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Typical (sub)system-bath quantum dynamical problems are often investigated by means of
(approximate) reduced equations of motion. Wavepacket approaches to the dynamics of the whole
system have gained momentum in recent years and there is hope that properly designed approx-
imations to the wavefunction will allow one to correctly describe the subsystem evolution. The
continuous-configuration time-dependent self-consistent field (CC-TDSCF) and local coherent-state
approximation (LCSA) methods, for instance, use a simple Hartree product of bath single-particle-
functions for each discrete variable representation (DVR) state introduced in the Hilbert space of
the subsystem. Here we focus on the above two methods and replace the DVR states with the
eigenstates of the subsystem Hamiltonian, i.e., we adopt an energy-local representation for the sub-
system. We find that stable and semiquantitative results are obtained for a number of dissipative
problems, at the same (small) computational cost of the original methods. Furthermore, we find
that both methods give very similar results, thus suggesting that coherent-states are well suited
to describe (local) bath states. As a whole, present results highlight the importance of the system
basis-set in the selected-multiconfiguration expansion of the wavefunction. They suggest that ac-
curate and yet computationally cheap methods may be simply obtained from CC-TDSCF/LCSA
by letting the subsystem states be variationally optimized. © 2011 American Institute of Physics.
[doi:10.1063/1.3518418]

I. INTRODUCTION

System-bath dynamical problems are ubiquitous in
chemical physics, where often a “subsystem” of interest can
be identified, and possibly measured, while the environment
is only partially under control. In such instances the role of
the environment cannot be neglected since coupling to a heat
bath may be needed to activate the system and/or to dissi-
pate the excess energy of a reaction. In modeling these situ-
ations one often resorts to reduced dynamical methods, and
the system dynamics is modified in such a way to account, at
least approximately, for the influence of the bath. In the quan-
tum case this procedure requires additional approximations if
a manageable computational task is aimed at, but this comes
at a price of a number of shortcomings. For instance, mas-
ter equations as obtained from the theory of open quantum
systems1–3 hardly handle simultaneously medium and strong
system-bath coupling, non-Markovian effects, nonlinearity
and anharmonicity in the bath or subsystem-bath interaction,
nonequilibrium states, initial correlation between the subsys-
tem and bath, etc. An alternative approach, which consists
in including the total subsystem+bath degrees of freedom
(DOF) in the wavepacket dynamics, has attracted increasing
attention in recent years. The resulting schemes are more flex-
ible, less dependent on the specific form of the potentials—
e.g., not restricted to Hamiltonians of the system-bath form—
and free of the above-mentioned problems, but come at
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a huge computational cost, due to the exponential scaling
of current quantum dynamical methods. Enormous progress
has been made in this respect, particularly with the multi-
configuration time-dependent Hartree (MCTDH) method.4, 5

MCTDH has opened the door to comparatively large sys-
tems, of tens of degrees of freedom, in a wide range of
phenomena, such as photodissociation6–9 and photoabsorp-
tion spectra,10–12 predissociation,13, 14 and reactive15–19 and
molecule-surface scattering20–25 (see Ref. 26 for an exhaus-
tive list of MCTDH applications). MCTDH has also been ap-
plied to some system-bath dynamical problems,27, 28 but real-
istic systems still remain beyond current computational re-
sources. Indeed, when simulating typical real processes by
means of a finite-size bath, hundreds of bath DOF have to
be included to make the Poincaré recurrence time larger than
any time of interest for the subsystem dynamics.

