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ABSTRACT: We investigate graphene superlattices of nitrogen
and boron substitutional defects. Using symmetry arguments
and electronic structure calculations we show how such super-
lattices can be used to modify graphene band structure. Speci-
fically, depending on the superlattice symmetry, the structures
considered here can either preserve the Dirac cones (D6h

superlattices) or open a band gap (D3h). Relevant band para-
meters (carrier effective masses, group velocities, and gaps, when
present) are found to depend on the superlattice constant n as
1/np where p is in the range 1-2, depending on the case considered. Overall, the results presented here show how one can tune the
graphene band structure to a great extent by modifying a few superlattice parameters.

’ INTRODUCTION

Single-layer graphene is a very promising material for future
silicon-free nanoelectronics. The peculiar character of its charge
carriers comes from the intersection of theπ/π* electronic bands
occurring at the corners of its hexagonal Brillouin zone. This
gives rise to the so-called Dirac cones at the Fermi level and
makes graphene a zero-gap semiconductor1 in which low-energy
excitations behave as massless, chiral Dirac particles.2,3 In turn,
this implies a series of interesting physical effects that open new
perspectives for fabricating novel electronic devices,4 e.g., high-
performance transistors for radiofrequency applications.5,6 In
this perspective, the possibility of engineering graphene’s band
structure by introducing defects, strains, or external potentials
has gained importance in the recent past, in particular for
opening a gap in the band structure which is essential to design
logic devices. Indeed, the nonvanishing residual conductance of
intrinsic graphene avoids the complete current pinch-off in the
pristine material,7,8 thereby limiting the on-off ratio to ∼101-
102. A number of controlled techniques for energy band en-
gineering have been proposed other than the actively pursued
goal to obtain nanoribbons of controlled size and edge geometry.
Most of them are based on the use of superlattices of external
potentials9,10 or defects such as holes11,12 and adsorbates.13

Controlled vacancies on graphene,14 as well as large holes
symmetrically arranged to form graphene antidots,15 have actu-
ally been realized with modern lithographic and self-assembling
techniques. Preferential sticking of atoms induced by Moir�e
patterns16 or by other electronic effects17,18 could also induce a
superlattice ordering that modifies graphene energy bands. Like-
wise, there is a great hope that novel bottom-up techniques19may
be applied to fabricate atomically precise graphenic structures as

already shown for nanoribbons.20 These approaches might allow
us to realize in the near future graphene-related two-dimensional
materials with modified characteristics, e.g., linearly dispersing
bands with variable Fermi velocities or semiconducting struc-
tures. In this paper, we focus on atomically precise superlattices
of substitutional atoms. The present work connects to and
extends a recent work21 where we have shown that in properly
designed superlattices of holes or adatoms one can open a gap
without breaking graphene point symmetry, i.e., preserving the
pseudorelativistic behavior of charge carriers which makes gra-
phene so attractive. The structures suggested in ref 21 have π
vacancies (hence missing pz orbitals) at the sites of a honeycomb
superlattice, as a consequence of the introduction of C vacancies
(holes) or chemisorption of simple atomic species. Here we
consider similar, highly symmetric structures but with π vacan-
cies replaced by boron and nitrogen. Similar defects have been
recently considered for tuning the electronic properties of grap-
hene nanoribbons and other carbon-based structures suggesting
that, when arranged to form particular structures, they can turn
the material into a semiconductor or a half-metal.22-24 Half-
metallicity and the other many-body effects in such structures
open new perspectives in the field of carbon-based materials for
spintronic applications: for a recent review, see refs 25 and 26 and
references therein.

