
Furthermore, the system demonstrates the ability to determine the
external environment of the scene and identify the presence of men-
tioned objects. Importantly, by referring to the descriptions and
real-world knowledge, the system exhibits an understanding of the
scale, relative positions, and dynamics of the mentioned objects.
Subsequently, the system accurately translates this understanding of
the scene into the correct source code for execution.

6 DISCUSSION

The rise of VR as an art form has brought about a revolutionary
new way of immersing ourselves in the realm of creativity and
expression. It has given birth to a synthesis of technology and fine
art, providing artists with a new, boundless canvas where they can
create multi-sensory, interactive, and immersive experiences. This
reimagining of artistic expression is opening new frontiers in how we
create and experience art, deepening our connection with the world
of imagination and abstraction. The prevailing commodity head-
mounted displays (HMDs) have democratized the VR experience,
leading to a surge in demand for immersive and high-quality VR
content. However, this demand has not been fully satisfied due to
limited production capabilities.

To explore the automated generation of VR experience, several
recent studies have focused on generating or reconstructing 3D
scenes [10, 14, 28, 44, 52], but few of these studies have been able
to automate the massive production of satisfying VR experiences.
On the one hand, certain methods [10, 28, 52] focus mainly on the
generation of 3D models of indoor scenes, thereby limiting the ex-
pression of creativity through dynamic interactions between objects.
On the other hand, other methods [14, 44] are restricted by the avail-
able databases and the capabilities of the underlying models, which
hinders the generation of diverse and fantastic scenes customized
for users. These limitations significantly affect the user experience
due to a lack of freshness, which causes much unsatisfactory.

Therefore, generating creative digital content is a challenging task
that requires consideration from multi-aspects. However, the recent
development of generative models [22, 33, 38] opens new pathways
for the automated generation of creative VR experiences and even
other forms of creative digital content.

To explore the methodologies of developing an LLMs-based
VR experience generator, our study first investigates the possible
restrictions of existing LLMs to automatically solve a task. Then, we
propose a pioneering framework to organically mitigate the impact
of these restrictions and enhance the reliability of the automated
generation system. To the best of our knowledge, we are the first
to explore the general framework of LLMs-based creative digital
content generation systems.

Finally, we developed Text2VRScene, according to our frame-
work, which addresses the problems of existing VR scene generators.
The Text2VRScene system is able to generate VR scenes without
clear boundaries from a simple text and express creativity through
the dynamics of different 3D objects. The user can generate any

experience he/she wishes through a short description of the scene or
even the name of the literature from which the scene originates.

Limitation: However, our study design has certain limitations. The
first is the methodology employed to identify the weaknesses of
LLMs in automated systems. We acknowledge that relying solely
on the four short expert interviews in a qualitative analysis may
inadvertently overlook important features and limitations of LLMs
in automated systems. To address this concern and ensure a compre-
hensive evaluation, we combined the analysis of existing literature
with our qualitative study to cover as many main limitations as possi-
ble. This approach aimed to compensate for any potential limitations
of the expert opinions. We would like to argue that with the above
process, the main obstacles that affect the feasibility of achieving an
LLMs-based automated system should be identified.

Another limitation is the quality of our generated VR scene with
respect to the lack of interactivity and the imbalanced quality be-
tween the 2D background image and 3D models. The lack of inter-
activity will reduce users’ sense of involvement in the dynamic of
the scene, the main reason is that AFrame, the engine employed for
rendering VR scenes,does not natively support interaction with ob-
jects, which would be addressed by the development of the AFrame
or using another engine. The imbalanced quality of 2D background
and 3D models will reduce users’ sense of immersive in the scene,
the main reason is the imperfect performance of the existing text-
based 3D model generation algorithms. Such limitations will be
addressed with the advancement of text-based 3D model generation
algorithms. Despite the limitation in scene quality, we would like to
argue that the main target of our work remains achieved. The main
contribution of this paper is to explore the possible framework of
the LLMs-based automated generation system, whose effectiveness
and reliability have been validated by the proposed Text2VRScene.

