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Non-Markovian processes can often be turned Markovian by enlarging the set of variables. Here we
show, by an explicit construction, how this can be done for the dynamics of a Brownian particle
obeying the generalized Langevin equation. Given an arbitrary bath spectral density J0, we introduce
an orthogonal transformation of the bath variables into effective modes, leading stepwise to a semi-
infinite chain with nearest-neighbor interactions. The transformation is uniquely determined by J0

and defines a sequence {Jn}n∈N of residual spectral densities describing the interaction of the terminal
chain mode, at each step, with the remaining bath. We derive a simple one-term recurrence relation
for this sequence and show that its limit is the quasi-Ohmic expression provided by the Rubin model
of dissipation. Numerical calculations show that, irrespective of the details of J0, convergence is fast
enough to be useful in practice for an effective Ohmic reduction of the dissipative dynamics. © 2011
American Institute of Physics. [doi:10.1063/1.3532408]

I. INTRODUCTION

The study of open systems, in both the classical and
the quantum case, is a subject of major interest in physics,
chemistry, and various other disciplines. In many applications
and fundamental experiments, one is faced with the reduced
dynamics of a relatively simple subsystem which can be
manipulated and measured, while the environment is only
partially under control. A thorough understanding of the en-
suing dynamics has been obtained for the Markovian case,
in which feedback from the environment to the system can
be neglected, and general analytical results are available to-
gether with efficient numerical algorithms.1 The situation is
much more involved in the non-Markovian regime, which typ-
ically arises due to strong coupling and similar time scales of
system and bath evolution. Although general non-Markovian
strategies are, to some extent, available,1 they typically lack
simple results of general validity which lead to numerically
feasible approaches. A bridge between the two situations can
be built relying on a suitable embedding of a non-Markovian
dynamics in a Markovian one, as recently addressed in
Refs. 2 and 3. Indeed, while it is common wisdom that a non-
Markovian process can be embedded in a Markovian one by
a suitable enlargement of the number of relevant variables al-
ready at a classical level, there is no universal recipe for how
this can be done and which class of non-Markovian processes
can be reached.

In the present communication, we demonstrate how such
a Markovian reduction can be achieved for the ubiquitous
model of dissipation provided by a Brownian particle, or a

a)Electronic mail: rocco.martinazzo@unimi.it.

two-level system, linearly coupled to a bath of harmonic os-
cillators characterized by an arbitrary spectral density (SD).4

The procedure is physically transparent, in that it focuses ex-
clusively on the SD, and all relevant quantities can be con-
structed in terms of the SD. As will be shown below, the sys-
tem dynamics can equivalently be described including, be-
sides the Brownian particle degree of freedom, a set of ef-
fective environmental modes coupled in a linear-chain fash-
ion. The terminal mode of the chain couples to a residual bath
and undergoes a Brownian-like dynamics, which rapidly ap-
proaches an Ohmic behavior over the whole interval of rel-
evant frequencies as the length of the chain increases. The
model as such is closely related to Mori’s theory5 and its
generalizations.6 While previous work by two of us2 has
focused on the implications of a truncation of such effec-
tive mode chains with a strictly Ohmic reservoir, the present
analysis proves the convergence toward Ohmic behavior, and
therefore the general validity of the procedure.

II. EFFECTIVE-MODE TRANSFORMATION

Our starting point is the Caldeira–Leggett Hamiltonian,4

here written in mass-weighted bath coordinates xk ,

H = p2

2m
+ V (s) + 1

2

N∑
k=1

[
p2

k + ω2
k

(
xk − ck

ω2
k

s

)2
]

, (1)

which is known to lead, in the continuum limit, to a gener-
alized Langevin dynamics for the system described by the s
degree of freedom. The reduced system dynamics is entirely
determined by the system potential V (s) and the SD of the
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environmental coupling, J0(ω), which reads1

J0(ω) = π

2

N∑
k=1

c2
k

ωk
δ(ω − ωk). (2)

In general, J0(ω) is a real odd parity function defined by the
real part of the frequency-dependent memory kernel γ (ω)
entering the generalized Langevin equation (GLE), namely,
J0(ω) = mωReγ (ω) and J0(ω) ≥ 0 for ω > 0. It fully deter-
mines γ (ω) by virtue of the Kramers–Kronig relations, as
well as the correlation function of the GLE random force by
virtue of the fluctuation-dissipation theorem. In the following,
we assume, as a typical situation, that J0(ω) is strictly posi-
tive and continuous in the interval (0, ωR), with ωR a high-
frequency cutoff, and zero elsewhere.