In this paper, we show that, depending on the superlattice sym-
metry, one can obtain either electron (hole) doped substrates with
pseudorelativistic massless carriers or semiconducting structures
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with a quasi-conical dispersion, and with the help of electronic
structure calculations (tight-binding and density functional the-
ory), we determine carrier velocities, effective masses, and band
gaps (when present) as functions of the superlattice periodicity.
The focus is on boron and nitrogen, mainly because of the fast
progresses in methods for the controlled synthesis of B and N
doped graphenes. For instance, Panchakarla et al.27 have recently
shown how it is possible to insert B or N dopants in graphene by
adding the correct precursors in the arc discharge chamber, while Ci
et al.28 have reported the synthesis of large islands of boron nitride
embedded in graphene by atomic layer deposition techniques.
Methods to selectively replace C atoms in the graphene lattice
have also been proposed,29 thereby suggesting that the super-
lattice structures considered in this paper might soon become
feasible.

The paper is organized as follows. In the next section we sum-
marize the computational details of the calculations. Then, we
show how p- (n-) doped graphene-like structures result when
substitutional defects are arranged in honeycomb superlattices,
whereas semiconducting structures with quasi-conical dispersion
(massive Dirac carriers) result either from a hexagonal super-
lattice or from a honeycomb codoped superlattice. Finally, we
summarize and conclude.

Throughout this paper we define the superlattice periodicity
using Wood’s notation, i.e., by multiplying graphene’s two-
dimensional lattice vectors by the integer (superlattice) con-
stant n.

’COMPUTATIONAL METHODS

The results shown in the next sections have been obtained
from both tight-binding (TB) and density functional theory
(DFT) electronic structure calculations. In the first case we
diagonalized the usual tight-binding Hamiltonian for graphene
π-π* system, applying periodic boundary conditions and in-
cluding hopping terms up to the third nearest neighbors. The on-
site energies εi and hopping terms t1, t2, and t3 (for nearest, next-
to-nearest, and next-to-next-nearest neighbors, respectively) are
those proposed by Nanda et al.30 They were fitted to accurate all-
electron calculations to correctly reproduce the Fermi velocity of
single-layer graphene. For the dopant atoms, we only considered
hoppings to nearest-neighbor sites. Their values (t1), as well as
those of the on-site energies (εi), are those introduced by Peres
et al.,31 who have already successfully used them to study
electronic effects in doped graphene. A summary of the TB
parameters is listed in Table 1.

First-principles DFT calculations were performed with the
help of the VASP suite,32,33 using a supercell approach. Core
electrons were taken into account by projector augmented
wave (PAW) pseudopotentials, while for valence a 500 eV plane
wave cutoff was used. To correctly represent the defect-induced
charge inhomogeneities, we used the Perdew-Burke-Ernzerhof
(PBE) gradient-dependent exchange and correlation functional.34

Band structures were sampled by a Γ centered k-points grid, never

sparser than 6 � 6 � 1 to include every special point in the
Brillouin zone (BZ).

The TB parametrization was tested by comparing the band
structure of a few superlattices along the Γ-K-M-K0-Γ path
with accurate DFT results. In every case, the adopted para-
metrization was found to be accurate enough to reproduce the
bands close to the Fermi energy.

Therefore, we computed DFT band structures for n � n
graphene superlattices up to n = 14, and for larger structures we
relied on TB calculations only.