Our research will persistently leverage the ongoing advances in
LLMs and digital content generation models to advance the LLMs-
based generation system. Adhering to the proposed framework, we
intend to delve into the creation of generation systems for various
forms of digital content, such as animation, manga, and potentially
even movies. Moreover, taking into account the prospective progress
and enhanced capabilities of increasingly powerful LLMs, we will
persistently investigate the feasibility of a universal framework to
facilitate the development of LLMs-based automated systems.

7 CONCLUSION

In this work, we identify the critical limitations of LLMs in an au-
tomated system based on expert interviews and literature reviews.
Then we proposed a general framework to provide a systematic
approach to applying LLMs to automated systems. According to
the proposed framework, we develop the Text2VRScene system,
which generates expressive VR scenes based solely on text. Fur-
thermore, we conduct a series of case studies to validate that the
proposed framework provides a systematic guarantee of reliability.
Case study results also illustrate the promising performance of the
Text2VRScene system in generating expressive VR scenes regulated
by meticulously designed prompts.

In general, the work presented in this paper proposes a system
that can generate complex VR scenes based solely on natural lan-
guage. This paper explores the general framework for developing
LLMs-based automated systems, providing valuable guidance for
researchers interested in developing generative systems toward other
kinds of complex and creative digital content.

8 ACKNOWLEDGEMENT

The work is supported by the Bureau of Science and Technology of
Nansha District, Guangzhou, Grant No.2022ZD012.

709

REFERENCES

[1] T. Ahmed and P. Devanbu. Few-shot training llms for project-specific

code-summarization. arXiv preprint arXiv:2207.04237, 2022.

[2] Autodesk. 3DMAX Software. https://www.autodesk.com/

products/3ds-max/, 2023.

[3] Y. Bang, S. Cahyawijaya, N. Lee, W. Dai, D. Su, B. Wilie, H. Lovenia,

Z. Ji, T. Yu, W. Chung, et al. A multitask, multilingual, multimodal

evaluation of chatgpt on reasoning, hallucination, and interactivity.

arXiv preprint arXiv:2302.04023, 2023.

[4] Blender. Blender Software. https://www.blender.org//, 2023.

[5] A. Borji. A categorical archive of chatgpt failures. arXiv preprint
arXiv:2302.03494, 2023.

[6] V. Braun and V. Clarke. Thematic analysis. American Psychological

Association, 2012.

[7] E. Cambria and B. White. Jumping nlp curves: A review of natural lan-

guage processing research. IEEE Computational intelligence magazine,

9(2):48–57, 2014.

[8] D. Castelvecchi. Are chatgpt and alphacode going to replace program-

mers? Nature, 2022.

[9] S. Chakraborty, T. Ahmed, Y. Ding, P. T. Devanbu, and B. Ray. Natgen:

generative pre-training by “naturalizing” source code. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pp. 18–30,

2022.

[10] A. X. Chang, M. Eric, M. Savva, and C. D. Manning. Sceneseer: 3d

scene design with natural language. arXiv preprint arXiv:1703.00050,

2017.

[11] R. Chen, Y. Chen, N. Jiao, and K. Jia. Fantasia3d: Disentangling

geometry and appearance for high-quality text-to-3d content creation.

arXiv preprint arXiv:2303.13873, 2023.

[12] Z. Chen, G. Wang, and Z. Liu. Text2light: Zero-shot text-driven hdr

panorama generation. ACM Transactions on Graphics (TOG), 41(6):1–

16, 2022.

[13] J.-H. Cheng, Y. Chen, T.-Y. Chang, H.-E. Lin, P.-Y. C. Wang, and L.-P.

Cheng. Impossible staircase: Vertically real walking in an infinite

virtual tower. In 2021 IEEE Virtual Reality and 3D User Interfaces
(VR), pp. 50–56. IEEE Computer Society, 2021.

[14] L.-P. Cheng, E. Ofek, C. Holz, and A. D. Wilson. Vroamer: generating

on-the-fly vr experiences while walking inside large, unknown real-

world building environments. In 2019 IEEE Conference on Virtual
Reality and 3D User Interfaces (VR), pp. 359–366. IEEE, 2019.

