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ABSTRACT

This paper proposes a new objective metric of visually induced mo-
tion sickness (VIMS) in the context of navigation in virtual environ-
ments (VEs). Similar to motion sickness in physical environments,
VIMS can induce many physiological symptoms such as general
discomfort, nausea, disorientation, vomiting, dizziness and fatigue.
To improve user satisfaction with VR applications, it is of great
significance to develop objective metrics for VIMS that can analyze
and estimate the level of VR sickness when a user is exposed to VEs.
One of the well-known objective metrics is the postural instability.
In this paper, we trained a LSTM model for each participant using a
normal-state postural signal captured before the exposure, and if the
postural sway signal from post-exposure was sufficiently different
from the pre-exposure signal, the model would fail at encoding and
decoding the signal properly; the jump in the reconstruction error
was called loss and was proposed as the proposed objective measure
of simulator sickness. The effectiveness of the proposed metric was
analyzed and compared with subjective assessment methods based
on the simulator sickness questionnaire (SSQ) in a VR environ-
ment, achieving a Pearson correlation coefficient of .89. Finally, we
showed that the proposed method had the potential to be deployed
within a closed-loop system and get real-time performance to predict
VR sickness, opening new insights to develop user-centered and
customized VR applications based on physiological feedback.

Index Terms: Human-centered computing— Virtual reality—
Walkthrough evaluations; Human-centered computing—User in-
terface design—Interaction devices; Computing methodologies—
Machine learning—Machine learning approaches—Neural networks

1 INTRODUCTION

As immersive virtual reality (VR) systems have become available
to public consumers, such technology reshapes the way how users
interact with virtual environments (VEs). Currently, VR research
focuses on many subfields related to human-computer interaction
(HCI), e.g., hardware and theory. Hardware engineers try to produce
environments that are immersive as much as possible based on new
technologies [4,24], while the theoretical workers tend to design
and verify new types of user interfaces and interaction techniques in
an immersive virtual environment [2, 18]. With the fast development
of technologies coming from video games, new types of devices are
frequently released, continually leading to upgraded user interfaces
and interaction techniques.

VR headset manufacturers try to provide higher immersion with
their products. The counterpart is that users tend to suffer from more
cybersickness, getting even worse as the immersed time passes [28].
So far, the lack of efficient methods to eliminate VR sickness in
virtual environments still attracts much attention from both academic
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and industrial communities. In particular, navigation with irregular
motion in VEs can induce severe cybersickness according to the
well-known sensory conflict theory [8, 30]. In such situation, it
would make a difference if at least we could measure and quantify
the amount of VR sickness after a user plays with VR systems; and
in a latter stage we could be able to design an automatic feedback
evaluation system to optimize VR interaction interfaces in real time
according to the user’s level of VR sickness. This paper proposes to
tackle this issue by introducing a deep learning method to predict
VR sickness in real time and allow for adaptive interaction in VEs.

2 RELATED WORK

Crampton categorises the measures for motion sickness into two
ways: qualitative and quantitative [23]. Qualitative test scores are
based primarily on psychological description or reports of signs and
symptoms from experimenters and test subjects. For example, mo-
tion sickness questionnaires are commonly used to estimate sickness.
However, multiple sources of error are inherent and inevitable as
questionnaires heavily rely on subjective evaluations of the indica-
tors being measured; thus the errors tend to undermine the reliability
of the measurement procedure or experiment.

In parallel, quantitative assessments through physiological body
signals arising from simulator sickness provides experimenters with
opportunities to have precise direct comparisons between and within
subjects. Another benefit of quantitative measurements from phys-
iological manifestations is the possibility to continuously collect
data throughout an experimental session, thereby achieving better
accuracy and detail to characterize the progression and effective-
ness of sickness symptoms. This also enables to design a real-time
estimation system as an efficient sickness indicator.

2.1 Qualitative measurements

In the early 1980s, the motion sickness questionnaire (MSQ) was
designed to measure motion sickness arising in different kinds of
transport such as cars, buses, ships and airplanes [13]. Kennedy et
al. [20] proposed a short version of the MSQ, the now well-used
Simulator Sickness Questionnaire (SSQ), considering only 16 items
of the MSQ and removing MSQ symptoms that rarely or infrequently
occur in simulator exposures, i.e., that are too low to be counted
for statistical analysis. Factor analysis methods including principal-
factor analysis and normalized varimax rotation were used to identify
the coincidence or clusters of symptom items. The SSQ can be
divided into three categories: nausea, oculomotor and disorientation.
Kim et al. proposed a simplified version of the SSQ, the virtual
reality sickness questionnaire, which considers only occulomotor
and disorientation [22]. Their questionnaire was shown to be more
appropriate in VR studies than the SSQ.