Several methods have been developed to overcome
the exponential scaling limitation. The standard MCTDH
scheme has been extended to an exact, multilayer (ML)
formulation29–32 which enables the treatment of significantly
larger and more complex systems, and a number of stud-
ies have been reported on system-bath problems, even at
finite temperatures.33 Though ML-MCTDH does not solve
the basic exponential problem, it considerably enlarges the
set of tractable systems and has been already used in
molecular applications.34–36 Among approximate schemes,
those which partially replace the fully flexible single-particle
functions with Gaussian functions—the so-called Gaussian-
MCTDH (G-MCTDH) methods37–39—allow considerable
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savings of both CPU time and random access memory by fo-
cusing attention on the most important degrees of freedom.
The same is true for the coupled-coherent state method40, 41

which combines a coherent-state representation of the time-
dependent Schrödinger equation with Monte Carlo sampling
techniques. Alternatively, schemes such as the selected-
MCTDH method42 select and propagate only the most impor-
tant configurations used for representing the wave function
of the system. The continuous-configuration time-dependent
self-consistent field (CC-TDSCF) scheme of Zhang et al.43

follows a similar strategy and, within a system-bath picture,
introduces approximations only in the bath description, while
keeping a reasonably high level of accuracy for the subsystem
dynamics.44, 45 Some of the present authors went further in ap-
proximating the CC-TDSCF wavefunction, and replaced the
fully flexible single-particle functions of the bath with coher-
ent states (CSs), thereby realizing what can be considered a
selected-configuration G-MCTDH. The resulting method was
called LCSA (Ref. 46) as it is based on a local coherent-
state approximation to the system-bath dynamics. In this work
we focus on LCSA and CC-TDSCF, and describe variants of
these approaches. Notice that as CC-TDSCF results from a lo-
cal, time-dependent Hartree approximation (LTDH) of the dy-
namics, in the following we use LTDH in place of CC-TDSCF
to emphasize the relationship between the two methods.

LTDH and LCSA share the use of a discrete variable
representation (DVR) to represent the state space of the sys-
tem and of a Hartree product approximation for the resulting
(local) bath states. Their ansatz takes the form

|�〉 =
∑

α

Cα |ξα〉 | �α〉, (1)

where {|ξα〉} is a DVR set for the subsystem coordinates, and
|�α〉 are the resulting local bath states—one for each grid
point α used to cover the relevant subsystem configuration
space—which are further written as

|�α〉 = ∣∣φ1
α

〉 ∣∣φ2
α

〉 · · · ∣∣φF
α

〉
, (2)

where F is the number of bath DOF. Here, |φk
α〉 are the bath

single-particle functions, which are fully flexible in LTDH
whereas in LCSA they are constrained to have a CS form
(|φk

α〉 ≡ |zk
α〉). [Here and in the following zk is a c num-

ber which uniquely identifies the standard CS given by |zk〉
= exp(−|zk |2/2) exp(zka†

k) |0〉 where ak is the lowering oper-
ator for the kth bath harmonic oscillator and |0〉 is its ground-
state. See our previous paper (Ref. 46)]. With the help of the
Dirac–Frenkel principle, the use of DVR states allows very
simple equations of motion, as they always guarantee orthog-
onality between the configurations entering in Eq. (1), irre-
spective of the “shapes” of the local bath states, |�α〉. In ad-
dition, if the CS approximation for the bath is introduced,
they are also physically sound, in that they correspond to a
Schrodinger–Langevin like equation for the system and pseu-
doclassical equations for the bath variables, containing both a
classical and a quantum force.46, 47

From the point of view of computational efficiency, there
is no real need to use a DVR basis in place of any other or-
thogonal set. The system basis-set need not even be static,
though in this case one has to consider the (small) additional

effort required to compute the additional mean-fields and to
evolve the basis functions in time. In this paper, we replace
in Eq. (1) the DVR states with eigenstates of the subsystem
Hamiltonian, as the latter lead to considerable simplification
too. The purpose is to show that quite accurate results can be
obtained by choosing a proper system basis when selecting
the configurations to evolve. For LCSA this is true, in par-
ticular, without any additional empirical parameter which in
Ref. 46 was added to remove numerical instabilities of the
method. We further show that the resulting “energy-local”
LTDH and LCSA (which we call eLTDH and eLCSA, respec-
tively) provide very similar results, at least in the dissipative
problems considered here. This means that the (local) CS ap-
proximation for the bath can be rather accurate, given that the
bath is usually harmonic and the ansatz of Eqs. (1) and (2) in-
troduces the main part of the important correlations between
the system and the bath. As a whole, the results presented be-
low show the importance of the system basis-set in expanding
the wavefunction according to Eqs. (1) and (2). This is clearly
the case because the quality of the approximation in Eq. (2),
which is quite effective in reducing the computational cost
of a full multiconfiguration expansion, does depend on the
system set. In general, there is no set that works best for all
typical problems at all times, and this leads directly to its vari-
ational optimization. This will be the subject of a forthcoming
paper.

