
applied  
sciences

Article

Enhanced Convolutional-Neural-Network Architecture for
Crop Classification

Mónica Y. Moreno-Revelo 1,*, Lorena Guachi-Guachi 2,*, Juan Bernardo Gómez-Mendoza 3,*,
Javier Revelo-Fuelagán 4,* and Diego H. Peluffo-Ordóñez 1,5,6

����������
�������

Citation: Moreno-Revelo, M. Y.;

Guachi-Guachi, L.; Gómez-Mendoza, J.

B.; Revelo-Fuelagán, J.;

Peluffo-Ordóñez, D.H.

Enhanced Convolutional-Neural-

Network Architecture for Crop

Classification. Appl. Sci. 2021, 11,

4292. https://dx.doi.org/10.3390/

app11094292

Academic Editor: Federico Divina

Received: 15 March 2021

Accepted: 23 April 2021

Published: 10 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Engineering, Department of Electronics, Corporación Universitaria Autónoma de Nariño,
Pasto 520001, Colombia; peluffo.diego@um6p.ma

2 Department of Mechatronics, Universidad Internacional del Ecuador, Av. Simon Bolivar,
Quito 170411, Ecuador

3 Department of Electrical, Electronic and Computing Engineering, Universidad Nacional de Colombia,
Sede Manizales, Manizales 170001, Colombia

4 Department of Electronic Engineering, Universidad de Nariño, Pasto 520001, Colombia
5 Smart Data Analysis Systems Group (SDAS Research Group), Ben Guerir 47963, Morocco
6 Modeling, Simulation and Data Analysis (MSDA) Research Program, Mohammed VI Polytechnic University,

Ben Guerir 47963, Morocco
* Correspondence: monica.moreno@aunar.edu.co (M.Y.M.-R.); loguachigu@uide.edu.ec (L.G.-G.);

jbgomezm@unal.edu.co (J.B.G.-M.); javierrevelof@udenar.edu.co (J.R.-F.)

Abstract: Automatic crop identification and monitoring is a key element in enhancing food produc-
tion processes as well as diminishing the related environmental impact. Although several efficient
deep learning techniques have emerged in the field of multispectral imagery analysis, the crop classifi-
cation problem still needs more accurate solutions. This work introduces a competitive methodology
for crop classification from multispectral satellite imagery mainly using an enhanced 2D convolutional
neural network (2D-CNN) designed at a smaller-scale architecture, as well as a novel post-processing
step. The proposed methodology contains four steps: image stacking, patch extraction, classification
model design (based on a 2D-CNN architecture), and post-processing. First, the images are stacked
to increase the number of features. Second, the input images are split into patches and fed into
the 2D-CNN model. Then, the 2D-CNN model is constructed within a small-scale framework, and
properly trained to recognize 10 different types of crops. Finally, a post-processing step is performed
in order to reduce the classification error caused by lower-spatial-resolution images. Experiments
were carried over the so-named Campo Verde database, which consists of a set of satellite images
captured by Landsat and Sentinel satellites from the municipality of Campo Verde, Brazil. In contrast
to the maximum accuracy values reached by remarkable works reported in the literature (amounting
to an overall accuracy of about 81%, a f1 score of 75.89%, and average accuracy of 73.35% ), the
proposed methodology achieves a competitive overall accuracy of 81.20%, a f1 score of 75.89%, and
an average accuracy of 88.72% when classifying 10 different crops, while ensuring an adequate
trade-off between the number of multiply-accumulate operations (MACs) and accuracy. Furthermore,
given its ability to effectively classify patches from two image sequences, this methodology may
result appealing for other real-world applications, such as the classification of urban materials.

Keywords: convolutional neural network (CNN); crop classification; post-processing; satellite images

1. Introduction

Agriculture is one of the main economic activities in the world. Today, considering
the continuous human growth population and the limited food availability, agricultural
activities need to be monitored on regular basis, in such a manner that the increase in
efficiency in food production is enabled, while protecting the natural ecosystems [1–4].
In this context, crop classification can be used to provide information about production and
thus becomes a useful tool for developing sustainable plans and reducing environmental
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issues associated with agriculture [5–7]. As a result, timely collection and the analysis of
data from large crop areas is of great interest. Traditionally, such analysis is carried out by
using computational tools and satellite imagery processing with artificial intelligence (AI)
techniques [8–11].

Throughout the years, several AI techniques have been explored to tackle the problems
related with crop classification [12,13]. In such vein, machine learning (ML) benchmark al-
gorithms have been successfully used from both unsupervised [14,15] and supervised [16]
inferences. Nonetheless, conventional ML techniques may not be recommendable (and
may even be prohibitive) when a manual feature extraction stage is unfeasible. In addition,
ML approaches may require exhaustive parameter tuning to reach a high accuracy. In
this connection, by overcoming these drawbacks, deep learning (DL) has recently taken
place as one of the most appealing approaches. Broadly, DL approaches can be divided
into artificial neural networks (ANNs), recurrent neural network (RNNs) and convolu-
tional neural networks (CNNs) [17]. Particularly, for image classification problems, CNNs
and RNNs are preferred over conventional ANNs as they extract sequential information.
RNNs have proven to be effective at extracting temporal correlations and classifying data
as a whole while maintaining a manageable computational complexity. In this regard,
some works [18,19] have proposed novel network architectures based on RNNs com-
bined with CNNs for automated feature extraction from multiple satellite images through
learning time correlation.

CNNs are of special interest as their main advantage over other techniques—besides
automatically extracting features through convolutional layers—is their ability to capture
spatial features (i.e., the pixel arrangement and relationships thereof) [20,21] as well as its
versatility [22,23]. Recent works based on hybrid methods combining 2D- and 3D-CNN [24]
have proven that 3D-CNNs enable the joint spatial–spectral feature representation from
stacked spatial bands. Such methods have been shown to be less computationally expensive
than those solely based on 3D-CNN architectures [25–27]. In addition, some exploratory
studies exhibit that 3D-CNNs may underperform 2D-CNNs when classes have similar
textures across multiple spectral bands [28], and therefore 2D-CNN-based approaches are
preferred by the vast majority of recent research works on crop classification. Following
from these insights and given that this work is not intended to include spatial–temporal
information, 2D-CNNs are the architectures of choice for this study.