Practical performance and easiness of use have become the most
fundamental features of the SSQ when used to evaluate sickness
after simulator tests on relevant platforms. Up to now, the SSQ is
used in most VR applications. For example, many past studies have
been conducted with the SSQ to assess simulator test conditions on
educational devices for training [11] and compare the user experi-
ence of navigation paradigms [7], or to research on the effect of the



field of view and image delay of head-up displays on simulator sick-
ness and try to find optimal settings, which is receiving increasing
attention [1,27]. Second, it becomes an effective measurement to
quantify the level of simulator sickness and the SSQ generally pro-
vides a reference score to be compared with during the development
of new indicators as we will see in the following sections.

For example, Padmanaban et al. used ratings on a varied dataset
of steroscopic 3D videos based on characterized video features such
as the stereoscopic depth, vection and motion velocity to correlate
these variables as a function of cybersickness [28]. Meanwhile,
the SSQ was introduced to evaluate the level of the corresponding
sickness after each experiment. The motion sickness susceptibil-
ity questionnaire short-form (MSSQ-Short) [14] was also used to
weight the scores among different users for each experiment consid-
ering individual differences and to integrate ratings into a single and
comprehensive rating.

2.2 Quantitative measurements

Although well-established questionnaires in terms of motion sick-
ness are widely used, there is one evident drawback of such methods
if compared to physiological evaluations; for instance, lengthy ques-
tionnaires are generally administered after a user has performed an
experiment, therefore he/she has to shift attention away from the
experiment and on the contrary has to focus on body feelings [10].
Physiological indicators are developed based on physiological sig-
nals such as heart rate variability, blood pressure, electrogastrogra-
phy and galvanic skin reaction [5, 17]. Dennision et al. proposed
other indicators that were not much studied in the scope of cybersick-
ness, such as stomach activity, blinking and breathing [10]. From
these quantitave measurements, past work proposed strategies to pre-
vent cybersickness from increasing while navigating, typically, the
users’ electrodermal activity was shown to be an efficient indicator
to estimate the level of sickness and was used as a parameter in the
navigation control law to adapt navigation in virtual environments,
thus significantly reducing cybersickness [29].

Behavioral indicators have received large attention for several
years, namely postural instability, as it has been shown to be impor-
tant indicators of motion sickness [31]. Chardonnet et al. [6] focused
on the features of postural sway during immersion and navigation
in VR. They collected the postural sway signals in the Left/Right
(L/R) and Forward/Backward (F/B) directions and analyzed them
in both the time and the frequency domains. They correlated the
results with sickness scores obtained from questionnaires. As for the
time-domain analysis, the resulting signals of L/R and F/B move-
ments for the marginally stable and the stable states were projected
onto an XY plane in order to monitor dynamic changes of the area
and shape of the projected signals. The frequency domain analysis
revealed two main components: low frequency and high frequency
components; the former is usually linked to stable body states in
which users do not feel any sickness (voluntary movements) while
the latter is more related to marginally stable body states in which
sickness arises (involuntary movements).

Unnatural viewing mechanism in virtual environments is also
responsible for visual fatigue and VIMS [26]. The observation of
depth gaze associated with veridical depth information during expo-
sure in VEs becomes paramount. Wibirama et al. [33] carried out a
comprehensive study on VIMS with respect to the SSQ, electrocar-
diography (ECG) as well as 3D gaze tracking. The occurrence of
VIMS was investigated with the SSQ, then the result was utilized for
the analysis of user behaviors according to ECG and 3D gaze track-
ing; they found that participants immersed in 3D visual contents can
have less dominant sympathetic nerves activated due to voluntary
gaze fixation at one point, which suggests that depth gaze oscillates
more frequently when VIMS appears.