II. THEORY

Equations of motion for eLTDH/eLCSA can be obtained
from the Dirac–Frenkel variational principle and read exactly
as those of LTDH/LCSA (see, e.g., Refs. 45 and 46), the only
difference being the replacement of DVR states with system
eigenstates. This means that differences arise only when ex-
plicitly writing matrix elements of the chosen Hamiltonian;
in particular, notice that previous LTDH/LCSA made use of
the DVR approximation in representing local system opera-
tors, i.e., fαβ ≈ δαβ f (xα), which can no longer be used in the
present context. The equation for the amplitude coefficients
Cα reads as

i¯Ċα =
∑

β

〈ξα�α|H |ξβ�β〉 Cβ + vgauge
α Cα, (3)

where vgauge
α is a gauge potential related to the normaliza-

tion constraints of the bath single-particle functions, vgauge
α

= −i¯
∑F

k=1 〈φk
α|φ̇k

α〉. In eLTDH the constraints ¯ 〈φk
α|φ̇k

α〉
= −igk

α (gk
α ∈ R) can be chosen arbitrarily (though we simply

put gk
α ≡ 0 in the following), whereas in eLCSA, as in LCSA,

we fix for convenience the phase of coherent states and use
the equation

〈
zk
α|żk

α

〉 = i Im
(
zk∗
α żk

α

)
,

which holds for standard CSs. The equations of motion for
the bath single-particle functions read as

i¯
(
1 − Pk

α

)
Cα

∣∣φ̇k
α

〉 = (
1 − Pk

α

)∑
β

Cβ H k
αβ

∣∣φk
β

〉
, (4)
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where H k
αβ = 〈ξα�k

α|H |ξβ�k
β〉 is the mean-field Hamiltonian

matrix for the kth degree of freedom, |�k
α〉 = 〈φk

α|�α〉 is the
kth single-hole bath vector corresponding to the α subsys-
tem state, and Pk

α = |φk
α〉 〈φk

α| is a projector onto the occu-
pied space of the kth DOF. Notice that in the equation above
i¯Pk

α |φ̇k
α〉 = gk

α |φk
α〉, i.e., Eq. (4) represents an explicit equa-

tion for the time-derivative |φ̇k
α〉. The eLCSA version of these

equations may be obtained directly from Eq. (4) by observing
that in this case the allowed variations are

δ
∣∣zk

α

〉 = ∂ |zk
α〉

∂xk
α

δxk
α + ∂ |zk

α〉
∂yk

α

δyk
α,

where xk
α = Re zk

α and yk
α = Im zk

α . Using simple
manipulations46 they read as

i¯Cα żk
α = 〈

zk
α

∣∣ ( − zk
α + ak

) ∑
β

Cβ H k
αβ

∣∣zk
β

〉
, (5)

where ak is the harmonic-oscillator (HO) lowering operator
of the kth degree of freedom.

Next, we introduce the typical system-bath Hamiltonian
which is used to model dissipative dynamics,

H = H sys + H env,

H env = −
F∑

k=1

(
λ
†
kak + λka†

k

) +
F∑

k=1

¯ωka†
kak,

where H sys is the subsystem Hamiltonian, and H env is the “en-
vironment” Hamiltonian which is here written as a sum of an
interaction term H int (the first term on the last line) and a bath
Hamiltonian H bath (the last term). The subsystem-bath cou-
pling is assumed to be linear in the bath coordinates but ar-
bitrary in the subsystem coordinates; a†

k ,ak are the usual HO
raising/lowering operators. With this Hamiltonian Eq. (3) be-
comes

i¯Ċα = (
εα + vbath

α + vgauge
α

)
Cα +

∑
β

〈
ξα�α|H int|ξβ�β

〉
Cβ,

where εα is the αth system energy eigenstate, H sys |ξα〉
= εα |ξα〉, and vbath

α = 〈�α|H bath|�α〉. The last term on the
right-hand-side is the only one requiring off-diagonal ele-
ments between configurations,