Nonetheless, despite being appealing for image analysis in agriculture settings, tech-
niques based on 2D-CNNs may involve complex architectures with a great amount of layers
and parameters entailing a high computational cost and training time [25,29]. Therefore,
there is still a need for creating more accurate crop classification systems which involve a
lower computational burden.

Aimed at establishing a way forward to provide solutions in this regard, this work
introduces a competitive methodology for crop classification from multispectral satellite
imagery by taking advantage of using an enhanced 2D-CNN together with a novel post-
processing step. Inspired by the main workflow of various RNN/2D-CNN-based methods
for patch classification [20,30–34], the proposed methodology mainly contains four steps:
image stacking, patch extraction, 2D-CNN based modelling for classification purposes and
post-processing, as depicted in Figure 1.

Figure 1. The proposed methodology’s high-level scheme: the benefit of using an enhanced 2D-CNN
as a classification model alongside with a post-processing stage for map refinement is highlighted.
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In broad terms, the proposed methodology works as follows: (1) the images are
stacked to increase the number of features; (2) the input images are split into patches and
fed into the 2D-CNN; (3) the 2D-CNN architecture is designed following a smaller-scale
approach, and trained to recognize 10 different types of crops (soybean, corn, cotton,
sorghum, non-commercial crops (NCC), pasture, eucalyptus, grass, soil, and Cerrado);
and (4) reduce the classification error caused by lower-spatial-resolution images, and a
here-introduced post-processing step is performed.

Images used in this work are from the Campo Verde database, introduced in [30],
which corresponds to a Landsat 8 imagery of a tropical region (Municipality of Campo
Verde) from Brazil. Its analysis represents a challenging problem as it holds a wide range of
crops, and related research works have mostly been devoted to studying non-tropical areas.

As for the design and implementation of the enhanced 2D-CNN, the following ar-
chitecture is proposed: firstly, the 2D-CNN is trained independently for each one of the
sequences by extracting patches of 32× 32× n pixels in size, where n is the number of
bands in the sequence. Secondly, the training patches are passed through three layers of
convolution, yielding the feature maps. Thirdly, a pooling layer reduces the feature map
size. Finally, the classification task itself is carried out by a fully-connected layer and the
output layer.

As for the post-processing stage, it can be said that it consists in refining the anno-
tations obtained by the 2D-CNN by eliminating discontinuities and misclassified pixels
through morphological operators. This post-processing becomes crucial as it makes the the
methodology more robust to lower-spatial-resolution images and therefore improves the
classification rate.

The experimental framework used in this research is designed by following those
developed in similar works [30,31]. Two sequences of the Campo Verde database are
considered: 1. from October 2015 to February 2016; and 2. from March to July 2016. The
proposed methodology achieves a f1 score of 75.89%, which is higher than the previous
results reported in the literature [20,30–34]. Indeed, a competitive rise of the classification
rate in contrast to benchmark-and-recent works conducting experiments on the same
dataset was accomplished. This performance is attributed to the exhaustive search of
parameters across all the stages of the proposed methodology (namely, the selection of
patches size, and setting of the number of filters for the CNN). For comparison purposes, the
ability of an RNN architecture alone to classify patches as a whole while maintaining low
computational complexity is also explored. Additionally, a biological technique (iterative
label refinement) is also evaluated to make comparisons with the proposed post-processing.

This paper is structured as follows: Section 2 presents a brief review of state-of-the-art
related works. The database and the methods of the proposed methodology’s building
blocks are described in Section 3. Section 4 describes the experiments carried out over the
Campo Verde database. Section 5 presents the results and discussion across the experiments.
Some additional results of evaluating the proposed methodology over urban-materials-
related images (Pavia scenes) are presented in Section 6. Finally, Section 7 gathers the
concluding remarks.

2. Related Works

Satellite and aerial images have been classified with several techniques, including ML
and DL methods for different purposes. A recent survey about different techniques used in
remote sensing [17] reports that DL architectures is one of the most used techniques for
farming applications. Therefore, remarkable studies on crop classification from images
have been devoted to this kind of technique. The authors in [35] carried out a study on
remotely sensed time series in California in order to classify 13 summer crop categories.
The authors compared traditional methods such as random forest and support vector
machine (SVM) with two DL architectures: a long short-term memory (LSTM) and a 1D-
CNN, demonstrating that the 1D-CNN architecture reaches the best results (an accuracy
around 85.54%) among all DL and non-deep learning models. Similarly, Ref. [36] is devoted
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to classify 14 types of crops in Sentinel images along 254 hectares of land in Denmark.
It used a DL architecture inspired by the results from the combination of two networks, a
fully connected network (FCN) and an RNN. The latter architecture was also used by [37]
for classifying crops in Sentinel images of France; the classified crops are rice, sunflower,
lawn, irrigated grassland, durum wheat, alfalfa, tomato, melon, clover, swamps, and
vineyard. The proposed approach is compared against traditional methods such as the
k-nearest neighbor (k-NN) and SVM, exhibiting better results when using the DL approach.

The work carried out in [38] classifies 22 different crops of aerial images using a CNN
with local histograms. The method extracts information related with texture patterns and
color distribution to achieve scores of 90%. The study in [18] combines a CNN and an RNN
in a pixel-based approach to classify 15 types of crops on multi-temporal Sentinel-2 imagery
of Italy. The DL method was compared with ML methods including SVM and RF. The best
accuracy values were reached by the R-CNN approach with a value of 96.5%. A novel
classification technique is proposed in [19], which applies transfer learning (TL) to solve
the problem related to imbalanced databases. It was tested on a crop database with the
aim of recognizing pests. Furthermore, this research compares various CNN architectures
and achieves an accuracy over 95%. Another work [39] uses an RNN-based approach to
classify SAR data from China.