Given a GLE and its SD J0, a microscopic model for
the dissipative dynamics of the s degree of freedom can be
defined from Eq. (2), e.g., by introducing a bath of har-
monic oscillators with evenly spaced frequencies ωk = k�ω

(k = 1, . . . N ) and setting the coupling coefficients of Eq. (1)
to ck = √

2ωk�ωJ0(ωk)/π . The system-bath interaction term
in Eq. (1)

H int = −
N∑

k=1

ck xks = −D0 X1s (3)

naturally introduces an effective mode X1 = ∑N
k=1 ck xk/D0,

where D0 is a normalization constant, D2
0 = ∑N

k=1 c2
k .

This defines the first column of an otherwise arbitrary,
orthogonal matrix T transforming the bath coordinates
xt = (x1, . . . , xN ) into X t = (X1, X ′

2, . . . , X ′
N ), X = T t x.

The transformation can be fixed by requiring that the “resid-
ual” bath composed of coordinates X ′

2, X ′
3, . . . , X ′

N is in nor-
mal form, with eigenfrequencies �̄i , i = 2, . . . N . The SD
J0(ω) alone, on the other hand, directly fixes the frequency
�1 of the effective mode and its coupling coefficient D0, as
indicated below, Eq. (5). The couplings Ck = −(T tω2T )1,k

(k = 2, . . . N ) between the normal modes of the residual bath
and X1 allow one to rewrite Eq. (1) as a Caldeira–Leggett-
like Hamiltonian for the X1 degree of freedom, thereby defin-
ing the SD J1(ω) “felt” by the effective mode X1, which is
the only bath mode directly coupled to the s degree of free-
dom. Clearly, in the continuum limit, the procedure can be
indefinitely iterated and used to define a sequence of effective
modes X1, X2, . . . , X M , . . . coupled in a linear-chain fashion,
and a corresponding sequence of SDs, J1, J2, . . . , JM , . . .,
characterizing the residual bath “felt” by each mode. In this
way, one introduces an orthogonal coordinate transformation
which converts the continuum version of Eq. (1) into the form

H = p2

2m
+ V (s) + �V (s) − D0s X1

+ −
∞∑

n=1

Dn Xn Xn+1 + 1

2

∞∑
n=1

[
P2

n + �2
n X2

n

]
, (4)

where, for n ≥ 0,

D2
n = 2

π

∫ ∞

0
dωJn(ω)ω, �2

n+1 = 2

π D2
n

∫ ∞

0
dωJn(ω)ω3.

(5)

In the above expression, �V (s) = δ�2
0s2/2 is a

counter term involving the renormalization frequency
δ�2

0 = (2/π )
∫ ∞

0 dωJ0(ω)/ω and {Xn, Pn}n∈N are entirely
determined by J0(ω). As shown below, this canonical trans-
formation allows one to write an explicit expression for
{Jn}n∈N without knowing the eigenfrequencies of the residual
bath at each step. Other transformations to linear-chain
models have been suggested,7, 8 which, however, do not
define the couplings in pure coordinate form.

III. SEQUENCE OF SPECTRAL DENSITIES

As observed by Leggett,9, 10 the SD acting on the system
degree of freedom can be obtained from the analytically con-
tinued Fourier-transformed equations of motion as the imagi-
nary part of a propagator11

J0(ω) = − lim
ε→0+

Im L0(ω + iε) ≡ −Im L+
0 (ω).

This procedure has recently been used by two of us to ob-
tain a continued-fraction expression for the SD generated by
a linear chain with Markovian closure, which, in turn, formed
the basis for approximating a given SD.2 Employing a similar
strategy, we now focus on the properties of the residual spec-
tral densities JM closing the chain after M effective modes
have been extracted as outlined above. For the Hamiltonian
of Eq. (1), after introducing the first effective mode X1, we
obtain

L0(z) = −z2 − D2
0

�2
1 − z2 −

∑
k

C2
k

�̄2
k − z2

,

where �̄k and Ck have been defined above. In the continuum
limit, with the help of Eq. (2), the sum in the denominator can
be replaced by the function

W1(z) =
N∑

k=2

C2
k

�̄2
k − z2

≈ 2

π

∫ ∞

0
dω

J1(ω)ω

ω2 − z2
,

or, equivalently,

W1(z) = 1

π

∫ +∞

−∞
dω

J1(ω)

ω − z
. (6)

The procedure is legitimate since the eigenfrequencies �̄k

satisfy ω1 ≤ �̄2 ≤ ω2 . . . ≤ �̄N ≤ ωN , thereby covering uni-
formly the interval (0, ωR) as �ω → 0. In this form, W1

is given as an integral of its limiting imaginary part, J1(ω)
= ImW+

1 (ω). In the following, a function W1 defined by
Eq. (6) will be referred to as the Cauchy transform12 of J1;
it is an analytic function in the whole complex plane except
for the support of J1 on the real axis, which vanishes as z−2

for |z| → ∞. We define

W0(z) = D2
0

�2
1 − z2 − W1(z)