〈
ξα�α|H int|ξβ�β

〉 = −
F∑

k=1

{
(λk)∗βα 〈�α|ak |�β〉

+ (λk)αβ 〈�β |ak |�α〉∗ }
,

where (λk)αβ = 〈ξα|λk |ξβ〉. It is clear from this equation that
the “energy-local” bath states |�α〉 provide a coupling for the
Cα’s (and therefore for the populations of the system energy
levels, nα = |Cα|2) only if they have a different excitation
level (number of phonons) in at least one bath oscillator. On
the other hand, simplifications also occur in Eq. (4), since H k

αβ

now reads as

H k
αβ = δαβ

⎡
⎣εα +

k ′ 	=k∑
k ′=1

¯ωk ′nα
k ′ + ¯ωka†

kak

⎤
⎦

− [
(λk)∗βαak + (λk)αβa†

k

]
Ok

αβ

−
k ′ 	=k∑
k ′=1

[
(λk ′)∗βαk ′

αβ + (λk ′)αβk ′∗
βα

]
Okk ′

αβ ,

where nα
k is an average number of phonons in the kth

oscillator, nα
k = 〈φk

α|a†
kak |φk

α〉, k
αβ is defined similarly as

k
αβ = 〈φk

α|ak |φk
β〉, Ok

αβ is an overlap matrix element be-
tween single-hole vectors Ok

αβ = 〈�k
α|�k

β〉 = ∏
i 	=k 〈φi

α|φi
β〉,

and Okk ′
αβ is defined analogously for double-hole vectors,

Okk ′
αβ = 〈�kk ′

α |�kk ′
β 〉 = ∏

i 	=k,k ′ 〈φi
α|φi

β〉.
Considerable simplification occurs in the LCSA case,

using the well-known properties of CSs. For instance,
〈�α|ak |�β〉 = zk

β Oαβ , nα
k = |zk

α|2, and k
αβ = zk

β 〈zk
α|zk

β〉, etc.
The overlap matrix elements between CSs are also analyti-
cally available,

〈z|w〉 = ez∗w−(|z|2/2)−(|w |2/2) = e−(|z−w |2/2)+i Imz∗w

More generally, the equations of motion for CSs can be ob-
tained from Eq. (5) by using47

ak H env = H envak + [
ak, H env

] = H envak + ∂ H env
ord

∂a†
k

,

where H env
ord is the environment Hamiltonian with the phonon

creation/annihilation operators ordered in the usual way, i.e.,
all powers of a†

k’s on the left of all ak’s (see, e.g., Refs. 48 and
49). For the above Hamiltonian,

∂ H env
ord

∂a†
k

= ¯ωkak − λk,

and the final result is

i¯Cα żk
α = ¯ωk zk

αCα −
∑

β

�αβ Oαβ

(
zk
β − zk

α

)
Cβ

−
∑

β

(λk)αβ OαβCβ,

where �αβ = ∑
k(λk)∗βαzk

β + (λk)αβ zk∗
α ; from this the CSs

time derivatives entering the gauge potential of Eq. (3) can
be explicitly removed.

Before leaving this section it is worth noting that
the parametrization of the wavefunction as defined by the
LTDH/LCSA ansatz (and the modified counterparts discussed
in this paper) is singular when Cα = 0, since in that case the
corresponding bath configuration |�α〉 can be chosen arbitrar-
ily. This does not affect the results of Eq. (4), whose solu-
tion is needed only for Cα 	= 0, rather those of Eq. (3) where
Ċα would then depend on the arbitrary configuration |�α〉.
Our experience tells us that this is not a real problem, since
the main results do not depend on such choice. More impor-
tantly, it is worth noting that by combining Eqs. (3) and (4)
the following expression for the time-derivative of the total
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wavefunction can be obtained:

i¯ |�̇〉 =
∑
αβ

|ξα�α〉 HαβCβ

+
F∑

k=1

∑
α,β

∣∣ξα�k
α

〉 (
1 − Pk

α

)
H k

αβ

∣∣φk
β

〉
Cβ.