[15] A. M. Dakhel, V. Majdinasab, A. Nikanjam, F. Khomh, M. C. Des-

marais, and Z. M. Jiang. Github copilot ai pair programmer: Asset or

liability? Journal of Systems and Software, p. 111734, 2023.

[16] M. Denninger and R. Triebel. 3d scene reconstruction from a single

viewport. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XXII, pp. 51–67.

Springer, 2020.

[17] D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi, R. Zhong,

W.-t. Yih, L. Zettlemoyer, and M. Lewis. Incoder: A generative model

for code infilling and synthesis. arXiv preprint arXiv:2204.05999,

2022.

[18] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio. Generative adversarial networks.

Commun. ACM, 63(11):139–144, oct 2020. doi: 10.1145/3422622

[19] P. Hämäläinen, M. Tavast, and A. Kunnari. Evaluating large language

models in generating synthetic hci research data: a case study. In Pro-
ceedings of the 2023 CHI Conference on Human Factors in Computing
Systems, pp. 1–19, 2023.

[20] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models.

Advances in Neural Information Processing Systems, 33:6840–6851,

2020.

[21] N. Jain, S. Vaidyanath, A. Iyer, N. Natarajan, S. Parthasarathy, S. Raja-

mani, and R. Sharma. Jigsaw: Large language models meet program

synthesis. In Proceedings of the 44th International Conference on
Software Engineering, pp. 1219–1231, 2022.

[22] H. Jun and A. Nichol. Shap-e: Generating conditional 3d implicit

functions. arXiv preprint arXiv:2305.02463, 2023.

[23] T. Karras, S. Laine, and T. Aila. A style-based generator architecture

for generative adversarial networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 4401–4410,

2019.

[24] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila. An-

alyzing and improving the image quality of stylegan. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,

pp. 8110–8119, 2020.

[25] Y. Li, Z. Gan, Y. Shen, J. Liu, Y. Cheng, Y. Wu, L. Carin, D. Carlson,

and J. Gao. Storygan: A sequential conditional gan for story visualiza-

tion. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 6329–6338, 2019.

[26] C.-H. Lin, J. Gao, L. Tang, T. Takikawa, X. Zeng, X. Huang, K. Kreis,

S. Fidler, M.-Y. Liu, and T.-Y. Lin. Magic3d: High-resolution text-to-

3d content creation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 300–309, 2023.

[27] H. Liu, R. Ning, Z. Teng, J. Liu, Q. Zhou, and Y. Zhang. Evaluating

the logical reasoning ability of chatgpt and gpt-4. arXiv preprint
arXiv:2304.03439, 2023.

[28] R. Ma, A. G. Patil, M. Fisher, M. Li, S. Pirk, B.-S. Hua, S.-K. Yeung,

X. Tong, L. Guibas, and H. Zhang. Language-driven synthesis of 3d

scenes from scene databases. ACM Transactions on Graphics (TOG),
37(6):1–16, 2018.

[29] K. Mahowald, A. A. Ivanova, I. A. Blank, N. Kanwisher, J. B.

Tenenbaum, and E. Fedorenko. Dissociating language and thought

in large language models: a cognitive perspective. arXiv preprint
arXiv:2301.06627, 2023.

[30] T. Mullen. Mastering blender. John Wiley & Sons, 2011.

[31] NeuralMagic. The ChatGPT Cheat Sheet. https://www.kdnuggets.

com/publications/sheets/ChatGPT_Cheatsheet_Costa.

pdf/, 2023.

[32] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese,

and C. Xiong. A conversational paradigm for program synthesis. arXiv
e-prints, pp. arXiv–2203, 2022.

[33] OpenAI. Chatgpt: Optimizing language models for dialogue. OpenAI
Blog, 2022.

[34] S. Ott, K. Hebenstreit, V. Liévin, C. E. Hother, M. Moradi,

M. Mayrhauser, R. Praas, O. Winther, and M. Samwald. Thought-

source: A central hub for large language model reasoning data. arXiv
preprint arXiv:2301.11596, 2023.