More specialized studies have explored the benefit of using 3D-CNNs in spatio-
temporal remote sensing images. For instance, in [25], a new paradigm for crop identifi-
cation area by using 3D-CNNs is introduced to incorporate the dynamics of crop growth.
Likewise, the research presented in [26] used a 3D-CNN to classify four scenes where
urban areas as well as crops (including lettuce and corn) could be found. The proposed
3D-CNN together with a principal component analysis (PCA) stage (applied to extract
the most important information from the images) achieves an overall accuracy above 95%.
Another 3D-CNN model for cloud classification was explored in [27], which was tested
over two databases (GF-1 WFV validation data and ZY-3 validation data). Such a model
reaches an accuracy of 97.27%. The work developed in [40] classifies a tree database of
Finland. There are 4142 trees clustered into three classes (pine, spruce and birch). The clas-
sification stage was carried out with four convolutional layers and three max pooling
layers, accomplishing an accuracy of approximately 94%. A very recent work in the field
of hyperspectral image analysis using 3D-CNN [41], similarly to [40], mainly aimed to
classifying trees from a Finnish database. It compared both DL and ML methods, and
experimentally demonstrated that 3D-CNN yields the best results (above 91% of accuracy).
A 3D-CNN is also successfully used to classify soybean and grass from the MODIS data of
USA [42]. The preliminary results of a 3D-CNN classification model of cotton and corn
crops from the Sentinel data of Turkey are outlined in [43].

A worth-reviewing paper overviewing of applications and advances of DL in agri-
culture in detail and information on key aspects (such as databases, and typical crop
classification problems, among others) is presented in [5]. Another work of great interest is
that reported in [44], which outlines CNNs and their applications in different fields.

Regarding the use of the Campo Verde database for crop classification purposes,
the following works are worth making note of. The Campo Verde database was introduced
in [30], with the intention to outline the problems related to the farming field for educational
purposes. It is documented and manually annotated. [30] also depicted an experiment with
a random forest classifier. The study in [31] evaluates a CNN and a FCN obtaining greater
efficiency when using the latter architecture. For experiments, two sequences consisting
of an image stacking were evaluated: the first sequence corresponding to the period from
October 2015 to February 2016, and the second sequence from March to July 2016. As a
conclusion, the FCN is proven to be a better solution outperforming the baseline in terms
of processing time in the inference phase. Another similar technique was proposed in [20],
which uses CNN- and RNN-based architectures. This study reported higher results for the
RNN since the CNN is fed with the co-occurrence matrix features rather than extracting
their own features. A classification approach of tropical crops is presented in [32], which
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followed a method that compares auto-encoders, CNNs, and FCNs networks in terms
of segmentation performance over Sentinel images of Campo Verde. As a result, it was
observed that the accuracy was better when using DL techniques (specifically, CNN), rather
than the other considered methods—indeed, the CNN-based approach showed a more
stable behavior. The research presented in [33,34] apply DL techniques to classify not only
Campo Verde but also Luis Eduardo database [45] (another agriculture database from
Brazil). Both works use approaches based on an FCN and similar parameters including
a 32× 32 patch size and assess the methodology over individual images and sequences
composed by several images. It is worth mentioning that [34] adds an LSTM structure to
the methodology, which allows learning from multi-temporal data. The incorporation of
such LSTM yielded a remarkable increase in the overall performance, highlighting then the
importance of the temporal information for crop recognition.

At this extent, it is worth noticing that most of the previously mentioned works were
traditionally tested only on Sentinel images of Campo Verde (not the Landsat images)
for crop classification tasks since Landsat images are covered by clouds. Furthermore,
studies have accomplished a f1 score not over 75%. Likewise, in [46], it is highlighted that
the classification of heterogeneous crops is still a challenging open issue as there exists a
diverse and complex range of spectral profiles of crops, as it is the case of Campo Verde.

3. Materials and Methods
3.1. Database

This work uses the public Campo Verde database [30], which is a satellite imagery of
crops from the municipality of Campo Verde, Brazil. It is of great interest as it is a tropical
area. Figure 2 shows the class (types of crop) occurrences per image in the dataset. Notice
that the crop of beans are not included as the image sequences used in this work contain
no pixels of this crop.

Figure 2. Distribution of the selected classes (soybean, corn, cotton, sorghum, non-commercial crops (NCCs), pasture,
eucalyptus, grass, soil, and Cerrado) per image sequence from Campo Verde database.

Campo verde consists of a set of 14 Sentinel-1 images, a set of 16 Landsat 8 OLI images,
and an ESRI Shapefile containing the daily class annotations in each and every area of the
images. For further experiments, images corresponding to the time between October 2015
and July 2016 (16 Landsat images) are considered.

To ensure that the obtained results become comparable with those of [30,31], im-
ages covered by clouds in the Landsat are excluded (two images from January, one from
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May, one from June, and one from July). As a matter of fact, the experiments in [30,31] are
carried out over Sentinel images on the same date and having no affectation by cloud cover.

Specifically, the number of classes for sequences 1 and 2 was set as 9 and 10, respec-
tively. Selected classes (namely: soybean, corn, cotton, sorghum, non-commercial crops
(NCC), pasture, eucalyptus, grass, soil, and Cerrado) correspond to the annotations of the
last image from each sequence.

The bean class is contained in other months including October but not in the months
analyzed in the sequences (February and July). Moreover, the classes of crops become
represented in an imbalanced way as samples from some crops greatly outnumber the ones
from other crops.

3.2. Proposed Methodology

The proposed methodology aims at improving the accuracy obtained by outstanding
state-of-the-art methods for crop classification tasks. The methodology is composed by
four main phases as shown in Figure 3, where n is the number of bands of the image
and P is the patch size. Firstly, the satellite images are stacked to increase the number of
features. Second, the stacked images are divided into small patches to analyze local-feature
details. Third, the patch classification process is performed by a DL model. Finally, a
post-processing phase is added to mitigate the misclassified pixels introduced due to the
low spatial resolution of the images.

