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The simulation of quantum dynamics calls for quantum algorithms working in first quantized grid
encodings. Here, we propose a variational quantum algorithm for performing quantum dynamics
in first quantization. In addition to the usual reduction in circuit depth conferred by variational
approaches, this algorithm also enjoys several advantages compared to previously proposed ones. For
instance, variational approaches suffer from the need for a large number of measurements. However,
the grid encoding of first quantized Hamiltonians only requires measuring in position and momentum
bases, irrespective of the system size. Their combination with variational approaches is therefore
particularly attractive. Moreover, heuristic variational forms can be employed to overcome the
limitation of the hard decomposition of Trotterized first quantized Hamiltonians into quantum gates.
We apply this quantum algorithm to the dynamics of several systems in one and two dimensions. Our
simulations exhibit the previously observed numerical instabilities of variational time propagation
approaches. We show how they can be significantly attenuated through subspace diagonalization
at a cost of an additional O(MN2) 2-qubit gates where M is the number of dimensions and NM is
the total number of grid points.

I. INTRODUCTION

Quantum mechanics is at the heart of most chemical
processes, whose description is generally based on elec-
tronic structure calculations combined with reaction rate
theories (typically for slow ground-state processes), or
else nuclear wavepacket dynamics (typically for ultrafast
photo-induced processes). Quantum tunneling can en-
hance chemical reaction rates [1, 2], and quantum effects
are manifest in all types of molecular spectroscopies [3].
As a more specific example, recent advances in photo-
chemistry have shown that the combination of various
spin excitons can increase the efficiency of photochem-
ical reactions [4]. As the fundamental understanding
of these chemical processes became necessary, femtosec-
ond [5, 6] and attosecond [7–9] time-resolved pump-probe
lasers were developed to follow, in real time, the mo-
tion of the nuclei and electrons, respectively. Along with
these experimental discoveries, advances in theoretical
approaches leaned towards the study of molecular pro-
cesses in a fully quantum mechanical way.

As a first step, this led to the development of integra-
tion methods to solve the time-dependent Schrödinger
equation (TDSE) [10–14]. However, even on modern su-
percomputers, this task is limited to molecules composed
of only a few atoms as the required computational re-
sources scale exponentially with the number of degrees
of freedom [1, 15, 16]. To reduce the computational
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cost, a compact basis representation of the system is re-
quired. A natural way of doing so is to work with a
time-dependent basis, which follows the evolution of the
system. This strategy has been applied to the solution of
the TDSE through the variational principle in the time-
dependent Hartree (TDH) [17, 18] and the more general
multi-configuration time-dependent Hartree (MCTDH)
approaches [19, 20]. In its exact formulation, MCTDH
maintains an exponential scaling in the number of ba-
sis functions. Further approximations were introduced
to reduce the basis set size and lower its computa-
tional costs. These approximations led to the Gaus-
sian MCTDH (G-MCTDH) [21], the multilayer MCTDH
(ML-MCTDH) [22–25] and an analogous Gaussian-based
ML-GMCTDH variant [26], the MCTDHn [27] and its
multi-reference extension (MR-MCTDHn) [15], the vari-
ational multiconfigurational Gaussian (vMCG) [28, 29],
as well as the coupled coherent states (CCS) approxima-
tion [30–32] and Multiple-Spawning [33, 34]. Despite this
impressive theoretical progress, accurate applications of
the foregoing algorithms remain restricted to molecules
with less than a few tens of collective degrees of free-
dom [1, 15, 34, 35].

An alternative path towards the efficient modeling of
quantum dynamics is to switch towards a new computa-
tional paradigm. In particular, quantum computers have
the potential to simulate quantum systems in polynomial
time and memory [36, 37]. Following Feynman’s thesis,
Wiesner [38] and Zalka [39] first designed a framework
to simulate molecular quantum dynamics on a digital
quantum computer with a grid encoding of real space.
This framework was then made concrete and applied to
the simulation of several small nuclear quantum systems
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in rectangular or harmonic potentials [40–44]. More re-
cently, it was also extended to the simulation of the non-
adiabatic dynamics of nuclear wavepackets [45, 46]. All
these approaches share the same circuit representation of
the time evolution operator, obtained from Trotter ap-
proximation of the latter [47]. However, in general, this
leads to very deep quantum circuits, which greatly ex-
ceed the capacities of present quantum hardware due to
their limited coherence times. This is particularly true
when the Hamiltonian is given in first quantization as,
in this case, an efficient encoding of even a single Trotter
step into a quantum circuit is cumbersome [45, 48, 49].
As a consequence, the type of implementable potentials
is restricted. For instance, all the works cited above only
present dynamics under potentials that can be defined
with a polynomial function of the position. It is worth
emphasising here that active research is undergoing to
implement Coulombic potentials. [49–52]

To address the issue of circuit depth, variational time
evolution (VTE) quantum algorithms were proposed. For
a comprehensive overview see for instance Refs. 53, 54.
Relying on an iterative exchange of information between
a classical and a quantum computer, these algorithms
allow to work with shallower quantum circuits of constant
depth in time. In particular, Li and Benjamin [55] first
showed how to use a variational principle to simulate the
real time dynamics of quantum systems and applied it to
a quantum Ising model.

The goal of the present work is to extend this approach
to the simulation of wavepacket quantum dynamics in
a grid-based encoding for general Hamiltonians given in
first quantization. We first recall the theory of variational
quantum time evolution and highlight the differences be-
tween the first and second quantization formalisms of
quantum mechanics within this context. We then discuss
the wavefunction representation and the potential of this
approach for a quantum advantage. We apply the quan-
tum algorithm in a quantum emulator for the simulation
of the dynamics of different systems in one dimension,
namely a free particle, a particle in a harmonic potential,
and a particle interacting with an Eckart barrier. As a
next step, we apply the algorithm to the evolution of a
wavepacket in a two-dimensional “Mexican hat” poten-
tial. Finally, we conclude and give an outlook on future
developments and applications.