’RESULTS AND DISCUSSION

Graphene’s peculiar electronic structure is strictly related to
the point symmetry of its lattice,D6h in the Sh€onflies notation. In
the Brillouin zone, for each Bloch electronic state with k vector k,
the relevant symmetry elements are those which either leave k
invariant or transform it into one of its equivalent images, i.e.,
k f k þ G, G being a reciprocal lattice vector. These elements
form a subgroup of D6h, known as a little cogroup or simply k-
group at k,35 which determines the possible symmetries of the
electronic states at k. At the high-symmetry point K (or K0) of
graphene’s Brillouin zone, the k-group is D3h, and Bloch func-
tions built as linear combinations of pz orbitals span a two-
dimensional irreducible representation (irrep) of such a symme-
try group (E00). This is enough for the π-π* degeneracy and the
unusual linear dispersion atK (K0). That this occurs exactly at the
Fermi level is a consequence of the electron-hole (e-h)
symmetry which approximately holds in graphene. Indeed,
thanks to this extra symmetry, energy levels are always symme-
trically arranged, and at half-filling, the Fermi level lies exactly at
the center of the spectrum, where any doubly degenerate level is
forced to lay. (Notice that even though e-h symmetry only holds
in the nearest-neighbors approximation and in absence of
diagonal disorder, the Fermi level always matches the doubly
degenerate state at K (K0) as long as the e-h symmetry breaking
does not cause the maximum (minimum) of the valence
(conduction) band to exceed the energy at K.) In general,
the number of doubly degenerate irreps in the BZ determines
alone the presence of states (absence of a gap) at the Fermi level.
We have recently shown21 how one can turn such a number to be
even at every special point—thus opening a gap in the band
structure—by symmetrically removing “pz orbitals’’ in forming
certain n � n superlattices. Substitutional defects behave simi-
larly to pz vacancies (to which they reduce when the hoppings
become zero) but introduce impurity bands which partially
hybridize with those of the substrate. In addition, the diagonal
disorder they introduce breaks e-h symmetry giving rise to a
Fermi level shift, i.e., to p- and n-doping for group IIIA and VA
elements, respectively, as recently shown for both graphene36

and nanotubes.37 In the weakly defective superstructures con-
sidered in the following, the defect-induced perturbation affects
the electronic structure close to the Fermi level. With homo-
geneous doping the latter shifts at most proportionally to 1/n,
i.e., as the square root of the defect concentration, as a con-
sequence of the linear-energy dispersion which implies EF =
vF(πne)

1/2, where vF is the Fermi velocity of pristine graphene
and ne is the electron (hole) excess density, ne � 1/n2. Hence,
analogously to the superlattices of pz vacancies,

21 we make use of
symmetry arguments to establish whether degeneracy occurs at
the BZ special points in the important low-energy region. It is
worth noticing at this point that, however small the defect

Table 1. Parameters Used in the Tight-Binding Hamiltoniana

atom ε t1 t2 t3

C 0.000 -2.900 þ0.175 -0.155

B -1.5225 þ1.450 - -

N þ1.5225 -1.450 - -
aAll the values are in eV.
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perturbation is, the folding of graphene band structure occurs
differently according to whether the superlattice constant n belongs
to the sequence n = 3m or n = 3m þ 1, 3m þ 2 (m integer). As
shown in Figure 1 for the superlattices considered in this work
(a-c), for n = 3m þ 1 (3m þ 2), K and K0 fold separately into
Kn(K0

n) andK0
n(Kn), whereas for n = 3m they both fold to the BZ

center Γn. This means that n = 3m superlattices are expected to
have rather unique properties related to the highly degenerate
nature of the unperturbed spectrum. In the following, we mainly
focus on n = 3mþ 1, 3mþ 2 superlattices and only occasionally
look at the properties of n = 3m ones. A further six-fold super-
lattice symmetry, the

√
3n�√

3nR30� case reported in Figure 1(d),
will not be considered here since in that case band folding occurs
analogously to the 3m � 3m case discussed above.
Honeycomb Superlattices. A honeycomb-shaped superlat-

tice is a natural choice for n� n superlattices (n� n honeycombs
thereafter) since it preserves the D6h point group symmetry of
pristine graphene. The superlattice unit cell contains two sub-
stitutional atoms and is shown in Figure 2. If the atomic radii of
the dopants are small enough that lattice distortions are minimal,
the system overall symmetry is preserved, and Dirac cones at Kn

and K0
n are expected. This is the case for boron and nitrogen

substitutional defects, whose DFT-optimized structures show no
appreciable lattice distortion. Both TB and DFT calculations
confirm that n = 3m þ 1 and 3m þ 2 honeycomb superlattices
made of B or N substitutional defects only show a low-energy
band structure very similar to that of perfect graphene but with
the Fermi level lying, respectively, below (p-doped) and above
(n-doped) their Dirac point. In principle, with properly designed
n- or p-back-doping, e.g., electric-field induced but also via
molecular adsorption,38,39 such a shift can be offset and the
analogy with pristine graphene fully exploited.
Figure 3(a) shows the TB and first-principles band structures of

one n � n honeycomb together with the position of the Fermi
level (Figure 3(c)) in such n- and p-doped superlattices at

different impurity concentrations. As expected, the shift (Δ) of
the Dirac cones with respect to the Fermi level (see Figure 3(c))
is, to a good approximation, inversely proportional to the dopant
concentration for both B and N doping, though with opposite
sign. The difference between TB and DFT band structure is