Figure 3. Work-flow of the proposed methodology for crop classification from satellite images. This mainly involves stages for image
stacking, patch extraction, classification model, and post-processing.
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3.2.1. Image Stacking

In this stage, two images are piled to augment the number of features analyzed for
each pixel and thus improve the overall performance for crop classification. This procedure
is reported in [30]. More concisely, for the proposed methodology, the images are stacked in
only two sequences as follows: the first one was formed by the images from October 2015
to February 2016 (a total of five images), and the second one was formed by the images
from March to July 2016 (a total of six images). Each Landsat image has seven bands,
consequently, sequences 1 and 2 yield images with 35 and 42 bands, respectively.

3.2.2. Patch Extraction

This stage generates a set of valid patches for the 2D-CNN and RNN of size 32× 32× n
and 8× 8× n, respectively, centered on each pixel to classify the central pixel based on
neighborhood frequency information, where n is the number of bands of each sequence.
In order to obtain a suitable trade-off among computational cost, context capturing, and
localization accuracy, a small sample size is used. At this stage, each patch is examined,
and the frequency of pixels with similar class values to the pixel of interest (central pixel) is
determined. When the frequency is greater than 512 pixels, the patch is selected as a valid
patch, otherwise the patch is discarded. Then, for each class, 1K valid patches are randomly
selected. The outcome of this stage is a training set of 10K for sequences 1 and 9K for
sequence 2. Since corn, sorghum, bean, and soil are scarce in February and July, the number
of patches is less than 1K. Therefore, to handle this issue, synthetic fields for these crops
are developed using geometric transformations such as horizontal (Tx) and vertical (Ty)
translations with 1 cm displacements on the available data. Such geometric transformations
are benchmarking data augmentation methods that have effectively augmented the original
data in some DL applications [47].

The geometric transformations applied are given by Equation (1):x′

y′

1

 =

1 0 Tx
0 1 Ty
0 0 1

x
y
1

, (1)

where x′ and y′ are the transformed coordinates and x and y are the initial coordinates
of the pixels; Tx and Ty are the values of the horizontal and vertical translations. Table 1
summarizes the amount of synthetic patches generated for each class used in this work.

Table 1. Amount of synthetic patches created per selected classes (soybean, corn, cotton, sorghum, non-commercial crops
(NCC), pasture, eucalyptus, grass, soil, and Cerrado) by using horizontal and vertical translations.

Crop Soybean Corn Cotton Sorghum NCC Pasture Eucalyptus Grass Soil Cerrado

Sequence 1 0 576 0 800 832 0 0 900 0 0
Sequence 2 - 0 0 0 0 0 0 900 0 0

3.2.3. Classification Model

Both the accuracy and the increase in the number of parameters to be learned are
influenced by the architecture depth. Moreover, the number of parameters has a direct
relationship with the computational cost. Therefore, the deeper the architecture is, a larger
number of varied samples to build robust models and prevent over-fitting is needed. To
tackle this issue, this work proposes enhanced DL architectures for crop classification based
on patch analysis. The studied DL architectures are described in Table 2. Considered
architectures are intended to achieve high accuracy at low-depth while being able to
deeply and meaningfully learn features from stacked multi-spectral images. Particularly,
the DL architectures considered in this work are 2D-CNN type. Additionally, an RNN
architecture was also evaluated. They were compared to select the most suitable DL model
for crop classification.
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Table 2. DL architectures settings.

2D-CNN 1 2D-CNN 2 RNN

Architecture Architecture Architecture
Input: n patches size 32× 32 Input: n patches size 32× 32 Input: n patches size 8 × 8
Conv1: 32 filters size 2× 2 Conv1: 60 filters size 5× 5 Memory layer: 32 neurons
Conv2: 64 filters size 2× 2 MaxPooling: size 2× 2 Hidden layer 1: 64 neurons
Conv3: 128 filters size 2 × 2 Conv2: 70 filters size 3 × 3 Hidden layer 2: 100 neurons
MaxPooling: size 8× 8 MaxPooling: size 2× 2 Output layer: m classes
Hidden layer: 100 neurons Conv3: 80 filters size 1× 1
Output layer: m classes Hidden layer: 100 neurons

Output layer: m classes

Loss function Loss function Loss function
Cross entropy Cross entropy Cross entropy

Activation Activation Activation
Softmax in the output layer Softmax in the output layer Softmax in the output layer
Relu in the other layers Relu in the other layers Relu in the other layers

Weight initialization Weight initialization Weight initialization
Randomly Randomly Randomly

Drop out layer Drop out layer Drop out layer
Dropout 25% after pooling Dropout 50% after hidden layer Dropout 50% after first hidden layer
Dropout 50% after hidden layer

2D-CNN Model

A 2D-CNN is an architecture composed of a sequence of convolutional and pooling
layers mostly used to learn features from images [48,49]. This kind of architecture often
ends with fully-connected layers to predict a single class label or a set of class probabili-
ties [50–52]. Convolutional layers apply filters over all pixels of the input image to obtain a
set of high-level abstract features; pooling layers reduce the features number—controlling
the over-fitting; and fully-connected layers reshape the output into a vector with a size
equal to the number of classes [53].

For classification purposes, a 2D-CNN commonly applies two activation functions:
softmax for the output layer and rectified linear unit (ReLu) for the rest of the layers.
Softmax aims at scaling the outputs between zero and one, providing a probability of
belonging of coverage to a specific class. ReLu is a linear function that will output the input
directly if it is positive. Otherwise, it will output zero [54,55].

Furthermore, 2D-CNN 1 is composed of three successive convolutional layers fol-
lowed by a max-pooling layer. For this sequence, the filter size ( f s) was chosen among
f s = [2× 2, 4× 4, 8× 8] being the first value that allowed to achieve the highest perfor-
mance. Figure 4 depicts a graphical explanation of the architecture 2D-CNN 1.
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Figure 4. A schematic view of the proposed 2D-CNN 1.