2.3 Learning-based indicators

Machine learning is attracting great attention recently as it is sup-
posed to be a powerful tool for data analysis and has already shown
many advantages in video games, computer vision, speech recog-
nition [9, 15] or to develop health management systems [12, 21].
Consequently, learning-based algorithms can be extended to predict
VIMS if a correlative dataset extracted from physiological or visual
signals can be fed into the system.

From the ratings collected through questionnaires, Padmanaban
et al. constructed a dataset of stereoscopic 3D videos across a wide
spectrum of sickness so that comparative analyses of sickness can be
performed in a significant way [28]. A machine learning approach
was employed to build a model of the nonlinear relationship between
video contents and their corresponding nauseogenicity. However,
this method requires artifacts to select features from the videos,
which may lead to unavoidable biased results.

Another promising online motion sickness level prediction sys-
tem is developed for a dynamic vehicle environment based on a
learning system [25]; electroencephalography (EEG) signals are
used to characterize the physiological changes that occur during the
transition of passengers’ cognitive states. This information is trained
and compared through a self-organizing neural fuzzy inference net-
work (SONFIN) to forecast a sickness level, achieving an overall
accuracy of about 82% through experiments. Although this system
is built mainly for estimating sickness for passengers in a vehicle,
it can also be used to measure cybersickness in virtual reality as
the symptoms between motion sickness and cybersickness are quite
similar, which has already been demonstrated [19].

In this paper, we concentrate on visually induced motion sickness
(VIMS) during navigation in an immersive virtual environment. A
set of symptoms may appear on users owing to their susceptibility
to VIMS during or after being exposed to dynamic visual displays
for a long time. Body postural instability is one of the behavioral
phenomena that has already shown effectiveness to capture VIMS
[6]. In order to capture user’s cybersickness, we propose a new
method based on the deep long short term memory (LSTM) network
and build an network to characterize the user’s level of VR sickness.

The main goal of our work is to estimate and predict the VIMS
level based on postural sway signals and ground truth measurements
from SSQ scores. Since current approaches to measure VR sickness
can only be used in pre-exposure and post-exposure in the VE,
we show that the advantage of our method is that it can not only
measure the VIMS but also it has the potential to be implemented
for real time applications, which enables to get rid of intermittent
evaluation methods, on the contrary of [6]. The long-term objective
is to extend these results to larger cases and find objective and online
measures to quantify simulator sickness with physiological signals.
Our objective is a wide one while in this paper we focus on using
the postural sway signal. The most important contribution lies in
the proposition of a new method to evaluate VR sickness based on
an LSTM network which has the potential to be deployed in online
applications. The paper is structured as follows: we will first detail
the basics of LSTM, then we will show how the LSTM network
has been applied to predict VIMS by conducting a user study. We
will finally show how our method can be deployed in real-time
applications.

3 PRINCIPLES OF VR SICKNESS EVALUATION
3.1 LSTM in deep learning

In this paper, a deep long short term memory (LSTM) network
is designed with the aim of detecting and measuring the degree
of VIMS. LSTM is one of the methods in the large deep learning
family. Deep learning is a method trying to learn representations
from source data with successive layers; the term deep in deep
learning is not linked to any kind of deeper understanding of the
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Figure 1: Diagram for an LSTM cell at time step #; W and U are
weight vectors for the forget gate (f), the candidate (C), the input
gate (I) and the output gate (O); X;: input vector, H;_1: previous
cell output, C;_1: previous cell memory, H;: current cell output, C;:
current cell memory; ¢: sigmoid activation function.
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Figure 2: One LSTM layer is composed of two cells that can work
in parallel and communicate between each other during the learning
process; the input layer is the sequence consisting of a vector with
length n; each cell is fed with the same input sequence.

solution achieved by the approach; instead, it is related to the idea
of successive representation layers.

Fig. 1 explains the components of one LSTM cell and how it
works. The LSTM cell takes inputs from the current step state (X;),
the previous hidden state (H;_1) and the previous memory state
(C;—1), and returns outputs including the current hidden state (H;)
and the current memory state (C;). The internal computational flow
is controlled by four different gates which can also be understood
as filters: a forget gate (f), a candidate (C), an input gate () and
an output gate (O), described in Equation 1 where X; and H,_| are
processed by corresponding weight vectors W and U. To further
include history information, current outputs have to join a previous
cell memory C;_1, described in Equation 2.

fi=0X xU+H_1 *Wy)
C, = tanh(X; x U, + H,_1 xW,.)