Figure 1. Folding of graphene Brillouin zone (BZ, blue line) into the
superlattice ones (red filled hexagon) for some n� n structures, (a) n =
3m, (b) n = 3mþ 1, and (c) n = 3mþ 2, along with the case of

√
3n�√

3nR30� superlattices (d). TheK point in graphene’s BZ is labeled with
a black filled dot.

Figure 2. 4 � 4 Honeycomb superlattice: the black line represents the
unit cell, while the Wigner-Seitz and Brillouin zones are shown in
yellow and green, respectively. Red balls are sublattice substitutional
defects forming the superlattice.

Figure 3. (a) TB (black lines) and DFT (red lines) band structures for
the 4 � 4 honeycomb boron superlattice. (b) the TB band structure of
the 3� 3 honeycomb boron superlattice arising from folding in n = 3m
superlattices. The inset shows a close-up of the region close to Γn.
(c) Absolute shift of the Dirac cones apex (Δ) with respect to the Fermi
level, in p-doped (B, red) and n-doped (N, black) honeycombs.
(d) Group velocity for charge carriers close to the cone apex for the
boron (black) and nitrogen (blue) case. Circles and squares for n = 3mþ
1 and n = 3m þ 2.
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minimal, and this confirms that the tight binding parameters
adopted are good enough for accurately describing the low-
energy features of the n � n honeycomb superlattices investi-
gated in this paper. In Figure 3(b) we also report the unique band
structure resulting from the special folding in the n = 3m
sequence; as it is evident from the inset of Figure 3(b), the
4-fold degeneracy occurring at Γn is partially lifted, and a gap is
introduced in one of the two cone replica.
The group velocity for electrons and holes taken close to the

cone apex (but rather adequate for a wider energy range) is
shown in Figure 3(d) for n- and p-doped superlattices. The two
curves approach the limit of clean graphene with different trends.
Upon nonlinear curve fitting, the group velocity v (relative to
the one in pristine graphene) for p-doped honeycombs is found
to behave as v/vF � 1 - n-1.29 and for n-doped honeycombs
as � 1 - n-1.84. The difference between the two cases is due to
the value of the on-site energies and hopping of the dopants
which determine the degree of hybridization of their impurity
levels with that of bulk graphene. With the parameters used (see
Table 1), which are symmetric with respect to the on-site energy
of C atoms, this can only happen because of the asymmetry in
graphene electronic structure introduced by the next-to-nearest
neighbor interactions.
Other superlattices made of group IIIA (Al, Ga, In) and VA

(P, As, Sb) dopants have been tested by first-principles calcula-
tions. In any case, we found that, after geometric optimization of
the lattice structure, the impurities stand out from the graphene
layer plane and considerably distort the neighboring lattice
positions. The resulting band structures are metallic but lack
Dirac cones due to the reduced symmetry.
Hexagonal Superlattices. When one defect per supercell

only is introduced, a n� n hexagonal superlattice (a “n� n hexa-
gon”) results, as shown in Figure 4. This kind of structure is
closely related to the honeycomb ones, having one extra sub-
stitutional atom at the center of a hexagon of defects. A closer

inspection, however, reveals that, due to the presence of the
underlying C network, the point symmetry is reduced to D3h,
with σ 0 planes missing with respect to the honeycomb counter-
parts. It follows that the k-group at Kn (K0

n) is C3h, with no
irreducible two-dimensional (complex) representations (see
Figure 5). Hence, degeneracy is removed at the special points,
and a (small) gap opens in the band structures, close to the
(shifted) Fermi energy. This is shown in Figure 6(a) where the
TB and DFT band structures of the 4� 4 hexagon are reported.
The energy spectrum of such gapped graphene is compatible
with charge carriers behaving as massive Dirac particles