On the other hand, the 2D-CNN 2 is composed of three convolutional layers, each of
which is followed by a max-pooling of 2× 2. In this architecture, a 1× 1 convolutional
layer is applied in order to extract more features of the images without losing information.
Then, dropout layers are applied to deactivate a percentage of the neurons and prevent
overfitting. Figure 5 shows an explaining diagram of the architecture 2D-CNN 2.

Figure 5. A schematic view of the proposed 2D-CNN 2.
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RNN Model

An RNN model for image classification analyzes the image as a single sequence of
pixel vectors. RNN has neurons in its architecture known as memory cells, which create a
notion of temporality [36]. Contrary to the 2D-CNN, before feeding the network, the multi-
spectral images are reshaped as spectral signatures since there are only hidden layers in
the RNN. For this work, its architecture is composed of one memory layer of 32 neurons
followed by two hidden layers (one with 64, and another one with 100 neurons).

3.2.4. Map Classification

After training DL models, the resulting models are used to classify each pixel from
satellite imagery, where the perceptual field (fov) for each image is assumed as a sliding
window of the input size expected by each DL model (see Figure 6). This process ended
when all pixels are classified.

Figure 6. Example of crop identification based on patch classification.

3.2.5. Post-Processing

Since images from satellites have low spatial resolution, the proposed methodology
explores two post-processing techniques to overcome problems of apertures and disconti-
nuities in crops with similar features.

Post-Processing Based on Morphological Operations (PMO)

This technique analyzes the map classified by a sliding window of 3 × 3. If the
prominent class has more than six pixels in the window and it is different from the central
pixel’s class, the central pixel adopts the label of the most predominant class; otherwise,
the label value of the central pixel is retained. This technique allows to improve the overall
results by reducing small misclassified zones. An example of this technique for the first
three iterations is depicted in Figure 7; nevertheless, it is repeated until the entire image
is analyzed.

Post-Processing Based on Iterative Label Refinement (PILR)

This technique is a biologically inspired method. It uses a set of color classifiers that
convert visual color information from the scene into segmentation labels [56]. This tech-
nique is used to remove jagged edges, small holes, and unconnected regions that are
common in map classification. The scheme of this technique is illustrated in Figure 8.
It performs the linear operation given by Equation (2) with a Gaussian filter of 3 × 3
window size, as follows:

Pr+1 = w(αP0 + (1− α)(Pr ∗ Gϑ)), (2)

where P0 is the label map with a size of R× C×O, with R as the number of image rows,
and C as the number of image columns. Pr+1 y Pr are the label maps in iterations r + 1 and
r. Gϑ is a Gaussian window. α establishes the influence of the initial classification map and
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w is a non-linear operator which determines the new label or refined label. Each pixel of
the label map is represented by a column vector whose values are different for each class.

Figure 7. Example of the post-processing technique based on consecutive morphological operations.

Figure 8. Scheme of the post-processing technique based on iterative label refinement.

4. Experimental Setup

Since optimal parameter values differ depending on the training samples, in order to
carry out a comparative evaluation, the proposed methodology and the evolved methods
have been tailored with parameters capable of achieving the highest accuracy to classify
accurately crops from satellite images. Python 3.5 (including Python libraries scikit-image,
and Tensorflow with Keras) software routines have been implemented to test the proposed
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methodology [57,58]. Experiments are done by running the software on an Intel Core i7
processor with 16GB of RAM memory.

4.1. Training, Validation and Testing

For learning the DL architecture weights, this work uses the stochastic gradient descent
algorithm, Adadelta optimizer with a batch size size of 20, and an entropy cost function[59].
The patches dataset was divided into two sets with a percentage ratio of 90% and 10%
for training and validation, respectively (in a cross-validation scheme, using 10 randomly
selected partitions). Table 3 provides basic information about the optimal parameter values
of all evaluated DL models, including the parameter’s name with corresponding meaning
and their experimentally selected values. CNN model parameters are in line with values
reported in [30].

Table 3. Parameter values for all experiments.

Parameter Sequence 1 Sequence 2 Description

Patch size 32× 32× 35 32× 32× 42 Input shape for feeding 2D-CNN architectures
Patch size 8× 8× 35 8× 8× 42 Input shape for feeding RNN architecture
Training samples 9 K 8.1 K Number of patches to train the DL architectures
Validation samples 1 K 900 Number of patches to evaluate the DL architectures
Testing samples 6.69 K 6.70 K Number of patches to test the DL architectures
Learning rate 32 20 Control how much to change the model
Optimizer Adadelta Adadelta Fit weights
Cost function Entropy Entropy Estimates the error
Metric Accuracy Accuracy Evaluates the models
Activation function 1 Relu Relu Establish the output in hidden layers
Activation function 2 Softmax Softmax Establish the o
Batch size 20 32 Number of samples per training iteration
Epoch 30 30 Number of passes over the whole dataset
Iterations 450 330 Maximum number of iterations

It should be noted that the overall performance of the proposed methodology is
evaluated on 1.3M samples to obtain fair comparison results with the works reported
in [30,31].

4.2. Performance Measurements

The overall accuracy (OA), average accuracy (AA) and f1 score ( f1) given by Equations (3) and (4)
are the most widely used metrics for evaluating the ability of classifying images into corre-
sponding class.

OA quantifies the ratio of correctly classified samples. AA is the average of each
accuracy per class, and f1 quantifies the harmonic mean between precision and recall. f1 is
often used when the false negatives and false positives are crucial.

Precision computes the number of positive predictions divided by the total number of
positive class values predicted, whereas recall determines the number of positive predic-
tions divided by the number of positive class values in the test dataset. Following are their
corresponding formulas:

OA =
TN + TP

TP + TN + FP + FN
, (3)

f1 =
2× precision× recall

precision + recall
, with (4)

recall =
TP

TP + FN
, and (5)

precision =
TP

TP + FP
, (6)
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where TP is the number of patches that are predicted as positive by the model that are
actually positive, FP is the number of patches that are labeled as positive by the model
but are actually negative. The number of patches predicted as negative by the model but
actually are positive is FN, while the number of patches marked as negative by the model
but actually negative is TN, as shown in confusion matrix (see Figure 9).

Figure 9. General explanation of confusion matrix.