With the Hamiltonian above it is not hard to show that
this time-derivative is the same as the exact one, i¯ |�̇exact〉
= H |�〉, for a number of (initial) vectors |�〉, for instance
those of the form |ξ 〉 |n〉 where |ξ 〉 is an arbitrary system state
and |n〉 = |n1, . . . , nk, . . . , nF 〉 is a bath eigenstate (similarly
for bath CSs and LCSA). Thus, in such situations the correct
short-time behavior is guaranteed by the LTDH/LCSA ansatz.

III. THE MODEL

In Sec. IV we use the eLTDH/eLCSA methods in-
troduced above for solving a number of model problems,
and compare the results with those of numerically exact
MCTDH calculations. The model has been described in pre-
vious papers45, 46, 50 and will be only sketched here for com-
pleteness. It consists of a Morse oscillator (with coordinate x
and momentum p) coupled to a number F of bath oscillators,

H = p2

2m
+ v(x) − f (x)

F∑
k=1

ckqk

+
F∑

k=1

p2
k

2mk
+ mkω

2
kq2

k

2
. (6)

The bath frequencies ωk and the coupling coefficients ck are
chosen in such a way to sample a given spectral density J (ω),
which is the only quantity of interest for the subsystem dy-
namics (see Refs. 50–52 for some recent attempt in exploit-
ing this property). Thus the harmonic oscillator bath is here
meant to model fluctuations in and dissipation to a given, ar-
bitrarly complex environment and does not necessarily corre-
spond to a real system. J (ω) is a real, odd function defined
by the real part (γ ′(ω)) of the frequency-dependent memory-
kernel γ (ω),

J (ω) = mωγ ′(ω).

The memory-kernel γ (t) (the Fourier transform of γ (ω)) en-
ters the generalized Langevin equation, here written for state-
dependent friction:

mẍ = −ṽ ′(x)

+ f ′(x)

(
ξ (t) − m

∫ ∞

t0

γ (t − τ ) f ′(x(τ ))ẋ(τ ) dτ

)
.

(7)

Knowledge of J (ω) suffices to determine3 γ (ω) by virtue of
the Kramers–Kronig relations, as well as the correlation func-
tion of the random force ξ (t) by virtue of the fluctuation-
dissipation theorem

〈ξ (t)ξ (t ′)〉 = mkB T γ (|t − t ′|).

This completely specifies the stationary Gaussian process
ξ (t). For the microscopic model of Eq. (6), which is known to
lead to Eq. (7) in the continuum limit, J (ω) reads for ω > 0
as

J (ω) = π

2

∑
k

c2
k

mkωk
δ(ω − ωk).

For a set of evenly spaced frequencies, ωk = k�ω, J (ω)
≈ πc2(ω)/2mωω�ω, and one gets the coupling coefficients
which sample the spectral density J (ω),

ck =
(

2mkωk�ωJ (ωk)

π

)1/2

.

The frequency spacing �ω sets the Poincaré recurrence time,
Trec = 2π/�ω, which must be larger than any time of physi-
cal interest. The masses of the bath oscillators, on the other
hand, do not play any role in the dynamics, as it is clear
by rewriting the above Hamiltonian in terms of the (adimen-
sional) operators ak ,a†

k . In the following we use a truncated
Ohmic spectral density, J (ω) = mγω for ω ≤ ωc = F�ω

and J (ω) = 0 for ω > ωc, which describes a subsystem dy-
namics with relaxation time γ −1 which is Markovian for
times greater than ∼ ω−1

c ; thus, even in this simple model,
if γ � ωc the dynamics is non-Markovian in the interesting
time-window.