[35] X. Pan, A. Tewari, T. Leimkühler, L. Liu, A. Meka, and C. Theobalt.

Drag your gan: Interactive point-based manipulation on the generative

image manifold. arXiv preprint arXiv:2305.10973, 2023.

[36] B. Poole, A. Jain, J. T. Barron, and B. Mildenhall. Dreamfusion:

Text-to-3d using 2d diffusion. arXiv preprint arXiv:2209.14988, 2022.

[37] J. W. Rae, S. Borgeaud, T. Cai, K. Millican, J. Hoffmann, F. Song,

J. Aslanides, S. Henderson, R. Ring, S. Young, et al. Scaling language

models: Methods, analysis & insights from training gopher. arXiv
preprint arXiv:2112.11446, 2021.

[38] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-

resolution image synthesis with latent diffusion models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 10684–10695, June 2022.

[39] R. Rosenfeld. Two decades of statistical language modeling: Where do

we go from here? Proceedings of the IEEE, 88(8):1270–1278, 2000.

[40] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton,

K. Ghasemipour, R. Gontijo Lopes, B. Karagol Ayan, T. Salimans,

et al. Photorealistic text-to-image diffusion models with deep language

understanding. Advances in Neural Information Processing Systems,

35:36479–36494, 2022.

[41] R. Shi, N. Zhu, H.-N. Liang, and S. Zhao. Exploring head-based mode-

switching in virtual reality. In 2021 IEEE International Symposium on
Mixed and Augmented Reality (ISMAR), pp. 118–127. IEEE, 2021.

[42] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli.

Deep unsupervised learning using nonequilibrium thermodynamics.

In International Conference on Machine Learning, pp. 2256–2265.

PMLR, 2015.

[43] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and

B. Poole. Score-based generative modeling through stochastic differ-

ential equations. arXiv preprint arXiv:2011.13456, 2020.

[44] M. Sra, S. Garrido-Jurado, C. Schmandt, and P. Maes. Procedurally

710

generated virtual reality from 3d reconstructed physical space. In

Proceedings of the 22nd ACM Conference on Virtual Reality Software
and Technology, pp. 191–200, 2016.

[45] U. Technologies. Unity Software. https://unity.com/, 2023.

[46] R. Thoppilan, D. De Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-T.

Cheng, A. Jin, T. Bos, L. Baker, Y. Du, et al. Lamda: Language models

for dialog applications. arXiv preprint arXiv:2201.08239, 2022.

[47] H. Tian, W. Lu, T. O. Li, X. Tang, S.-C. Cheung, J. Klein, and T. F.

Bissyandé. Is chatgpt the ultimate programming assistant–how far is

it? arXiv preprint arXiv:2304.11938, 2023.

[48] G. Wang, Y. Yang, C. C. Loy, and Z. Liu. Stylelight: Hdr panorama

generation for lighting estimation and editing. In Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part XV, pp. 477–492. Springer, 2022.

[49] Z. Wang, C. Lu, Y. Wang, F. Bao, C. Li, H. Su, and J. Zhu. Prolific-

dreamer: High-fidelity and diverse text-to-3d generation with varia-

tional score distillation, 2023.

[50] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yo-

gatama, M. Bosma, D. Zhou, D. Metzler, et al. Emergent abilities of

large language models. arXiv preprint arXiv:2206.07682, 2022.

[51] J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert, A. El-

nashar, J. Spencer-Smith, and D. C. Schmidt. A prompt pattern cat-

alog to enhance prompt engineering with chatgpt. arXiv preprint
arXiv:2302.11382, 2023.

[52] H. Yi, C.-H. P. Huang, S. Tripathi, L. Hering, J. Thies, and M. J. Black.

Mime: Human-aware 3d scene generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pp. 12965–12976, 2023.

A EXTRA EXAMPLES

Due to the insufficient space for comparing more generation cases
with different methods, we add some extra cases generated by the
full-version Text2VRScene system to illustrate the generality of the
system. Following the prompt settings of Section 5.3.1 in the main
article, we only changed the content of the requirements, including
literature, movie, and direct scene descriptions. The used prompts
are listed as follows:

• Prompt 1: “Generate a VR scene about the song Red sail in the
Sunset.”