EðkÞ ¼ (v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y þm�2v2

q
ð1Þ

where v, and m* are the effective “speed of light” and “rest mass”,
respectively, and determine the gap size

ΔE ¼ 2m�v2 ð2Þ
According to the semiclassical theory of conduction, m* is also
the effective mass meff governing charge carrier mobility for k,
mv; for k. mv, carriers behave pseudorelativistically with meff =
0 and limiting speed v. The values v, m*, and ΔE have been
obtained by nonlinear curve fitting of the numerical results to
eq 1 and are reported in panels (b)-(d) of Figure 6. For n � n
hexagons the band gap is very dependent on the type of dopant
(Figure 6(e)): the maximum gaps, occurring in 2 � 2 hexagons,
are 0.93 eV for nitrogen and only 0.17 eV for boron. The effective
masses of electrons and holes (Figure 6(d)) roughly scale as the
gaps � n-1.45 and � n-1.52 for n- and p-doped structures, res-
pectively, and their maximum is 3.7 � 10-2 and 6.7 � 10-3 me.
This is similar to the case of a graphene nanoribbon,40 whose band
gap scales as the inverse of their width even though here the gap is
due to symmetry breaking rather than quantum confinement.

Figure 4. 2� 2 Hexagon superlattice: the black line represents the unit
cell boundary, while the Wigner-Seitz and Brillouin zones are filled in
yellow and green, respectively. Red balls are substitutional defect
positions.

Figure 5. Wigner-Seitz (yellow, left side) and Brillouin zone (right
side) for the hexagonal superlattices. Considering the defects only, the
point group is D6h, and the corresponding k-group in Kn is D3h (upper
panel). Overall, the underlying carbons remove the σ0 planes, reducing
the symmetry to D3h.
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The shift of the Fermi level (not shown) is again proportional
to the square root of the defect concentration, that is now only
half of the value for honeycombs with the same superlattice
periodicity. Charge carrier velocities scale similarly for the two
dopant species as shown in Figure 6(c) with a best-fit exponent
close to -2 (v(B)/vF � 1 - n-1.98, v(N)/vF � 1 - n-2.28).
In Figure 6, panel (b), we also report the particular band struc-

ture arising in n = 3m hexagon superlattices. At the relevant special
point Γn, the massive, pseudorelativistic energy dispersion is
superimposed with a massless one, thereby giving rise to a two-
valley system with very different charge carriers. As shown in the

next subsection, all the features discussed in this section can be
brought at the Fermi level by codoping the substrate in forming a
honeycomb structure with the same D3h symmetry discussed
here.
Codoped Superlattices. One further possible superlattice

arrangement is obtained by using two different dopants in the
n � n honeycomb unit cell, i.e., codoping the structures with
boron and nitrogen (see Figure 7). In this way, B and N atoms
form a boron nitride-like honeycomb superlattice in which
sublattice equivalence (and symmetry) is broken. This is analo-
gous to placing graphene in the modulating field of a proper
substrate, e.g., a hexagonal BN (0001) surface, which has been
shown to lift the degeneracy of the π-π* bands,41 similarly for
deposition, or growth, on silicon carbide surfaces.42,43 The
superlattice structures considered here offer the possibility to
modify the periodicity of the perturbation and thus to tune the
gap. Indeed, this kind of superlattice presents D3h point sym-
metry and hence a C3h k-group inKn,K0

n, and, analogously to the
hexagonal case discussed above, opens a band gap typical of
massive Dirac particles. Differently from before, however, the
structures considered here are iso-electronic with graphene, and
therefore the gap lies exactly at the Fermi energy.
Figure 8 shows the computed band structure (panel (a)),

together with the values of the effective speed of light (c), effective
mass (d), and band gaps (e), obtained as in a previous section by
fitting of the numerical results, for different BN n � n honey-
combs. The results confirm the expectations and show that such
structures present a band gap at the Fermi energy, compatible
with pseudorelativistic massive carriers. Their effective rest mass
is rather small, scales as � n-1.46, and is never larger than 0.015
me for n g 4. This value compares favorably with the effective
masses in Bi1-xSbx topological insulators (m* = 0.009me)