The computational complexities of all the compared DL architectures are evaluated in
terms of the number of multiply–accumulate operations (MACs) required in their main
classification step. In a fully connected layer, all the inputs are connected to all the outputs.
Thus, for a layer with I input values and J output values, its weights W can be stored and
computed in the matrix given by Equation (7):

MAC fcl = I × J. (7)

Since the convolutional layers are three-dimensional feature maps of size H ×W × C
where H is the height of the feature map, W the width, and C the number of channels at
each location, for a convolutional layer with kernel size K, the number of MACs is given
by Equation (8):

MACcl = K× K× Cin × Hout ×Wout × Cout. (8)

5. Results and Discussion

This section reports three sets of experiments derived from the scheme shown in
Figure 3, which examine the impact of the introduced DL architectures and the post-
processing phase on the overall performance of the proposed methodology to accurately
classify pixels from satellite images in a sliding window fashion.

5.1. Comparison between Results of DL Architectures

The proposed 2D-CNNs and RNN architectures are compared to determine their
ability to correctly classify image patches. Table 4 reports OA, AA, and f1 achieved by
each architecture.

It can be observed that 2D-CNN 1, characterized by three consecutive convolutional
layers, leads to higher OA evaluated architectures. However, it is worth noting that the
achieved score for sequences 1 and 2 is only 2.54% and 0.38%, higher than that reached
by 2D-CNN 2, respectively. This is explained since it down-sample features once before
applying fully connected layers resulting in a model with the presence of a greater quantity
of features that allow to classify crops correctly.

These results also indicate that convolutional layers followed by a pooling layer in
2D-CNN 2 might down-sample useful features for purposes of this work. Furthermore,
the remarkable accuracy, higher than 12%, achieved by 2D-CNN 1, and 2 over RNN
architecture was also observed. The average AA achieved by the CNN in sequence 1, for
example, is strongly higher than the value achieved for the RNN.

Also it is demonstrated that the features obtained by the convolutions applied over
the images allow to obtain higher accuracy than the spectral signature features used by the
RNN. Since 2D-CNN 1 will ensure a significantly high OA, AA, and f1, it has been chosen
as the best trade-off for the proposed methodology and used in the map classification phase.
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Table 4. The overall performance of the proposed DL architectures for patch classification tasks in terms of OA, AA, and f1

metrics. The best measurements achieved by each architecture are highlighted and it is observed that the 2D-CNN 1 leads
to higher OA values in both image sequences.

Sequence Class # of Pixels
2D-CNN 1 2D-CNN 2 RNN

f1(%) AA(%) OA(%) f1(%) AA(%) OA(%) f1(%) AA(%) OA(%)

Sequence 1

Soybean 242 K 79.76 76.95

84.26

80.03 82.72

81.72

70.67 66.37

66.39

Corn 891 77.91 87.65 72.22 82.71 18.61 95.17
Cotton 12 K 78.22 96.13 81.65 94.37 34.52 90.69
Sorghum 242 59.99 100 57.96 100 24.31 85.95
NCC 892 61.11 99.77 66.12 98.99 18.68 66.92
Pasture 46 K 84.98 89.85 77.18 84.26 56.56 86.87
Eucalyptus 17 K 92.85 92.95 93.31 90.88 80.63 72.31
Soil 340 K 87.28 87.3 84.01 79.06 71.88 62.55
Grass 112 29.71 100 34.78 100 63.15 80.35
Cerrado 17K 84.43 91.49 72.18 93.30 55.73 81.94

Average - - 73.63 92.21 84.26 71.94 90.63 81.72 49.48 78.91 66.39

Sequence 2

Corn 84 K 61.96 80.22

77.32

59.83 69.89

76.94

47.81 70.33

64.11

Cotton 257 K 87.43 94.96 83.99 81.61 80.01 71.48
Sorghum 6.3 K 76.56 79.83 62.91 75.87 45.03 94.98
NCC 18 K 78.63 87.63 73.34 91.24 63.86 88.15
Pasture 58 K 89.15 89.79 82.45 84.73 65.01 82.46
Eucalyptus 17 K 90.49 97.77 83.34 97.70 85.78 90.39
Soil 220 K 65.54 50.01 72.94 67.13 52.93 40.94
Grass 112 65.68 100 58.18 100 40.01 85.71
Cerrado 17 K 85.26 90.46 85.93 87.38 66.53 94.08

Average - - 77.86 85.63 77.32 73.66 83.95 76.94 60.78 79.84 64.11

5.2. Comparison between the Results of Post-Processing Techniques

To explore the advantage of adding the post-processing phase, this work evaluates two
post-processing techniques named: post-processing based on morphological operations
(PMO) and post-processing based on iterative label refinement (PILR). By taking average
of all f1, AA, and OA metrics in Table 5.

It can be seen that PMO reaches the highest accuracy scores, and just 0.04%, 0.02%, and
0.05% higher than f1, AA, and OA, respectively achieved by the proposed methodology
before post-processing (proposed methodology - BP) for sequence 1. However, for sequence
2, PMO is just 0.25%, −0.3%, and 0.66% higher than f1, AA, and OA, respectively.

On one hand, obtained results demonstrate that the PMO technique slightly improves
the overall results achieved by PILR technique. This behavior may be attributed to the
distribution of data in the database since the PILR technique removes some minority classes
and misclassified them with the class containing the majority samples.

On the other hand, the filter size used in PMO is suitable for the images analyzed be-
cause it is small, and consequently, significant information is not removed by the technique.

Thus, although PILR has been demonstrated to be stronger in other works [56], the
PMO technique is established in the proposed methodology as a suitable post-processing
technique for crop classification. Results for the proposed methodology-BP are also re-
ported in Table 5.
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Table 5. The overall performance reached by the proposed methodology with post-processing techniques. The most
significant differences between the values of the techniques are highlighted. PMO: post-processing technique based on
morphological operations. PILR: post-processing based on iterative label refinement; BP: before post-processing.