II. THEORY

A. The time-dependent variational principle

The variational approach to quantum dynamics aims
to approximate the solution of the TDSE on a low-
dimensional submanifold of the full Hilbert space. The
trial wavefunction defined on this manifold |ψ(θ(t))〉 is
parameterized by a set of np time-dependent parame-
ters, θ(t) = {θ1(t), ..., θnp

(t)}. A time-dependent varia-
tional principle (TDVP) defines the optimal evolution of

the parameters within the submanifold of the full Hilbert
space. There exist different formulations of the TDVP.
For Kähler manifolds, i. e., when the tangent space is
a complex subspace [56], all the different formulations
lead to the same equations of motion for the variational
parameters. However, this is not the case for unitary
parameterizations of the type

|ψ(θ(t))〉 = U(θ(t)) |φ〉 , (1)

where |φ〉 is a reference state and U(θ(t)) is a unitary op-
erator (e.g., the quantum circuit) depending on real pa-
rameters θ(t) [56]. In this case, the equations of motion
differ and hold distinct properties such as the conserva-
tion of the norm or the energy. Recent works [53, 56–
59] promoted the use of the equations of motion derived
from the McLachlan variational principle due to of their
higher numerical stability [56]. For a given Hamiltonian
H, these equations, when accounting for a global phase
mismatch (see Ref. 53), read

Mθ̇ = V , (2)

with

Mkj = <
(
〈∂θkψ|∂θjψ〉 − 〈∂θkψ|ψ〉 〈ψ|∂θjψ〉

)
, (3)

and

Vk = =
(
〈∂θkψ|H |ψ〉 − 〈∂θkψ|ψ〉 〈ψ|H |ψ〉

)
. (4)

For a regular parametrization, Eq. (3) represents a
quantum metric (the Fubini-Study metric) in parame-
ter space. In conjuction with Eq. (3), Eq. (4) shows
that Eq. (2) results from the orthogonal projection of
the exact time-derivative of |ψ〉 on the variational mani-
fold. These equations of motion are used throughout this
work.

B. 1st vs 2nd quantization

The calculation of the Mkj and Vk matrix and vec-
tor elements are classically hampered by the high di-
mension of |ψ(θ)〉. Instead, they can be efficiently mea-
sured on a trial wavefunction encoded in the state of a
qubit register. In this case, the trial wavefunction |ψ(θ)〉
(see Eq. (1)) is defined by the variational parameters θ,
which enter the quantum circuit U as rotation angles
of the type RX(θk) = e−iθkX/2, RY (θk) = e−iθkY/2, or
RZ(θk) = e−iθkZ/2. Here, X, Y , and Z are the Pauli ma-
trices. The measurement of analytic gradients on quan-
tum computers was discussed in Ref. 60. Here, we de-
tail the technical differences between the algorithm for
Hamiltonians defined as a sum of Pauli operators and for
first quantized Hamiltonians encoded on a grid.

Consider the following general form for a variational
quantum circuit U(θ(t)) ≡ U(θ) comprising np parame-
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ters and acting on Nq qubits

|0〉
U1(θ1...θk−1)

Rσ(θk)
U2(θk+1...θnp

)
|0〉⊗Nq−1 /

with σ ∈ {X,Y, Z}. Then, ∂θkU(θ) can be computed
from the following quantum circuit

|0〉
U1(θ1...θk−1)

σ Rσ(θk)
U2(θk+1...θnp

)
|0〉⊗Nq−1 /

All matrix elements of M and V can therefore be written
as 〈φ|W†1OW2 |φ〉, where W1 ≡ W1(θ) and W2 ≡ W2(θ)
are unitary quantum circuits, andO is a general operator.

We start by considering the system Hamiltonian in
second quantization. After mapping the second quan-
tized operators to Pauli operators [61, 62], the Hamilto-
nian is written as a weighted sum of Pauli tensor strings,
H =

∑
p cpPp. With O = H, the general form of the

expectation value given above becomes

〈φ|W†1
∑
p

cpPpW2 |φ〉 =
∑
p

cp 〈φ|W†1W2,p |φ〉 , (5)

where W2,p = PpW2. Each term can then be efficiently
measured as [63]

〈φ|W†1W2,p |φ〉 ≡
|0〉 H • X • X 〈2σ+〉

|φ〉 / W2,p W1

(6)

In the Supplemental Material, we detail the steps of the
above quantum circuit, verifying Eq. (6).

In this work, however, we will focus on Hamiltonians
expressed in first quantization,

H =
p2

2m
+ V(r) , (7)

where p is the momentum, m the mass, and V(r) the
potential given as a function of the position r. H de-
scribes an M -dimensional systems. The time-evolution
is directly performed in momentum and position space,
discretized on a grid. The N points, per dimension, of
the grid are encoded in the basis states of Nq = log2(N)
qubits. The total number of qubits is then MNq. In this
case, no explicit transformation to a basis representation
is required, saving the numerical effort associated with
such computations, which would scale as the square of
the basis set size [64].

The expectation value of the Hamiltonian is now sim-
ply obtained from two sets of measurements, one in the
momentum basis and one in the position basis. This gives
a clear advantage in the calculation of the right-hand
side of Eq. 2, which requires measuring 〈ψ(θ)|H |ψ(θ)〉
and =(〈∂θkψ(θ)|H |ψ(θ)〉). The first one is straightfor-
ward and reduces to measuring the expectation values

〈ψ(θ)|p2 |ψ(θ)〉 and 〈ψ(θ)| V(r) |ψ(θ)〉. In practice, this
is obtained by repeatedly preparing and measuring the
state |ψ(θ)〉 in the computational (position) basis. For
each outcome of the binary representation of r, V(r) is
classically computed and 〈ψ(θ)| V(r) |ψ(θ)〉 is obtained
by averaging over all realizations of V(r). The same is
done for the kinetic term by measuring in the momentum
basis, i. e., applying a quantum Fourier transform (QFT)
right before the measurement (see Ref. [45]).

Let’s now consider the calculation of the components
Vk,

=
(
〈∂θkψ(θ)|H |ψ(θ)〉

)
=

1

2
<
(
〈φ|W(θ)†HU(θ) |φ〉

)
,

(8)

where |∂θkψ(θ)〉 = − i
2W(θ) |φ〉. In what follows, we sim-

plify the notations of the quantum circuits as U = U(θ)
and W =W(θ).