• Prompt 2: “Generate a VR scene about the movie WALLE.”

• Prompt 3: “Generate a VR scene about the movie The Martian.”

• Prompt 4: “Generate a VR scene about the scene two chasing jet
flights.”

• Prompt 5: “Generate a VR scene about the movie Finding Nemo.”

• Prompt 6: “Generate a VR scene about the movie Life of Pi.”

B FINE-TUNED PROMPTS

In this section, we will elaborate on the patterns of prompt engineer-
ing fine-tuning in this method. Due to the limited pages, we will
select the fine-tuned prompt for the task determination component
as an example for analysis. Other prompts are similar in structure
and available at https://github.com/Williamy946/Text2VRScene.

As illustrated in the box, the pre-defined task constraints consists
of two parts, the Constraints part and the Response Format part.
In the constraint part, the detailed rules of the given task and the
requirements about the response will be provided. Moreover, to
fine-tune the performance of LLMs, some empirical methods will
be adopted to raise the extra attention of LLMs to the specific re-
quirement such as using upper case alphabets, some hinting words
like ”ATTENTION!”, ”WARNING!”, etc.

In the Response Format part, the detailed response format of
each stage will be given for LLMs’ in-context learning. Moreover,
for the compatibility with the limited text-understanding ability of
existing text-based generation methods, a few examples about the

(a) Red Sail in the Sunset (b) WALLE

(c) The Martian (d) Two Chasing Jet Flights

(e) Finding Nemo (f) Life of Pi

Figure 5: Extra Examples of Generated VR Scene from simple sen-
tences.

descriptions about the 2D skybox and 3D models will be given as
few-shot information for LLMs.

CONSTRAINTS:

1. No user assistance,

2. Determine the literature or name of songs in the User prompt in "topic", if

no literature or song is mentioned, generate the main theme of the User prompt

in "topic".,

3. YOU SHOULD Generate the description of a scene about the most expressive

event related to the topic.,

4. In the description, you should include the introduction of background, the

description of objects and characters, the description of the start position

and size of these objects and characters, and descriptions about their physical

movements in the event.,

5. ATTENTION!: YOU SHOULD SPECIFY THE DETAILS OF COLORS, AND APPEARANCE ABOUT

EVERY CHARACTERS AND OBJECTS IN THE DESCRIPTION.,

6. You should only respond in JSON format as described below and do not add

extra explanations excluding the JSON response,

7. Ensure the response can be parsed by Python json.loads,

Response Format:

{
xxxx"responses":

xxxx{
xxxxxxxx"Topic": "The topic in the user prompt",

xxxxxxxx"Description":

xxxxxxxx{
xxxxxxxx"Background": "description of the background of the scene, eg. <Ocean

with hues of orange and pink at sunset>.",

xxxxxxxx"Characters": "full-body description of the characters in the scene,

eg. <Rose, a young woman with flowing auburn hair, wears an elegant blue

gown.>, <Jack, with disheveled brown hair, is dressed in a simple white shirt

and trousers.>",

xxxxxxxx"Objects": "description of the objects itself in the scene without

mentioning other objects, eg. <Titanic, a majestic ship with red strips.>, <an

iceberg, with the color of dark blue.> ",

xxxxxxxx"Scale": "description of relative scales of ALL characters and objects

in the scene, eg. <the Titanic is in very large scale compared with human>,

<the iceberg is two times large than the Titanic>",

xxxxxxxx"Start position": "description of start positions of ALL characters

and objects in the scene, eg. <Jack is standing behind Rose at the bow of the

Titanic ship>, <the Titanic is start sailing from the left side>",

xxxxxxxx"Movements": "description of the movements of ALL characters and

objects in the event. You must include the start position and end position of

characters and objects. eg. <the Titanic is translating from left to right,

heading toward the iceberg>, <Jack and Rose are on the Titanic, moving together

from left to right>, <The iceberg is floating up and down and rotating>"

xxxxxxxx},
xxxx}
}

711