The potential ṽ(x) entering in Eq. (7) is the renormalized
subsystem potential

ṽ(x) = v(x) − 1

2
[ f (x)]2

∑
k

c2
k

mkω
2
k

,

as results from the coupling-induced renormalization of the
system dynamics. The renormalization correction is usually
eliminated by adding to Eq. (6) a counterterm, but since we
are going to compare results with those resulting from numer-
ically exact calculations using the same Hamiltonian there is
no real need to add this term for such purpose. Notice that
with our model spectral function the renormalized potential
reads as

ṽ(x) = v(x) − mγωc

π
[ f (x)]2,

and it is clear that for high cutoff frequencies and/or γ dynam-
ical instabilities appear. In particular, for bound potentials, say
v(x) → De for x → ∞, the limit of f (x) may be important
in that respect, too. We choose the coupling function as in
previous works,45, 46, 50 namely,

f (x) = 1 − e−αx

α
,

where α is the frequency parameter of the Morse potential

v(x) = De(1 − e−αx )2.

This function reduces to f (x) ∼ x close to the equilibrium
position of the Morse oscillator, but tends to a finite value
when x → ∞. With this choice, the renormalized poten-
tial above is still of a Morse type, with a corresponding D̃e

= De − mγω f /πα2.
In the following, the subsystem is meant to represent

a hydrogen atom chemisorbed on a surface. A standard,
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Colbert–Miller DVR set53 was introduced as a primitive grid
to represent the subsystem Hamiltonian operator, which was
then diagonalized to obtain the energy eigenstates used for
eLTDH/eLCSA. The Morse potential parameters are set to
De = 1.55 eV, α = 1.238 a−1

0 , and the bath cutoff frequency
is fixed to be twice the corresponding Morse oscillator fre-
quency (Tc = 2π/ωc ≈ 8 fs). The bath is discretized with 80
bath oscillators, in such a way that the recurrence time is large
enough (Trec ≈ 610 fs ) for describing dissipation. Additional
tests with 120 modes (and the same ωc) showed that the num-
ber of bath oscillators does not play any role, for t < Trec

above, at any level of description.

IV. RESULTS

A. Small amplitude motion

First we consider the damped motion of the Morse os-
cillator initially displaced from its equilibrium position. The
initial wavefunction is of product form |ψ〉 |�〉, |ψ〉 being a
Gaussian wavepacket centered in x0 and |�〉 the ground-state
of the interacting bath at a sharply defined subsystem position
x0. The system starts to oscillate and transfers energy to the
bath, though more efficiently when it reaches the inner turning
point, i.e., where the interaction with the bath is strongest.

The results of our calculations are reported in Fig. 1
where we show the behavior of the average position 〈x〉 and
average system energy E sys = 〈H sys〉 for three different val-
ues of the relaxation time (γ −1 = 8, 50, and 200 fs); note,
in particular, that the energy decay is not Markovian for the
strongest coupling considered. It is clear from Fig. 1 that
both eLTDH and eLCSA perform rather well and correctly
reproduce the numerically exact MCTDH results. This is true
(more or less to the same extent) for all the coupling strengths
considered. This is even more impressive if the very small
computational cost of the two methods is taken into account:
for instance, the longest eLCSA calculations in Fig. 1 took
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FIG. 1. Small amplitude motion for different relaxation times (γ −1 =
8, 50, 200 fs from top to bottom): behavior of the average position (left) and
system energy (right). Thick red lines for MCTDH results, black and blue
lines for eLTDH and eLCSA.
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FIG. 2. Width of the wavepacket along x for γ −1 = 200 fs. Lines as in
Fig. 1.

about 2–3 min on a standard PC. The quality of the results is
not limited to the most averaged quantities, as can be seen
in Fig. 2 where we plot for instance the behaviour of the
width �x of the wavepacket along the subsystem coordinate,
�x2 = 〈x2 − 〈x〉2〉.