1
I =0(Xe Ui+ H;—1 % W;) )
Oy =0 (X xUy+Hy_1 xW,)
C=fi+C_1 +1,%C,
2
Hl Ol *tanh(C;)

A single LSTM cell can be extended along the sequence direction
in order to process sequential data, which is the original LSTM
model with one layer, as shown in Fig. 2. The deep LSTM model,
which is a further extension of the original model and that we con-
sider here, contains multiple hidden LSTM layers to learn more
accurately the description of the original sequential data. Based on
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different problem types, the model can output a sequence data or
only a single scalar. Especially, when the model learns the features
of the input sequence itself and tries to reconstruct such input in the
output, the network is called an autoencoder. The so-called features
of the sequence are the intermediate and equivalent representations
of the original input within a latent space.

Compared to other neural networks like multilayer perceptrons
(MLP) and convolutional neural networks (CNN) which have no
internal memory and only process each input data independently,
LSTM model can perform better in processing long-term dependen-
cies among sequential data with gates including the forget gate, the
input gate as well as the output gate, and overcome gradient explo-
sion and vanishing issues at the same time [3]. This motivates our
choice for LSTM model to detect and predict cybersickness. Here
the LSTM model will be used on postural sway signals to detect
cybersickness.

Fig. 3 presents an overview of the proposed method for objectively
measuring the VIMS score based on the LSTM model. As shown in
this figure, the model consists of an encoder that tries to represent
the raw postural sway signal in a latent space, followed by a decoder
that tries to reconstruct the original signal from the encoded features.
Two stages compose the method: a training stage and an evaluation
stage.

3.2 Deep LSTM model for normal sway signals

In the training stage (Fig. 3 left), the LSTM neural networks learns
to extract features of the input consecutive signal information by
minimizing the loss (mean-square error, MSE) between the original
inputs and the reconstructed outputs, thanks to Equation 3:

. 1 R
argngno?: N;HXi*fw(Xi)H 3

where w is used to describe the parameterized model; X; is the /"
sampling point of the postural sway signal X; N is the length of the
signal (number of sampling points); f,, is the non-linear function
of the neural network that reconstructs the original input with the
network. The input signal is a normal sway signal, representing the
user’s body postural sway when the user is in his/her usual state of
fitness (no sickness).

Fig. 4 shows the LSTM model aiming at retrieving the input
postural sway signal. The model is built by stacking ten LSTM
layers and one fully connected layer (also called dense layer in some
literature); the number of layers was decided with the grid-search
method where we tried to find the best performance by tuning the
model. Deep LSTM layers are used to learn the sequence features.
The model includes therefore two main parts that are the encoder
and the decoder; it is able to reconstruct the original input with
high accuracy. It is worth noting that high accuracy is valid only
when the model reconstructs the signal from a similar body state,
not to reconstruct every signal from diverse body states with high
precision. Each layer is followed by a dropout function to avoid
overfitting [32]. Since we want to reconstruct the original input, a
dense layer is used to reshape the output feature from the last LSTM
layer. This process can be assimilated as a reshape function in many
programming languages.

3.3 Detection of abnormal sway signals

After training our LSTM neural networks, the VIMS score can be
calculated according to the reconstruction errors, as done in [16]
(Fig. 3 right). Based on the learned model, the reconstruction error
E of a test signal Y can be written as

1N|| h |
== ) |IYi—fu(Y; “
3 )
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Figure 3: Overview of the proposed method for estimating the VIMS score using an LSTM model.
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Figure 4: Overview of the proposed method to reconstruct the input
signal using LSTM neural networks including five layers for the
encoder and five layers for the decoder; dropout is introduced to
avoid overfitting.

where fw is the learned LSTM model.

Because the deep network is trained with the postural sway signal
obtained before the user is immersed in VEs, the trained model is
supposed to capture the features of a person without any feeling
of VIMS, and therefore, it can reconstruct the original sway signal.
However, when such trained model is used in the evaluation stage in
which the postural sway signal is obtained after the user is exposed
to VEs, the reconstruction error shall be larger. As a consequence,
by evaluating the VIMS score based on the reconstruction loss with
a trained model, the level of VR sickness is expected to be estimated

and predicted in real time without providing additional information.