Sequence Class # of Pixels
PMO PILR BP

f1(%) AA(%) OA(%) f1(%) AA(%) OA(%) f1(%) AA(%) OA(%)

Sequence 1

Soybean 242 K 79.81 76.96

84.31

40.47 37.71

40.94

79.76 76.95

84.26

Corn 891 77.91 87.65 24.63 20.76 77.91 87.65
Cotton 12 K 78.49 96.13 28.97 40.63 78.22 96.13
Sorghum 242 59.97 100 8.46 17.35 59.99 100
NCC 892 61.12 99.77 5.26 15.69 61.11 99.77
Pasture 46 K 85.04 89.85 28.27 46.34 84.98 89.85
Eucalyptus 17 K 92.85 92.95 48.57 52.49 92.85 92.95
Soil 340 K 87.34 87.47 49.69 42.51 87.28 87.37
Grass 112 29.71 100 4.84 99.11 29.71 100
Cerrado 17 K 84.43 91.49 12.88 31.63 84.43 91.49

Average - - 73.67 92.23 84.31 25.2 40.42 40.94 73.63 92.21 84.26

Sequence 2

Corn 84 K 62.33 78.55

77.98

29.88 43.94

40.63

61.96 80.22

77.32

Cotton 257 K 87.28 95.94 55.19 47.86 87.43 94.96
Sorghum 6.3 K 78.17 79.83 1.88 1.79 76.56 79.83
NCC 18 K 76.96 83.62 27.45 42.24 78.63 87.63
Pasture 58 K 90.01 90.51 36.17 35.49 89.15 89.79
Eucalyptus 17 K 90.67 97.67 32.79 63.79 90.49 97.77
Soil 220 K 65.99 50.47 39.07 32.36 65.54 50.01
Grass 112 66.46 100 13.56 99.11 65.68 100
Cerrado 17 K 84.99 90.35 21.17 30.31 85.26 90.46

Average - - 78.11 85.21 77.98 28.57 44.09 40.63 77.86 85.63 77.32

5.3. Comparison with the State-of-the-Art

Table 6 collects the metric values achieved by all evaluated approaches. The DL
approaches described in [20,31–34] and random forest classifiers [30] are selected for
purposes of comparison. They have been chosen not only because they are among the most
efficient ML approaches in literature, but also because of their similarity to the proposed
work, as they perform their crop classification on Campo Verde database.

In addition, for the selected approaches, some parameters, such as the patch size,
depth, and filter size must be carefully set to guarantee the best accuracy to be achieved for
a given application.

Table 6. Overall accuracy from Campo Verde database and comparison with the state-of-the-art.The highest values achieved
for each measurement are highlighted.

Methodology Image Sequence 1 Image Sequence 2

f1(%) AA(%) OA(%) f1(%) AA(%) OA(%)
Proposed methodology 73.67 92.23 84.31 78.11 85.21 77.98
Proposed methodology - BP 73.63 92.21 84.26 77.86 85.63 77.32
FCNN by [34] ≈70 - ≈87 ≈ 70 - ≈75
FCNN by [33] ≈60 - ≈85 ≈ 60 - ≈ 75
FCNN by [32] ≈60 - ≈78 ≈68 - ≈72
RNN-CNN by [20] - 64.20 77.24 - 64.46 68.06
Dense-FCNN by [31] - 79.1 81.7 - 67.6 74.9
Random Forest [30] ≈42 - ≈65 ≈52 - ≈62

Table 7 collects computational complexities data where the number of MAC operations
is computed for compared DL models where the architecture details are provided.
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Table 7. Computational complexity of the compared DL models.

Architecture Sequences

Sequence 1 Sequence 2

2D-CNN 1

Convolutional layers Convolutional layers
Conv1: 4.5 M Conv1: 5.5 M
Conv2: 8.1 M Conv2: 9.6 M
Conv3: 14.1 M Conv3: 16.8 M

Fully connected layers Fully connected layers
Hidden layer 1: 3.5 M Hidden layer 1: 4.2 M
Output layer: 3.5 K Output layer: 4.2 K

Total Total
30.2 M 36.2 M

Prediction time Prediction time
6 h 5 h

RNN

Memory layer Convolutional layers
Layer1: 1.1 M Layer1: 1.3 M

Fully connected layers Fully connected layers
Hidden layer 1: 2.1 K Hidden layer 1: 2.1 K
Hidden layer 2: 6.4 K Hidden layer 1: 6.4 K
Output layer: 1 K Output layer: 0.9 K

Total Total
1.12 M 1.31 MM

Prediction time Prediction time
6 h 5 h

FCNN by [34]

Conv1: 1.5 M Conv1: 4.1 M
Conv2: 1.5 M Conv2: 4.1 M
Conv3: 1.5 M Conv3: 4.1 M
Conv4: 102 K Conv4: 315 K
RNN layer: 23.5 M RNN layer: 66 M

Total Total
28.1 M 78.7 M

FCNN by [32]

Conv1: 4.4 M Conv1: 12.4 M
Conv2: 829 K Conv2: 2.3 M
Conv3: 2.5 M Conv3: 7.2 M
Conv4: 102 K Conv4: 315 K

DB 1: 7.3 M DB 1: 20.6 M
DB 2: 2.5 M DB 2: 7.2 M
DB 3: 184 K DB 3: 516 K
DB 4: 737 K DB 4: 2.1 M

Sa Mpling 1: 819 K Sa Mpling 1: 2.2 M
Sa Mpling 2: 286 K Sa Mpling 2: 802 K

Total Total
19.9 M 55.7 M

From Table 6, it can be seen that the proposed methodology with post-processing
reaches the highest scores in almost all metrics for image sequences 1 and 2. The closest
competitor from the state-of-the-art is represented by the FCNN approach reported in [34]
with an OA ≈ 3.31% higher for image sequence 1 and ≈ 2.98% lower for image sequence
2. However, the nice property of the proposed methodology is that, when it did not win,
its OA achieved is very close to the highest one.

The major advantage of the proposed methodology over state-of-the-art approaches is
the improvement in terms of classification accuracy. This slight improvement is attributed



Appl. Sci. 2021, 11, 4292 17 of 23

to the post-processing phase and the exhaustive parameter research carried out during
the experiments.