The scalar <
(
〈φ|W†HU |φ〉

)
is obtained in a similar

way as in the second quantization case, namely with the
circuit of Eq. (6) but by measuring both the ancilla qubit
(in the computational basis) and the variational state
register. This is given by the following quantum circuit,

|0〉 H • X • X H

|φ〉 / W U
We prove this by first considering the potential part of
the Hamiltonian. In this case, 〈φ|W†VU |φ〉 is calculated
from E[(−1)sV(j)] where s is the measurement outcome
of the ancilla qubit, while j is that of the register. In-
deed, the probability of measuring states s and j from
the above circuit is

p(s, j) =
∣∣ 〈s, j| ( |−〉 〈−| ⊗W + |+〉 〈+| ⊗ U

)
|0, φ〉

∣∣2
=

1

4

∣∣ 〈j| U |φ〉+ (−1)s 〈j|W |φ〉
∣∣2

=
1

4

(
| 〈j| U |φ〉 |2 + | 〈j|W |φ〉 |2

+ 2(−1)s<
(
〈φ|W† |j〉 〈j| U |φ〉

))
. (9)

With this, we finally obtain

E[(−1)sV(j)] =
∑
s,j

(−1)sV(j)p(s, j)

=
∑
j

V(j)<
(
〈φ|W† |j〉 〈j| U |φ〉

)
= <(〈φ|W†VU |φ〉) . (10)

The same can be shown for the kinetic part of the Hamil-
tonian, provided the register is measured in the momen-
tum basis, i. e., by introducing a QFT before the mea-
surement.

Note that the encoding (real space discretization on a
grid) employed here is different from the discrete variable
representation (DVR) of Ref. 65. We argue in favor of the
present grid encoding as the DVR representation leads to
an exponentially growing number of Hamiltonian terms.
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C. Wavefunction representation and quantum
advantage

The quantum advantage of the approach presented
herein relies on the possibility to accurately approxi-
mate the wavefunction with a quantum computer, using
a number of variational parameters that is much smaller
than the size of the full Hilbert space. The number of
measurements to get the necessary expectation values
for Mkj and Vk of Eqs. (3)-(4) is given by the number
of terms in the Hamiltonian. This is an advantage over
classical algorithms where the cost of computing those
expectation values is dictated by the more costly wave-
function representation.

The parameters can then be propagated efficiently ac-
cording to Eq. (2), as long as the number of parame-
ters scales favorably (i.e., polynomially) with the system
size. In this case, the system dynamics can be accu-
rately described on a low-dimensional submanifold of the
full Hilbert space by a suitable variational wavefunction,
which can be efficiently implemented as a quantum cir-
cuit.

When working in the first quantization framework, the
translation of a Trotter operator T into a quantum cir-
cuit can be very costly in terms of the gate count. In-
deed, an efficient decomposition of T = exp(−iV(r)t) for
an arbitrary potential energy function V(r) into a set of
quantum gates is not guaranteed to exist. In fact, the
quantum circuit for encoding a general function requires
either exponentially many gates or ancilla qubits to per-
form quantum arithmetic. In the latter case, the targeted
function is generally approximated and the number of an-
cilla qubits scales exponentially with the inverse of the
desired accuracy [45, 48, 49, 66].

On one hand, this speaks in favor of the use of vari-
ational approaches for time-propagation over Trotter-
based algorithms since the former does not require the
implementation of an accurate (and costly) gate decom-
position of the operator T . On the other hand, finding
appropriate, physically motivated, variational Ansätze is
still a challenge, and heuristic, hardware efficient ap-
proaches are therefore often preferred. Hence, as a first
demonstration in low dimensions, we will limit ourselves
to heuristic variational forms, which can be implemented
on quantum hardware. These can be systematically im-
proved by repeating the same quantum circuit units with
independent parameters, i. e., by increasing the circuit
depth d. The different heuristic circuits employed in this
work are detailed in the Supplemental Material.

III. RESULTS

In this section, we study the performance of the quan-
tum algorithm for concrete applications in first quantiza-
tion. We seek to perform this study without introducing
any quantum hardware noise bias, e. g., gate infidelities,
relaxation time, or statistical sampling. Hence, the sim-

ulations are obtained in a perfect classical emulator of
a quantum computer. The expectation values are com-
puted from matrix-vector multiplications. For this rea-
son, we approximate the wavefunction derivatives with
forward finite differences of step-size 10−8. We show in
the Supplemental Material that this step-size leads to
converged results. The equations of motion (Eq. (2)) are
solved with a least-squares approach as implemented in
NumPy [67] with a cutoff ratio for small singular val-
ues, or reconditioning number, arbitrarily set to 10−6.
To solve the ordinary differential equations, we employ
a state-of-the-art adaptive Runge-Kutta solver of order
5(4) available in SciPy-routines [2].

A. Position and momentum spaces

We first test the VTE approach in one-dimensional sys-
tems defined on a grid as described in Ref. [45] and in the
Supplemental Material. The length of the box is L = 14.
We study three different problems: a freely moving parti-
cle, a particle in a harmonic potential (harmonic oscilla-
tor), and a particle colliding with an Eckart barrier. The
Hamiltonians for these three systems are given by

HFP =
1

2m
p2 , (11)

HHO =
1

2m
p2 + c1x

2 , (12)

HEB =
1

2m
p2 +

c2

cosh2(c3x)
. (13)

We work in atomic units, taking m = 1, c1 = 1, c2 = 13,
and c3 = 3/2. In all cases, the state is initialized to a
Gaussian wavepacket,

ψ0(x) =
1

A exp

(
− 1

4

(
x− x0
B

)2)
exp(ip0x) , (14)

with A the normalization factor, B the width of the
wavepacket, and p0 and x0 the initial momentum and
position, respectively. The evolution is carried out for a
total time ttot = 1.5. Snapshots of the exact time evolu-
tion (from exact exponentiation of the Hamiltonian ma-
trix) for each of the three systems are shown in Figs. 1a-c
for times t = 0, 0.45, 0.91, and 1.5.

The space is discretized with Nq = 6 qubits (corre-
sponding to 64 grid points). In this case, the full Hilbert
space can be described by nfullp = 2(26 − 1) = 126 real
parameters. It is clear that a quantum advantage can
only be achieved with a much smaller number of vari-
ational parameters, satisfying np � nfullp . We perform
VTE simulations for each of the three aforementioned
systems with the variational form vf1 (see Supplemen-
tal Material) for different depths (or circuit repetitions,
see Supplemental Material). Consistent with Eq. (1), we
denote the variational form by U(θ).