A lower reconstruction error means that our model is able to
retrieve the signal with more accuracy. In other words, when we train
the model with a postural sway signal obtained from a normal state of
the person (without any feeling of VR sickness), the encoder extracts
the features of such state and the decoder reconstructs the signal
accordingly with high accuracy; however, during the evaluation
stage, when we feed the network with a postural sway signal obtained
from a different body state, the decoder will not be able to reconstruct
the input signal with accuracy as the network does not recognize
the learned features: the reconstruction error is thus supposed to be
large.

4 USER STUDY

We conducted a user study in order to build the datasets to train our
deep LSTM model and validate the general method. We carried out
an experiment to estimate the level of VR sickness during navigation
in a virtual environment through both the postural sway signals and
the SSQ. The final results from both measurements were then fitted
and correlated to our proposed evaluation method to validate its
efficiency.

4.1 Participants

We asked 11 participants including 4 females (Mg, = 25.83, SD =
4.58) to take part in the experiment. All participants were recruited
through word of mouth. No compensation was given after the exper-
iment. A brief training was provided before the experiment to let the
subjects understand their main task in the virtual environment. All
participants were requested to fill a pre-exposure questionnaire (Q1)
in order to get a general information about their health condition
and their background knowledge on computers and virtual reality.
According to the results from Q1, all subjects were in normal or
corrected-to-normal health conditions, reported no disorders or un-
usual circumstances with respect to their hearing or balancing, and
did not report any severe susceptibility to motion sickness.

4.2 Experimental equipment

To navigate in the virtual environment, an HTC Vive head-mounted
device (HMD) was used together with the two wireless handheld
controllers provided with the HMD to control navigation. In our
experiment, the trigger button and the trackpad of the handheld
controller were mainly used to control the speed and the direction
of navigation. To move forward, users pressed the trigger button
and the movement started with a speed depending on how much the
trigger was pressed, while turning was done through a gaze-directed
technique in which the moving direction was the gaze direction
(here, we assimilated the gaze direction to the head orientation).
Users could stop navigation if they released the trigger button or
when they arrived at the target position. The HMD was connected
to Unity3D via SteamVR and VRTK SDK which provides many
built-in APIs for the development of VR user interfaces. With this
SDK, interaction between users and the VE could be achieved in
real time without any delay.

The postural sway signal of the participants was collected through
a Stabilotest balance board from TechnoConcept!. It has internal
sensors that are able to capture left/right and forward/backward sway
signals in real time for 51.2 s with a frequency of 40 Hz, providing
2048 sampling points.

4.3 Experimental procedure

The procedure was designed as follows:

Uhttp://www.technoconcept.fr/shop/index.php
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Figure 5: Virtual scene where the participants complete the task.

1. All participants were requested to fill questionnaire Q1 before
the experiment. Considering that the participants were unfa-
miliar with the HTC Vive, we gave them a brief training on
the tasks including what they were going to do and on how to
control navigation with the controllers.

2. In order to measure the difference of user’s level of cybersick-
ness before and after the main task, each participant had to fill
an SSQpre (Q2) to get a pre-exposure VIMS score then had
to stand on the balance board while looking at a fixed point
displayed on the wall to record the corresponding sway signal.
Note that though past work has recommended not to admin-
ister an SSQ before exposure [34], rather than considering
participants to have no sickness at all, we chose to administer
the SSQ to get a baseline of participants’ actual state.

3. The participants navigated through the VE and completed the
given task. In order to provoke VIMS at different levels, each
participant had to search and collect the coins scattered in the
VE (Fig. 5), and we set the maximal navigation speed to 2m/s
which is slightly higher than the normal walking speed. The
participants were urged to explore and pick up a total of 30
coins as fast as possible. All along the experiments, they were
in a standing position, which is supposed to favor cybersick-
ness more compared to a sitting position [31]. Note that the
motion speed might be less than the maximal speed during
task completion, depending on the input from the controller.

4. After the participants finished the navigation task in the VE,
they took off the HMD then stood again on the balance board
to collect another sway signal. Besides, another SSQpos (Q2)
was filled to calculate the ground truth VIMS score after navi-
gation in the VE.

5. The participants were invited to do the navigation task again
within the same experimental conditions on another day in
order to have more data samples, repeating the procedure be-
tween 2 and 4.