From Table 7, it can be observed that the models with a higher number of MAC
operations (often deeper models), do not always lead to higher accuracy scores as a proper
parameter setting per model is required. For instance, FCNN [34] though being among the
most complex models for sequence 2, showed a relatively low OA score. On the contrary,
in addition to involving the lowest number of MAC operations, the proposed 2D-CNN 1
achieves an OA score higher than most of the compared DL models.

As it is well known, the CNN depth has a fundamental impact on the overall classifi-
cation, as well as on the computational resources required for training and deployment
purposes. However, the proposed methodology is based on consecutive convolutional
layers with a significant reduction in depth regarding the other architectures. For example,
in [34] an LSTM and an FCNN are used at the same time to classify Campo Verde, and
in [31], 100 filters are used in the convolutional layers. In Table 7, the complexity of the 2D-
CNN 1 is compared with the most outstanding architectures used by the works mentioned
in Table 6.

5.4. Classification Map

Finally, Figure 10 depicts the image sequence 2 classes map obtained with the proposed
methodology using 2D-CNN 1 and PMO. Figure 10a describes the true label map and
Figure 10b depicts the predicted label map. Graphically, it was observed how some classes
were misclassified; for instance, in some regions, cotton was labeled as corn. However,
comparing the label maps, it was observed that a good soil classification is achieved.

(a) True label map (b) Predicted label map

Figure 10. Classification map of sequence 2 in Campo Verde database.
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6. Additional Results: Evaluating Proposed Methodology on Urban
Material Classification

To experimentally demonstrate the ability of the proposed methodology to classify
images from other domains, some additional experiments were carried out on the Pavia
scenes database, which was intended for urban material recognition.

One of its samples is an image acquired by the ROSIS sensor over Pavia University,
northern Italy, which has 103 spectral bands, and a size of 610× 610 pixels. Its geometric
resolution is 1.3 m, and it is labeled into nine classes (asphalt, meadows, gravel, trees, metal
sheets, bare soil, bitumen, bricks, and shadows).

The number of samples for each class is depicted in Figure 11. It was observed that
there are more samples labeled as “meadows” while there is just a few numbers of other
samples such as shadows and bitumen. Therefore, Pavia scenes classification is a highly
imbalanced database.

Figure 11. Class distribution in Pavia database.

6.1. Experimental Setup for Pavia Database

Since the Pavia database contains smaller images, a patch size of 22× 22 was used to
classify the Pavia database. It guarantees that each patch has a minimum of 241 pixels of
the same class. The analyzed pixel is located at location (11, 11).

The number of patches used for each class is 200, yielding a total number of 1.8K
patches. The extracted patches are split into subsets using 90% of the data for training, and
10% of them for validation.

The testing is carried out using the remaining data, i.e., 42,122 pixels from the image
(as seen in Table 8).
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Table 8. Parameter values for experiments applied to Pavia database.

Parameter Pavia Image

Patch size CNN 22 × 22 × 104
Total samples 1.8 K
Patch size RNN 8 × 8 × 104
Training samples 1.62 K (90 %)
Validation samples 180 (10 %)
Testing samples 4.2 K
Learning rate 32
Optimizer Adadelta
Cost function Entropy
Metric Accuracy
Activation function 1 Relu
Activation function 2 Softmax
Batch size 32
Epoch 30

6.2. Comparison with the State-of-the-Art

Table 9 summarizes the results obtained by the proposed methodology applied to
Pavia database which are compared to recent research to classify Pavia database.

It can be seen that the proposed methodology reaches higher AA than [60] while
keeping a comparable OA.

Table 9. Comparison results of the proposed methodology for the Pavia database. The best average values achieved by
each method are highlighted.

Class # of Pixels

Proposed
Methodology

Proposed
Methodology - BP RNN Chen [60]

AA(%) OA(%) AA(%) OA(%) AA(%) OA(%) AA(%) OA(%)

Asphalt 6.8 K 75.61

91.82

75.13

90.95

50.55

49.21

94.14

93.88

Meadows 18 K 93.75 92.56 43.73 92.78
Gravel 2.2 K 75.94 73.17 50.97 80.6
Trees 3.4 K 98.79 98.72 87.72 83.42
Painted
metal

1.3 K 99.99 99.92 89.44 99.13

Bare soil 5.1 K 99.46 98.78 44.99 95.62
Bitumen 1.3 K 99.09 97.66 26.92 87.31
Bricks 3.8 K 97.12 97.12 30.21 98.39
Shadows 1 K 96.62 96.66 93.76 63.02
Average - 92.92 91.82 92.19 90.95 57.55 49.21 88.19 93.88

6.3. Classification Map

Finally, Figure 12 depicts the class map for the Pavia image obtained by the proposed
methodology (2D-CNN 1 after post-processing).

Figure 12a describes the true label map and Figure 12b depicts the predicted label map.
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(a) True label map (b) Predicted label map

Figure 12. Classification Pavia image by 2D-CNN 1.

7. Conclusions and Future Work

This work proves the suitability of a 2D-CNN-based methodology to deal with satellite
images for purposes of crop classification in tropical regions. Specifically, an enhanced
2D-CNN designed into smaller-scale setting, along with a post-processing (able to properly
refine the labeling) based on morphological operators results in a recommendable method-
ology as it reaches competitive results to those reported by recent studies. A remarkable
advantage of the proposed methodology was its ability to deal with both imbalanced
classes and low-spatial-resolution images.

In addition, it is worth noting that the proposed 2D-CNN architecture may be suit-
able for other applications related to satellite image analysis, such as the classification of
urban materials.

Although the proposed methodology substantially decreases the depth of the 2D-
CNN for patch classification purposes and reaches a competitive accuracy, a significant
improvement of its overall performance is a matter to be still investigated. Moreover,
the exploration of methods such as transfer learning, and generative-adversarial-networks
(GANs)-based data augmentation should be an important point in future research to
properly address the class imbalance problem.
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