B. Sticking dynamics

In modeling sticking of an atom to a cold surface (ac-
tually a T = 0 K surface) we use the same Hamiltonian as
above but different initial conditions. The bath, then, is meant
to represent a set of surface phonons, even though the cho-
sen Ohmic spectral density is far from being realistic for such
a process. The initial state of the system is chosen to be a
Gaussian wavepacket localized far from the surface (i.e., at a
large x) and with momentum directed towards it, and the bath
is in its ground-state. As the projectile gets closer to the sur-
face, where the system-bath coupling is not constant, energy
is transferred to the bath and “vibrational” relaxation occurs.
The projectile wavepacket splits into two components, one of
which is (inelastically) reflected by the surface and the other
gets stuck to it. Because of that, this simple process cannot be
described within the simple mean-field theory (TDSCF).

For this problem we considered different values of the
coupling strength (described by the relaxation time γ −1 in our
Ohmic model) and different collision energies, and in each
case looked at the energy transfer by monitoring the system
and the interaction energy during the dynamics. The stick-
ing coefficient was obtained as the mean value of the pro-
jector onto bound states at a time sufficiently long that the
inelastically scattered wavepacket already left the interac-
tion region. This poses severe limitations at very low colli-
sion energies—the deep quantum regime—where (very) large
baths are needed to get rid of the recurrence problem, and a
time-energy mapping of the wavepacket dynamics is manda-
tory. As this would be much beyond the purpose of the present
paper, we limit ourselves to reasonably high energies where
numerically exact MCTDH calculations are still feasible and
physically meaningful, and report the results in terms of av-
erage collision energy Ecoll of initial wavepackets with �E
� Ecoll. Notice also that the dynamics was followed for rea-
sonably small times only, i.e., sufficiently long to observe
sticking but not enough to resolve relaxation of the trapped
component to the final, ground vibrational state.

Calculations were performed by discretizing the con-
tinuous energy spectrum, i.e., employing the energy eigen-
states obtained with a primitive DVR grid large enough to
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FIG. 3. Sticking dynamics for γ −1 = 1000 fs and Ecoll = 75 meV. Top left
panel: average system position (solid lines) plus/minus one standard devia-
tion (dashed lines). Top right: (corrected) system energy loss. Bottom panels:
interaction (left) and bath (right) energy. Thick red lines for MCTDH results,
black and blue lines for LTDH and eLCSA, respectively.

contain the initial wavepacket and dense enough to represent
the largest kinetic energy of interest, and convergence of re-
sults was checked against grid parameters and number of en-
ergy eigenstates included in the expansion. No complex ab-
sorbing potential was added at the grid edge since the chosen
grids were large enough to converge the sticking probability
before the edge-reflected component of the wavepacket could
come back to the interaction region. Some of the results of
such calculations are reported in Figs. 3–5. In Fig. 3 we re-
port the average position 〈x〉, the average energy loss (defined
to be E sys

I (t) − E sys
I (0), where E sys

I = E sys + 1/2E int is the
“democratically corrected” system energy50) and the average
interaction energy as obtained from MCTDH, eLTDH, and
eLCSA calculations, for a collision energy Ecoll = 75 meV
and a relaxation time γ −1 = 1000 fs. We see that the agree-
ment between exact and approximate calculations is not as
good as in Sec. IV A. This is particularly true for the aver-
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FIG. 4. Sticking coefficient for the gas-surface model described in the main
text. Left and right panels for γ −1 = 100 and 1000 fs, respectively. Star sym-
bols are for MCTDH results, circles for LTDH, and squares for eLCSA. Lines
are guides for the eyes.
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FIG. 5. The behavior of the sticking coefficient for several values of the re-
laxation time γ −1 in the range 100 − 1000 fs (from top to bottom), as com-
puted at the eLCSA level.

age energy loss which is always found lower than the exact
one. This reflects on the sticking process itself, as the re-
sulting sticking coefficient, shown in Fig. 4 for several col-
lision energies, turns out to be slightly less than half the ex-
act one. This is clearly a limit of the present ansatz which
does introduce system-bath correlations (in contrast to TD-
SCF) but is not able to “switch” to a more localized picture
of the energy-transfer as relaxation proceeds. Such failure de-
pends only weakly on the collision energy and the coupling
strength, as it is evident from Fig. 4 where both a weak and
a strong coupling case are reported (left and right panels for
γ −1 = 100 and 1000 fs, respectively).