The whole procedure of the experiment is given in Fig. 6. The
participants were exposed to the VE each time between 3 and 5
minutes. After finishing the whole experiment, we obtained twice
four different data for each participant: a pre-exposure postural
sway signal and the corresponding SSQ ;. score, a post-exposure
postural sway signal and the corresponding SSQ .5 score. Although
the participant may become familiar with the environment and its
procedure in the second experiment, this would not affect the final
result from the participants as the idea was to find the variance of the
SSQ score and the corresponding postural sway signal. The LSTM
model was then created and implemented using a deep learning
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framework called Tensorflow?. Before the training and evaluation
stages, the signal data was pre-processed by centering and scaling
between —1.0 and 1.0. The pre-exposure signals were used to train
the model so that it can extract the features for the normal state
and save them into the LSTM cells. The training stage stopped
when the reconstruction error converged to a stable value. Then the
post-exposure signals were fed into the model, which led to a jump
of loss (strong variation of reconstruction loss) in the same way as
described in Sect. 3.3. This jump of loss was then considered to
originate from the presence of VR sickness.

5 PERFORMANCE AND VALIDATION OF THE PROPOSED
METHOD

To be sure that the sudden variation of reconstruction error between
the training stage and the evaluation stage was due to the onset of
VR sickness, we correlated it with the level of sickness provided
by the sickness scores from the simulator sickness questionnaires.
‘We computed for each experiment the difference between the pre-
exposure and the post-exposure scores and we will call it from now
on the SSQ score:

S8Q = 88O post —SSOpre (&)

and similarly, the variation of reconstruction error, that we will call
from now the loss L, was computed by finding the difference between
the average of the last five minimized pre-exposure reconstruction
losses and the average of the initial five post-exposure reconstruction
losses (we chose to take five values in each reconstruction loss to
get a representative loss considering the instabilities and oscillations
during the deep learning process):

1 5 Ny
L=- ZE— Z argmin ¥ 6)
SIE k=N.—5 W

where E and argmin,, .Z were defined in Equation 4 and Equation 3
respectively; N is the length of the trained reconstruction error.

Fig. 7 shows the reconstruction losses for one participant provided
by the normal state sway signal (pre-exposure, blue curve) and the
post-exposure sway signal (green curve). We split the normal state
signal into small pieces (one signal with length of 2048 to 32 signals
with length of 64) as a pre-processing step to train the model. We can
observe the changes of the reconstruction loss during the training
stage (80% of the signal pieces) and the evaluation stage; a validation
loss (20% of the signal pieces) was also plotted to make sure that
there is no overfitting with the dropout method. The procedure
starts from epoch 0 (an epoch corresponds to the period of an entire
processed dataset) with an initial reconstruction loss of around 0.576
that is due to the random initialization of the deep neural network.
The loss then decreases significantly as the epoch passes, then it
converges to a stable value. The training stage stops at epoch 1000
as the reconstruction error is stable enough. The model can be
deployed subsequently for the evaluation stage where the model is
fed with the signal obtained after the user was exposed to the VE.
As the model has never been trained to recognize a signal obtained
from post-exposure in the VE, the features are impossible to extract
and accordingly, the model is unable to reconstruct the signal with
high accuracy. Therefore, as expected, we observe a significant jump
of the error at around 0.564; this jump and the first values of the
post-exposure reconstruction error are the only parts that interest us,
as it shows that an abnormal signal is detected, i.e., an equivalent
description of VIMS occurs. In this example the loss L is equal to
0.385 while the measured SSQ score is equal to 7.48.

Since all the participants performed the experiment twice, we
collected a total of 22 groups of data to be correlated. Table 1 shows

Zhttps://www.tensorflow.org
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Figure 6: Experimental procedure conducted to obtain the datasets.