The initial parameters θ0 are found by maximizing the
fidelity F(t = 0) = | 〈ψ0|U(θ0)|0〉 |2, where |0〉 is the vac-
uum state. The initial conditions are (x0, p0) = (−3.5, 5)
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b ca
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g h

|0i⌦Nq / U(✓) D

|0i⌦Nq / U(✓)

|0i⌦Nq / U(✓) QFT

position
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local diagonal

i

FIG. 1. VTE dynamics for the three one-dimensional systems considered in this study.
top panels Snapshots of the modulus square of the exact wavefunctions at times t = 0.00, 0.45, 0.91, and 1.5 for a) the free
particle, b) the harmonic oscillator, c) the Eckart barrier.
middle panels Fidelity, F as a function of time, t, of the VTE dynamics in position (x) and momentum (p) space for d) the
free particle, e) the harmonic oscillator, f) the Eckart barrier. The results are obtained with 6 qubits and variational form vf1
at depth d (with corresponding number np of variational parameters).
bottom panels Fidelity, F as a function of time, t, of the VTE in LD space for g) the harmonic oscillator, h) the Eckart barrier.
The results are obtained with 6 qubits and variational form vf2 at depth d (with corresponding number np of variational
parameters). In the case of the Eckart barrier, the fidelity results are given for different cutoffs, cut, of the Hamiltonian
coefficients used to obtain the diagonalization unitary (see main text). Panel i) shows the different quantum circuits employed
in position, moment, and diagonal space.

for the free particle and the Eckart barrier, and (x0, p0) =
(−3.5, 2) for the harmonic oscillator. In all cases, the

width of the initial wavepacket is set to B = 1/
√

2.

The fidelities F(t) = | 〈ψ0|eiHtU(θ(t))|0〉 |2, as a func-
tion of the simulation time, are shown in Fig. 1d-e. These
results demonstrate that, in general, the number of vari-
ational parameters required to maintain a fidelity above
95% throughout the entire simulation time always ap-
proaches nfullp , particularly so when tackling hard prob-
lems such as the scattering on the Eckart barrier, quench-
ing the potential for quantum advantage. The evolution
of all parameters is also given in the Supplemental Mate-
rial and shows sharp changes in their trajectories for each
of the three systems. To our understanding, supported
by the detailed study given in the Supplemental Mate-
rial, the above observations can be rationalized as follows.
The chosen heuristic variational forms have enough flex-
ibility to accurately and efficiently, i. e., with few vari-
ational parameters, approximate the targeted wavefunc-
tions at all times of their dynamics. Therefore, the loss of
accuracy observed throughout the different simulations is
not due to the variational forms, but is an inherent effect
of the VTE. When the number of variational parameters

is insufficient, the dynamics strongly depends on the nu-
merical setup of the simulation (grid mesh, recondition-
ing number, initial parameters, etc.). These observations
are in agreement with Ref. 65 where strong numerical in-
stabilities were also put forward. Surprisingly, the correct
dynamics are always recovered when increasing the num-
ber of variational parameters. In this case, the algorithm
is stable. In addition, we observe that the more complex
the dynamics get, the more parameters are needed.

We repeated our simulations in the momentum rep-
resentation by defining a variational Ansatz of the form
Up(θ) = QFTU(θ) (see also Fig. 1i). The results are
given in Fig. 1d-f. As expected, the evolution of the
free particle can now be performed accurately with very
few parameters, since the introduced momentum basis
diagonalizes the Hamiltonian. Interestingly however, the
evolution is also smoother in the case of the harmonic
oscillator and the Eckart barrier. Note that we do not
expect the harmonic oscillator to be symmetric in posi-
tion and momentum representations, since the position
and momentum grids are different and the correspond-
ing potentials come with different prefactors. In the Sup-
plemental Material, we show that this momentum space
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representation improves the dynamics compared to the
position space in all cases considered in this work. Re-
sults obtained by combining both the position and the
momentum representation in a common Ansatz are also
given in the Supplemental Material but do not show sub-
stantial improvements.

In order to search for efficient heuristic Ansätze, we
systematically change the characteristics of the varia-
tional circuit, namely the single-qubit rotations, the type
of entangling gates, and the connectivity of the entan-
gling block (see Supplemental Material for details). We
apply all these different variational forms to the simula-
tion of the wavepacket interacting with the Eckart bar-
rier. The results presented in the Supplemental Material
show that, in general, the accuracy is improved by work-
ing in the momentum representation and increasing the
circuit depth. However, no clear trend for the design of
more efficient variational forms could be identified.

B. Local diagonal space

The introduction of unitary transformations that
achieve a (at least partial) diagonalization of the Hamil-
tonian seems essential to make the quantum VTE effi-
cient in the grid representation. As a demonstration of
this strategy, we first classically diagonalize the harmonic
oscillator and Eckart barrier Hamiltonians. We then map
the unitary matrix, made up of the eigenvectors sorted
by increasing order of energy, to a quantum circuit using
the isometry decomposition of Ref. 69 as implemented in
Qiskit [70]. The resulting circuits D are then appended
to the variational form as shown in Fig. 1i. To obtain
the results of Fig. 1g-h, we add D to the variational form
vf2 (see Supplemental Material). Those results show a
high state fidelity over the entire simulation time. In
the case of the Eckart potential, we also tested unitaries
D′, which only perform a partial diagonalization of the
Hamiltonian. More specifically, prior to diagonalization,
we set to zero all matrix elements with absolute values
below cutoff thresholds of cut = 0.1 and 1.0. The density
of non-zero elements in the resulting Hamiltonian ma-
trix is then 0.98, 0.27, and 0.14 for cutoffs 0, 0.1, and
1.0, respectively. The results exhibit high accuracy for
all cutoff values as seen from Fig. 1h.

These preliminary tests demonstrate the potential of
the diagonalization step following the application of the
variational form. Of more interest is the application of
this approach to multidimensional systems. In particu-
lar, we see that an approximate diagonalization of the
system Hamiltonian can already give a sufficiently accu-
rate and stable time evolution. This suggests that, for a
multi-dimensional configuration space, an improvement
can already be achieved by diagonalizing each dimension
independently, i. e., by fixing all but one coordinate of
the Hamiltonian. This leads to a quantum circuit of the

form

|0〉⊗Nq /

U(θ)

D1

|0〉⊗Nq / D2

...

|0〉⊗Nq / DM

(15)

We call the space obtained from this basis transformation
the local diagonal (LD) space. In the next paragraph, we
discuss the scaling of this approach.