44 and
is generally lower than in bilayer graphene (m* = 0.03me)

45 or in
any other traditional bulk semiconductors, such as InSb (m* =
0.016me). Since m* is the main factor affecting carrier mobilities,
the suggested structures turn out to be a good compromise

Figure 6. (a) TB (black) and DFT (red) band structures for the 4 � 4 hexagon of boron dopants. (b) The TB band structure of the 3 � 3 hexagon
superlattice arising from folding in n= 3m superlattices. The inset shows a close-up of the region close toΓn. Carriers effective speeds (c), masses (d), and
energy band-gaps (e) versus 1/n. Black and blue values refer to B and N superlattices, respectively.

Figure 7. 4 � 4 Honeycomb superlattice: the black line represents the
unit cell, while theWigner-Seitz and Brillouin zone are shown in yellow
and green, respectively. Red and blue balls are B and N substitutional
defects.
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between the need of opening a gap for logic applications and the
desire of preserving the high mobility of charge carriers. In
Figure 8, panel (b), we also report the band structure of the
n = 3m case. The structure is that of a zero-gap semiconductor,
with two distinct charge carriers: one of them behaves as an
electron (hole) in graphene, showing typical effects expected for
massless carriers, and the other is a more conventional one, with a
finite excitation energy across a gap.

’SUMMARY AND CONCLUSIONS

To summarize, we have studied the effects substitutional
defects such B and N species have on graphene electronic struc-
ture when they are periodically arranged to form some super-
lattices. Using group theoretical arguments and both TB and
DFT calculations, we have shown that defects can either preserve
the Dirac cones or open a band gap, depending on the super-
lattice symmetry (D6h and D3h, respectively). Specifically, hon-
eycomb-shaped superlattices of B or N atoms give rise to p- and
n-doped graphene, respectively, preserving the Dirac cones. On
the other hand, when a hexagonal superlattice is formed, or the
honeycomb one is symmetrically codoped, the Dirac cones
detach from each other to form a gapped, quasi-conical structure
whose excitations correspond to massive Dirac particles. Note
that this situation clearly differs form the case of randomly
arranged B or N impurities, in which the density of states shows
no band gap.36

For zero-gap structures, the use of these superlattices offers the
possibility to control the Fermi velocity by changing the structure
periodicity, thereby offering the opportunity to investigate its
role in the charge transport properties. Differently from our
recent proposal,21 the gapped band structures arise because of
symmetry breaking, as in the case of graphene interacting with a
substrate such as SiC or BN. In the same fashion, the band gap
size depends on the superlattice periodicity. In our calculations,
we have found that band gaps, charge carrier velocities and effective
masses depend on 1/np, where p is in the range 1-2, hence on

some small power (0.5-1) of the dopant concentration, and on the
dopant type (B or N). Overall the structures proposed here show
a band gap larger than kBT at room temperature, with an effective
mass generally lower than 0.01me for reasonably dense meshes
(n = 4-10). Thus, the new class of graphene structures proposed
might be promising candidates for the fabrication of high-
performance interconnects and valley-based devices,46 but also
for logic transistors, where a band gap is needed, but the extra-
ordinary properties of pristine graphene need to be preserved.

The electronic properties of these superlattices of impurities
rely on symmetry and hence are necessarily sensitive to the
dopant positions. As a consequence, an accurate control of the
system geometry is necessary to exploit their properties. This
might be possible in the near future with precise bottom-up
synthesis techniques, such as the ones recently used by Bieri et al.
and Cai et al.19,20 to fabricate nanoribbons with well-defined
widths and edges.

’ASSOCIATED CONTENT

bS Supporting Information. An indication of the possible
synthetic routes together with formation energies for such
superlattices of defects can be found. This material is available
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