6 PREDICTION OF VIMS WITH A CLOSED-LOOP SYSTEM

— Training /\ In the previous section, we separated the experiment into “pre-

— Validation Only the exposure” and “post-exposure” with two distinct measurements as
. 051 — Eyaluation B weare we wanted to carry out a correlation test with the SSQ to validate the
g used reliability of the model. However, from the results, since we found a
S04 ) strong correlation between the loss and the SSQ score it is also pos-
2 Jump of reconstruction . . . .
] error (VR sickness) . sible to develop an online system with the proposed method without
ﬁ 031 interrupting the experiment. In Fig. 9 we show the architecture of a
g Only the last real-time implementation of the system. The system consists in two
@ five points were used Lo
« s \, steps but only the second step is implemented as a closed loop:
1. The user has to take the HMD on and get immersed in the VE.
0 200 400 600 800 1000 1200 1400 In order to collect normal physiological signals (no VR sick-
Epoch ness felt as at this stage there will no visual vection), she/he
just has to stay in place without navigating, avoiding any oc-
Figure 7: Demonstration of the proposed method to detect VR currence of cybersickness. In addition, the signa] can also
sickness from the signals of one participant. be collected without getting immersed in the VE, which also
makes sure that the user produces absolutely normal physiolog-
ical signals. In either case, the user should not feel VR sickness
Table 1: Correlation matrix during this stage so that the mo@gl_is able to characterize the
’ normal state. After the data acquisition, the LSTM model (also
named VIMS detector) can be trained to learn the features of
N the input signals.
& &\\0
. & & & 2. The pre-trained model is deployed in the navigation system.
& %Q, %Q% OQ\ . \%,0 . . . .
S5 S < o Q Sensors keep tracking the physiological signals of the user
) and sends the information to the VIMS detector which will
Loss 1.00 B calculate online the reconstruction loss. If the reconstruction
. . . loss is larger than a pre-defined threshold, then the system
S8Q 89100 - R : detects VR sickness successfully; the system can then alert the
Nausea 5 90 100 : user or adapt navigation parameters agcordiqg to the fietector.
This step is a closed-loop implementation which shall improve
Oculomotor 77 87 70 1.00 efficiency and user experience significantly.
Disorientation .84 .86 .68 .61 1.00
120 1 — Linear Regression o
the correlation matrix that was obtained by computing the Pearson ® Indivicual test
correlation coefficients between all the measured variables, and af- 100 1
ter decomposing the SSQ score into the three categories (nausea, 804

oculomotor, disorientation). We see that the Pearson correlation
coefficient is r = .89 between the SSQ score and the loss. The corre-
lation between the loss and nausea is .75, the correlation between
the loss and oculomotor is .77, and the correlation between the loss
and disorientation is .84. All these correlation values range from .6 201
to .9, which implies that our new method has enough accuracy to be
effective. Fig. 8 shows the correlation obtained between the SSQ
scores and the losses. We observe that the loss is scattered along a 036 038 040 042 044 046 048
regression line, which implies that, mirroring the correlation matrix Reconstruction loss

of Table 1, the loss can be an effective method to capture the level
of user’s VR sickness. However, we also observe that this method
becomes deficient when the SSQ score becomes too large, more than
120.

60 -

S$SQ score

40

Figure 8: Correlation between the SSQ score and the loss computed
from the model, regression line: y = 1062.94x — 399.24.
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Figure 9: Schematic process of the proposed closed-loop system for navigation in VEs including a VIMS detector: the first step is to collect
signals to train the model network and the second step allows to deploy the pre-trained detector in a real application.

7 CONCLUSION AND FUTURE WORK

We propose a new metric where we take into account dynamic
information of the postural sway signal and we extract its features
using a long short term memory (LSTM) encoder; then, the level of
VR sickness is measured according to the reconstruction error arising
from the LSTM network. This method includes two steps in terms
of implementation: firstly to train the network with signals from a
normal state of the VR user and then to deploy the pre-trained model
on a VR application. Since the model is only forced to learn the
features when the user does not feel any VR sickness, it is possible
for the system to detect and alert abnormal signals which is obtained
when the user is in another physiological state and feels VR sickness.
As we train independently the model for each user, the model is
customized. The reliability of the network prediction was validated
with the SSQ score and achieved high enough Pearson correlation
coefficients, which means that the proposed method has the potential
to be used in personalized VR navigation to detect cybersickness
with real-time performance.

In this paper we only proposed the general method but we did
not implement the whole system as depicted in Sect. 6. In the
future, we plan to verify this method with other signals such as EEG,
pupil dilation and saccades in time-series which are supposed to be
more convenient for real time implementation and applications. In
addition, it would be interesting to couple different physiological
signals to see whether the prediction accuracy can be improved.
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