As stated earlier, we employN grid points, correspond-
ing to Nq = log2(N) qubits, for each of the M dimen-
sions. Hence, the total number of qubits is MNq. The
total size of the problem is NM , prohibitively large for
direct classical simulations in high dimensions. Efficient
algorithms should scale to low polynomial order in N
and M . Our approach first requires the diagonalization
of M matrices of size (N,N). This step generally scales
as O(N3). The resulting unitary is then translated into
a quantum circuit. The classical scaling of this operation
is O(NqN

3) [71], leading to O(N2) CNOT gates [69].
Finally, the VTE is performed with a variational form
comprising np parameters. The partial diagonalization
step ensures the scaling of np to be of low polynomial or-
der, i. e., O

(
(MNq)

P
)

where P is small enough such that

(MNq)
P � NM . At each time step of the VTE, the

equations of motion are reconstructed with O(n2p) mea-

surements and solved classically at cost O
(
n3p
)
. Recent

approaches such as the one of Ref. 72 focus on reducing
the scaling in np for obtaining the M matrix and could be
extended to the present case. Finally, we obtain an effi-
cient hybrid quantum-classical time evolution algorithm
with polynomial scaling in N and M .

As a proof of concept, we test this approach on the
evolution of a two-dimensional system on a Mexican Hat
potential energy surface (PES). The Hamiltonian reads

HMH =
1

2m
(p2x + p2y) + c4r

4 − c5r2 , (16)

with r2 = x2 + y2, c4 = 0.1, c5 = 1, and again m = 1.
The space is discretized with 8 qubits (4 per dimension),
corresponding to a total of 256 grid points. Note that
the Hilbert space can be fully represented by 510 real
parameters. The wavepacket is evolved in the region of
space x ∈ [−5, 5] and y ∈ [−5, 5]. It is initialized at
(x0, y0) = (−3.0, 0) with no initial momentum and width
σx = σy = 1. The momentum increases in subsequent
time steps as the wavepacket slides down the brim of the
PES. A graphical representation of the system is given
in Fig. 2a together with snapshots of the exact evolution
for times t = 0, 0.91, 1.8, and 3.0.

We simulate the quantum dynamics with VTE up
to ttot = 3.0, employing the same settings as before,
and using both the position and the LD Ansatz. The
one-dimensional Hamiltonians Hx = H(x, 0) and Hy =
H(0, y) are diagonalized to get the quantum circuits Dx
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t

a b

c

FIG. 2. VTE dynamics of a two-dimensional system, representing a wavepacket evolving on a “mexican hat” potential.
a) 3-dimensional representation of the system at the top and, at the bottom, snapshots of the modulus square of the exact
wavefunction at times t = 0.00, 0.91, 1.8, and 3.0.
Beside are the results of the VTE dynamics obtained in b) the position space and c) the LD space. The fidelity, F as a function
of time, t, is obtained with 8 qubits and variational form vf1 at depth d (with the corresponding number np of variational
parameters).

and Dy. For both the evolutions in position and LD
space, the parameterized part of the quantum circuit
U(θ) corresponds to the variational form vf1 with depth
20 and depth 25 (336 and 416 parameters, respectively).
The results are displayed in Fig. 2b and c. Signifi-
cant improvements are obtained in diagonal space. Note
that these results were obtained from a choice of one-
dimensional Hamiltonians that are very simple to diag-
onalize. They could be improved even further by ex-
ploiting symmetries of the system or by diagonalizing
low-dimensional mean-field Hamiltonians.

IV. CONCLUSIONS

In this paper, we introduced a quantum VTE algo-
rithm to perform nuclear wavepacket dynamics on a grid
in first quantization.

The potential quantum advantage of the present ap-
proach resides in the favourable scaling in the computa-
tional resource (number of qubits), which grows only log-
arithmically with the number of grid points considered.
In addition, the variational algorithm manifests a crucial
advantage compared to Trotter-like quantum approaches
to this problem class, namely the fact that it does not
require the direct implementation of the time-evolution
operator (exponentiating the Hamiltonian) in the qubit
register. This is of paramount importance as construct-
ing such a circuit for Hamiltonians in first quantization
is a very unpractical and resource demanding task. Fur-
thermore, we stressed the advantage of our method in re-
lation to the need of sampling expectations values in only
two bases representations (position and momentum), ir-

respective of the system size. In fact, this constitutes an
important advantage compared to previous implementa-
tions of the same VTE quantum algorithm, e. g., in sec-
ond quantization or in the DVR representation. This
is of particular relevance knowing that the high number
of measurements required to perform the VTE becomes
quickly impractical when increasing the dimensionality
of the problem [62, 72, 73].

We studied the performance of the quantum algo-
rithm in classical emulations for several one- and two-
dimensional systems. In general, we observed strong
numerical instabilities when performing the dynamics
with a minimal number of variational parameters. In
fact, the number of parameters needed to maintain the
required accuracy throughout the dynamics often ap-
proaches the size of the full Hilbert space, hampering
any potential quantum advantage. However, we could
demonstrate that the accuracy and efficiency of the quan-
tum algorithm can be further improved by expressing the
variational quantum circuit in a problem specific basis.
This basis is obtained by diagonalizing each dimension
of the system independently, without introducing signif-
icant computational overhead. We discussed the overall
cost of the proposed approach, which shows an effective
polynomial scaling in both the number of grid points per
dimension, N , and the number of system dimensions, M
(for a total of NM grid points).