What is surprising is the close agreement between
eLTDH and eLCSA results even in this not fully satisfac-
tory case. This seems to exclude the lack of flexibility in the
coherent-state description of local bath states. Indeed, origi-
nal LCSA proved to be quite accurate in describing the dy-
namics, it only lacked sufficient numerical stability to be use-
ful for extracting sticking coefficients.47 In contrast, eLCSA
results presented here (and analogously for eLTDH) are sta-
ble against any change in numerical and physical parame-
ters, and can already be used for semiquantitative studies.
Figure 5, for instance, reports the behavior of the sticking
coefficient for the present model as obtained at the eLCSA
level of theory; the whole set of calculations for filling the
graph (all with 80 bath modes, large grids, long propagation
times, etc.) requires a few hours with standard computational
facilities.

V. DISCUSSION

We have shown in Sec. IV that reasonably good results
can be obtained with eLTDH/eLCSA, at the same computa-
tional cost of the original LTDH/LCSA methods. In particular
for LCSA the results have been obtained without the help of
the additional “damping” parameter which was introduced in
Ref. 46 to remove numerical instabilities of the method. De-
spite some interesting properties, indeed, the need for such a
parameter is of course an undesirable feature of the method.
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For instance, while in the case of the damped oscillations
such a parameter allows one to get very accurate results and
to remove the bath recurrence problem, in the sticking prob-
lem its presence, alas, causes the disappearance of sticking.47

Therefore, the results obtained here for such problem, though
giving only about half the exact sticking coefficient, are en-
couraging in that they suggest that there is still room for im-
provement, i.e., by properly choosing the system basis-set on
which performing the selection of configurations one can get
more accurate results without introducing numerical noise.
Such optimal choice depends on time and therefore we are
led to consider in a natural way the following “generalized”
LTDH/LCSA ansatz:

|�〉 =
∑

α

Cα |ψα〉 ∣∣φ1
α

〉 · · · ∣∣φk
α

〉 · · · ∣∣φF
α

〉
,

where {Cα, ψα, . . . , φk
α, . . .} are all dynamical variables (with

φk
α replaced by simple c-numbers zk

α in the LCSA case).
The ψα(t)’s would interpolate at any time t between the
two “limiting” situations where the system basis-set is lo-
calized/delocalized in configuration space, i.e., the cases of
LTDH/eLTDH discussed so far. The corresponding equations
of motion for the ψα’s are easily derived from the Dirac–
Frenkel variational principle and will be discussed and solved
in a forthcoming paper. Here we notice only that, even though
they require some additional computational effort, the gener-
alized (or fully time-dependent) LTDH/LCSA would be still
and by far numerically advantageous with respect to fully
multiconfiguration expansions. Indeed, they would preserve
the power-law scaling (linear scaling for the model Hamilto-
nian above) with respect to the bath size and would correctly
describe the important system-bath correlation, contrary, e.g.,
to simple TDSCF. In addition, the good agreement between
the eLTDH and eLCSA results suggests that it is not even
necessary to perform a full optimization of the bath single-
particle-functions, and in that case the considerable saving
of computational memory and time should allow us to eas-
ily treat thousands of bath DOFs as in the LCSA case.46 If
it turns out that the generalized methods are of such high
quality as the present results suggest, larger dimensional sub-
systems can be managed by further expanding the ψα’s in a
MCTDH-fashion, thereby leading to a clean, physically moti-
vated, easy-to-implement selection of configurations in a mul-
ticonfiguration expansion of the wavefunction of the whole
system.

VI. SUMMARY

We have implemented and used a variant of the LTDH
(also known as CC-TDSCF) and LCSA methods in which
the DVR subsystem states are replaced by energy eigenstates.
The methods have been applied to some dissipative prob-
lems and the results compared with those of numerically ex-
act MCTDH calculations. Given their low computational cost
and the remaining room for improvements the results suggest
that in the near future realistic system-bath problems might
be addressed quantitatively with present-day computational
facilities.
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