In conclusion, the quantum dynamics algorithm intro-
duced in this paper constitutes an important step for-
ward in the efficient simulation of the dynamics of com-
plex, multidimensional quantum systems with near-term,
noisy, quantum computers. These are notoriously hard to
simulate classically due to the exponential scaling of the
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resources, offering therefore an ideal playground to show-
case quantum advantage. Furthermore, our approach can
be easily extended to the simultaneous treatment of elec-
tronic and nuclear degrees of freedom, opening up new
opportunities for the simulation of non-adiabatic dynam-
ics beyond the Born-Oppenheimer approximation.
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E. D. L. Torre, D. Ding, E. Dumitrescu, I. Duran, P. Een-
debak, M. Everitt, I. F. Sertage, A. Frisch, A. Fuhrer,
J. Gambetta, B. G. Gago, J. Gomez-Mosquera, D. Green-
berg, I. Hamamura, V. Havlicek, J. Hellmers,  L. Herok,
H. Horii, S. Hu, T. Imamichi, T. Itoko, A. Javadi-Abhari,
N. Kanazawa, A. Karazeev, K. Krsulich, P. Liu, Y. Luh,
Y. Maeng, M. Marques, F. J. Mart́ın-Fernández, D. T.
McClure, D. McKay, S. Meesala, A. Mezzacapo, N. Moll,
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Supplementary Information for: Quantum algorithms for grid-based variational time
evolution

I. ONE-ANCILLA QUBIT MEASUREMENT PROCESS

In this section, we recall the verification of the following equation:

〈φ|W†1W2,p |φ〉 ≡
|0〉 H • X • X 〈2σ+〉

|φ〉 / W2,p W1

. (S1)

The circuit steps can be written as follows:

1. |φ〉 |0〉 −→ 1√
2
|φ〉 |0〉+ 1√

2
|φ〉 |1〉

2. 1√
2
|φ〉 |0〉+ 1√

2
|φ〉 |1〉 −→ 1√

2
|φ〉 |0〉+ 1√

2
W2,p |φ〉 |1〉

3. 1√
2
|φ〉 |0〉+ 1√

2
W2,p |φ〉 |1〉 −→ 1√

2
W1 |φ〉 |0〉+ 1√

2
W2,p |φ〉 |1〉

4. Measuring the expectation value of σ+ = |0〉 〈1| on the ancilla qubit leads to

〈σ+〉 =
1

2

(
〈1| 〈φ|W†2,p + 〈0| 〈φ|W†1

)
|0〉 〈1|

(
U |φ〉 |0〉+W2,p |φ〉 |1〉

)
. (S2)

Since 〈1|0〉 = 〈0|1〉 = 0, we obtain

〈σ+〉 =
1

2
〈φ|W†1W2,p |φ〉 . (S3)
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II. HEURISTIC VARIATIONAL FORMS

The different variational forms employed in this work are summarized in Tab. I. They all comprise alternating layers
of single qubit rotations and entangling blocks. They differ in the choice of single qubit rotation gates, entangling
gates, and coupling map, i. e., in the geometrical way the qubits are coupled to each other. In the linear coupling
map, each qubit is coupled to its two nearest neighbors only. The circular map is similar but adds a coupling between
the first and last qubits. Finally, in the full coupling map, each qubit is coupled to all other qubits. For the sake of
clarity, Fig. S1 gives concrete examples of the resulting circuits for each variational form for four qubits.

Name Single qubit gates Entangling gates Coupling map # params. for 6 qubits

vf1 RY RZ

•

Z
linear

depth 5: 72
depth 8: 108

vf2 RY RZ

•

Z
full

depth 5: 72
depth 8: 108

vf3 RY RZ

•

Z
circular

depth 5: 72
depth 8: 108

vf4 RY RZ

•
linear

depth 5: 72
depth 8: 108

vf5 RX RZ

•

Z
linear

depth 5: 72
depth 8: 108

vf6 RY RZ

• •

RZ

linear
depth 3: 69
depth 5: 103

vf7 RY RZ

• •

RZ

• •

• •

RZ

linear
depth 3: 81
depth 4: 102

vf8 RY RZ

•

Z

• •

RZ

linear
depth 2: 70
depth 8: 99

TABLE I. Definitions of the different variational forms employed throughout this work. The blue colour highlights a parame-
terized gate. In the last column, we give the number of parameters for the short and long depths circuits used in Section III.
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RY RZ • RY RZ

RY RZ Z • RY RZ

RY RZ Z • RY RZ

RY RZ Z RY RZ

⇥d

variational form 1

RY RZ • • • RY RZ

RY RZ Z • • RY RZ

RY RZ Z Z • RY RZ

RY RZ Z Z Z RY RZ

⇥d

variational form 2

RY RZ • Z RY RZ

RY RZ Z • RY RZ

RY RZ Z • RY RZ

RY RZ Z • RY RZ

⇥d

variational form 3

RY RZ • RY RZ

RY RZ • RY RZ

RY RZ • RY RZ

RY RZ RY RZ

⇥d

variational form 4

RX RZ • RX RZ

RX RZ Z • RX RZ

RX RZ Z • RX RZ

RX RZ Z RX RZ

⇥d

variational form 5

RY RZ • • RY RZ

RY RZ RZ • • RY RZ

RY RZ RZ • • RY RZ

RY RZ RZ RY RZ

⇥d

variational form 6

RY RZ • • RY RZ • • RY RZ

RY RZ RZ • • RY RZ • • • • RY RZ

RY RZ RZ • • RY RZ RZ • • RY RZ

RY RZ RZ RY RZ RZ RY RZ

⇥d

variational form 7

RY RZ • RY RZ • • RY RZ

RY RZ Z • RY RZ RZ • • RY RZ

RY RZ Z • RY RZ RZ • • RY RZ

RY RZ Z RY RZ RZ RY RZ

⇥d

variational form 8

FIG. S1. Quantum circuits for each variational form with depth d on 4 qubits. The blue colour highlights a parameterized
gate.
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III. COMPARING VARIATIONAL FORMS

One of the main advantages of the variational approach described in this work for first quantized Hamiltonians is
the possibility to perform the dynamics without explicitly including the Hamiltonian in the quantum circuit. Instead,
heuristic variational forms are exploited. There exist many ways the heuristic variational forms can be defined. Here,
we test several ones for the dynamics of the nuclear wavepacket colliding with an Eckart barrier (6 qubits) and
compare the resulting fidelities over the simulation time. All variational forms are defined in the first section of this
Supplemental Material. From the results shown in Fig. S2 one can see that, in general, an increase in accuracy is
obtained by enlarging the depth and by going to momentum space. However, no clear trends can be identified as to
how to construct the variational form. Nonetheless, variational forms 1 and 5 (with linear connectivity of controlled-Z
entangling gates), seem to generally perform the best.

FIG. S2. Fidelity of the variationally time-evolved wavefunction with respect to the exact one as a function of time for top-
left all variational forms with short depth in position space, top-right all variational forms with short depth in momentum
space, bottom-left all variational forms with large depth in position space and bottom-left all variational forms with large depth
in momentum space. The specific depths and corresponding number of parameters are given in Tab. I together with the
characteristics of each variational form. These results are obtained for the case of the Eckart barrier with 6 qubits.
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IV. TIME EVOLUTION OF THE VARIATIONAL PARAMETERS

In this section, we show the dynamics of the parameters obtained with the different VTEs to supplement the fidelity
results shown in the main text. In Fig. S3, we report the evolution in position space, in Fig. S4 those in momentum
space, and, finally in Fig. S5, the evolutions in local diagonal space. The first two cases (position and momentum)
are obtained with variational form vf1, while in the last case (local diagonal), we use variational form vf2.

For all systems, in position space, we observe sharp changes in the dynamics. In general, the parameter values
also diverge with time. The same observations can be made in momentum space for the harmonic oscillator and the
Eckart barrier.

Whenever the circuit diagonalizes the Hamiltonian as in Fig. S4(a) and Fig. S5(a) and (b), the parameter evolutions
become smooth or even trivial. This is unsurprising as, in this case, there is no transfer of amplitudes but only evolution
of the phases. Note that in Fig. S5(b), when cut > 0, the partial diagonalization of the Hamiltonian suffices to ensure
a smoother evolution of the parameters.

(a) Free particle (b) Harmonic Oscillator (c) Eckart barrier

FIG. S3. Time evolution of the variational parameters for each one-dimensional system obtained with variational form vf1 in
position space and at given depth, d (with np variational parameters).
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(a) Free particle (b) Harmonic Oscillator (c) Eckart barrier

FIG. S4. Time evolution of the variational parameters for each one-dimensional system obtained with variational form vf1 in
momentum space and at given depth, d (with np variational parameters).

(a) Harmonic Oscillator (b) Eckart barrier

FIG. S5. Time evolution of the variational parameters for two of the one-dimensional systems obtained with variational form
vf2 in local diagonal space and at given depth, d (with np variational parameters), and cutoff value cut.
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V. STUDY ON THE ACCURACY OF THE TIME EVOLUTION IN ONE DIMENSION

To better understand the origin of the errors occurring during the VTE, we perform additional numerical simula-
tions. Unless explicitly stated otherwise, the results of this section are obtained with variational forms in position
space.

We start with the Eckart barrier case. The first step is to identify whether the variational form is flexible enough to
represent the state at each time step. For this, we optimize the parameters obtained from VTE in 6 qubits with depth
5 and variational form vf1 to maximize F(t) at each time step (see definition in main text). The results displayed
in the top panel of Fig. S6 show that we can indeed get a better fidelity for times t > 0.8. This suggests that the
variational form is good enough to represent, with good accuracy, the exact wavefunction through the entire dynamics.

There exist several degenerate sets of variational parameters which represent the same wavefunction. In the bottom
panel of Fig. S6, we show how the accuracy of the dynamics can be affected by the choice the initial parameters.
For the three different trials displayed in Fig. S6, we initialize the parameters by maximizing F(t = 0). Each one of
these three optimization processes is initialized with random parameters and converges to above 99% fidelity. Fig. S6
clearly shows a difference in the fidelities of the dynamics for the three trials. However, we observe that choosing the
best set of initial parameters is non-trivial and cannot be made by simply looking at the initial fidelity or early time
observables such as the local-in-time error [1].

FIG. S6. Top: Fidelity of the variationally time-evolved wavefunction with respect to the exact one as a function of time (full
line) and after being optimized at each time step to maximize the fidelity (dotted line).
Bottom: Fidelity of the variationally time-evolved wavefunction with respect to the exact one as a function of time for three
different sets of initial parameters.
These results are obtained for the case of the Eckart barrier with 6 qubits and variational form vf1, depth 5.

As a second step, we aim to study the effect of the different numerical parameters on the accuracy. We choose
to work with the simplest system: a free particle. The space is discretized with 5 qubits. The initial conditions are
(x0, p0) = (0, 5). The width of the initial wavepacket is set to B = 1/

√
2. The parametrized circuit corresponds to

variational form vf2 with depth 3.
We first run the VTE for different values of the finite difference step size, ε. The results are displayed in Fig. S7,

showing identical fidelities in the relevant part of the evolution when the accuracy is above 95%.
We then fix ε back to its original value of 10−8 and change the reconditioning number, rc, the ratio for cutting off

small singular values in the least-squares algorithm. The results displayed in Fig. S8 show that the fidelity increases
with smaller rc. This implies numerical errors coming from instabilities in the inversion of the matrix M when solving
Eq. 2 (main text).

We then study the performance of the ordinary differential equation solver. We employ the same Runge-Kutta
5(4) solver, but now fix the maximum time step to 10−4, and compare to an explicit Runge-Kutta solver of order 8
(DOP853) [2]. As shown in Fig. S9, the results of these two simulations are identical in the first part of the dynamics
(before the accuracy drops below 90%) and differ afterwards.
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FIG. S7. Fidelity of the variationally time-evolved wavefunction with respect to the exact one as a function of time and for
different values of the finite difference step, ε. These results are obtained for the case of the free particle with 5 qubits and
variational form vf2, depth 3.

FIG. S8. Fidelity of the variationally time-evolved wavefunction with respect to the exact one as a function of time. Different
ratios, rc, for cutting off small singular values are employed. These results are obtained for the case of the free particle with 5
qubits and variational form vf2, depth 3.

Finally, we vary the initial width B of the wavepacket. Interestingly, we observe that the results are much improved
when increasing the initial width (see Fig. S10). The latter influences the overall spread of the wavepacket during

the evolution. The difference between initial and final width is 0.841, 0.148 and 0.028 when B = 1/
√

2, B = 2/
√

2

and B = 3/
√

2, respectively. These results suggest that the spread of the wavepacket is difficult to capture with the
grid-based VTE.

To validate those observations, we run the VTE of a wavepacket oscillating in a harmonic potential without spread.
The space is discretized in 6 qubits as in the simulations of the main text. We also keep the same initial conditions
(x0, p0) = (−3.5, 2), and the same variational form, vf1 depth 5 in position space. This time, however, the initial
width is taken to be B = Bgs = 0.6, where Bgs is the width of Hamiltonian’s ground state. Fig. S11 confirms our
previous observations: the results in the case of a non-changing width are much improved compared to the results of
the main text in which the wavepacket’s width changes over time. This leads to the conclusion that the VTE performs
reasonably well (with few parameters) for simple dynamics.

We then study the effect of increasing the precision in the grid mesh on the dynamics of the harmonic oscillator.
The initial conditions are the ones of the main text: B = 1/

√
2 and (x0, p0) = (−3.5, 2). The space is discretized with

6, 7 and 8 qubits corresponding to 64, 128 and 256 grid points, respectively. The variational form is always taken
to be vf1. The results are shown in Fig. S12. We employ both the position and momentum representations of the
wavefunction (indicated with x and p in Fig. S12, respectively). The different depths and corresponding number of
parameters are also indicated in the legend. The fidelities shown in Fig. S12 are computed from the variationally time
evolved wavefunctions with respect to the exactly evolved ones discretized on the same grid. In other words, both
the reference and the variational wavefunctions are expressed in the same number of qubits. In all cases, we see that
the correct dynamics are recovered in the limit of the number of parameters, np, approaching the size of the Hilbert
space. In the momentum space, the number of parameters needed to maintain an accuracy of F > 95% over the
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FIG. S9. Fidelity of the variationally time-evolved wavefunction with respect to the exact one as a function of time, obtained
with different ordinary differential equation solvers. The full line corresponds to the Runge-Kutta 5(4) solver used throughout
this work but with a maximal time step fixed at 10−4. On the other hand, the dashed line was obtained with an explicit
Runge-Kutta method of order 8 as implemented in SciPy [2]. These results are obtained for the case of the free particle with
5 qubits and variational form vf2, depth 3.

FIG. S10. Fidelity of the variationally time-evolved wavefunction with respect to the exact one as a function of time and for
different values of the width, B, of the initial wavepacket. These results are obtained for the case of the free particle with 5
qubits and variational form vf2, depth 3.

whole time range remains low for Nq = 6 and Nq = 7. It also shows a good scaling behavior when going from 6 to 7
qubits. Indeed, if 60 parameters are necessary in the 6-qubit case, this number only raises to 84 when we double the
number of grid points (7 qubits). However, we observe a drop in accuracy when going to 8 qubits. In this case, 416
parameters (for a full Hilbert space represented with 510 real parameters) were not enough to get accurate dynamics
both in position and momentum spaces. These results show the influence of the grid mesh on the accuracy of the
VTE. The observed non-monotonic behavior pinpoints the strong correlation existing between the different numerical
factors, such as Nq and rc. It is important to note that those numerical instabilities are always corrected for when
the number of parameters is high enough.

We repeat the simulation of the same harmonic oscillator system for different values of rc, the cutoff ratio of small
singular value for the inversion of the matrix M. Those dynamics are obtained with 6, 7, and 8 qubits. The results are
shown in Fig. S13. We employ variational form vf1 in position (x) and momentum (p) space, and for different depths
(d) as indicated in the legend of Fig. S13. As opposed to the results of Fig. S8, in this case, decreasing the value of rc
does not improve the results but even worsens them slightly. On the other hand, we observe improved results when
increasing rc with thinner a grid mesh (Fig. S13(c)). This shows again that the numerical effects are correlated and
system dependent.

In conclusion, we highlight the following point:

• Heuristic variational forms have the flexibility to accurately and efficiently, i. e., with few variational parameters,
describe the targeted wavefunctions at all times of their dynamics. The loss of accuracy observed throughout
the different simulations is an inherent effect of the method.

• When the number of variational parameters is insufficient, the dynamics strongly depend on the numerical setup
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FIG. S11. Top Snapshots of the exact (dashed lines) and the variationally time-evolved (full lines) modulus squared wavefunc-
tions at times t = 0.00, 0.45, 0.91, and 1.5 of the harmonic oscillator with a non-spreading width B = 0.6.
Bottom Fidelity of the variationally time-evolved wavefunction with respect to the exact one as a function of time. These
results are obtained for the case of the harmonic oscillator with width B = 0.6, 6 qubits, and variational form vf1 depth 5 in
position space.

(a) 64 grid points (b) 128 grid points (c) 256 grid points

FIG. S12. Fidelity of the variationally time-evolved wavefunction with respect to the exact one as a function of time. These
results are obtained for the case of the harmonic oscillator with variational form vf1. The space is discretized with (a) 6 qubits,
(b) 7 qubits, and (c) 8 qubits.

of the simulation (grid mesh size, reconditioning number, initial parameters, etc).

• The correct dynamics are always recovered by increasing the number of variational parameters. In this case,
the algorithm is stable.

• The more complex the dynamics is, the larger is the number of needed parameters.

• In all cases presented here, the expression of the wavefunction in momentum space improves the results.



11

(a) 64 grid points (b) 128 grid points (c) 256 grid points

FIG. S13. Fidelity of the variationally time-evolved wavefunction with respect to the exact one as a function of time. These
results are obtained for the case of the harmonic oscillator with variational form vf1, and for different values rc for cutting off
small singular values. The space is discretized with (a) 6 qubits, (b) 7 qubits, and (c) 8 qubits.
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VI. VARIATIONAL FORMS MIXING POSITION AND MOMENTUM SPACES

In the main text, we discuss the improvement of the results when defining the Ansatz in the momentum space, i. e.,
by adding a QFT at the end of the circuit. Here, we show the results obtained by mixing momentum and position
space in the variational form. More explicitly, the Ansatz is now composed of several parts; first, a part of given
depth in position space, followed by an inverse QFT, then another piece of variational circuit with its own depth, and
finally a QFT closing the circuit. We refer to the part enclosed by the QFTs as the momentum part. We vary the
depths of the position and momentum parts. The results, shown in Fig. S14, do not highlight any improvement in
the performance.

FIG. S14. Fidelity of the variationally time-evolved wavefunction with respect to the exact one as a function of time. These
results are obtained for the case of the Eckart barrier with 6 qubits. The quantum circuit corresponds to variational form vf1
with alternating layers in position and momentum space of depths given in the legend.
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