, (7)

which, analogously to L0(z) = −z2 − W0(z), gives J0(ω)
= ImW+

0 (ω). It follows that J1 can be written in terms of J0 as
J1(ω) = D2

0 J0(ω)/|W +
0 (ω)|2, where W0 is the Cauchy trans-

form of J0. In order to prove this, we notice that according
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FIG. 1. Left: the SD J0 defined in Eq. (13) for ω0 = 0.04 a.u., d0 = 0.01 a.u., and γ = 0.01 a.u. Middle: results of the deconvolution of J0 for the first five
modes, obtained when setting the high-frequency cutoff ωR to 0.1 a.u. The Rubin SD of Eq. (12) with the same ωR is shown as dashed line. Right: Effective
modes parameters (�2

n and Dn) up to n = 10.

to its definition, Eq. (7), W0 is indeed analytic in the upper
and lower half planes and vanishes as z−2 for |z| → ∞. Note
in this context that the denominator vanishes on the real axis
only, since �2

1 − z2 − W1(z) = 0 is the eigenvalue equation
solved by the frequencies ωk appearing in Eq. (1). Writing
W0(z) as a Cauchy integral on a large semicircle in the upper
half plane, we can add a term ±(ω − z∗)−1 to the integrand
and obtain the desired result from the real and imaginary parts
of the resulting expression. In general, then

Jn+1(ω) = D2
n Jn(ω)

|W +
n (ω)|2 (8)

defines a recurrence relation for the SD Jn+1(ω) felt by the
(n + 1)th effective mode, given the SD Jn(ω) of the nth mode.
According to Eq. (8), the Cauchy transform of Jn+1 must be
of the form Wn+1(z) = gn+1(z) − (D2

n/Wn(z)), where gn+1(z)

is an analytic function with vanishing imaginary part on the
real axis, uniquely fixed by asking that it offsets the behavior
of W −1

n (z) as |z| → ∞, Wn(z) ≈ −(D2
n/z2)(1 + (�2

n+1/z2)
+ . . .). One therefore equivalently has

Wn+1(z) = �2
n+1 − z2 − D2

n

Wn(z)
. (9)

This is a recurrence relation for the Cauchy transforms which
only requires the first Cauchy transform W0(z) as input and
easily provides the sequence Jn(ω) = ImW+

n (ω).
Equation (9) represents the main result of this communi-

cation. It is a simple recurrence relation between the Cauchy
transforms of the SDs, which allows us to write the limiting
condition as

W (z) = �2 − z2 − D2

W (z)
, (10)
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FIG. 2. Deconvolution of the highly structured SD J0 shown in the upper left panel, with ωR = 0.08 a.u. Top right: effective mode parameters up to n = 30.
Bottom: the sequence Jn for n = 1, . . . , 15.
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provided that � = limn �n and D = limn Dn exist. The phys-
ical solution (ImW+ ≥ 0 ) provides the SD which terminates
the chain and which has a nonvanishing value for ω2 ∈ [�2

− 2D,�2 + 2D] only. In other words, the limiting SD reads
as

J (ω) = 1

2

√
(ω2 − ω2

L )(ω2
R − ω2) ωL ≤ ω ≤ ωR, (11)

where ω2
R = �2 + 2D and ω2

L = Max{�2 − 2D, 0}. The re-
quirement J0(ω) > 0 for ω > 0 fixes �2 = 2D, since the
condition �2 > 2D (though physically admissible) would
correspond to a SD J0 with a low-frequency cutoff
ωL = √

�2 − 2D. Thus, Eq. (11) reduces to the quasi-Ohmic
SD, provided by the Rubin model of dissipation,1, 13

JRubin(ω) = ωωR

2

√
1 − ω2

ω2
R

	(ωR − ω). (12)

This means that provided a sufficient number of effective
modes is included in the definition of the system, the result-
ing dynamics is Markovian. In practice, as we show numer-
ically below, this number is rather small, since convergence
is quite fast even for structured spectral densities. Notice,
though, that when J0(ω) has a low-frequency cutoff ωL but
is otherwise positive on the interval (ωL , ωR), Eq. (11) shows
that no Markovian reduction is possible, no matter how many
effective modes are included in the system.

A comment is in order regarding the designation of the
dynamics as Markovian. The Ohmic limiting spectral density
still represents colored noise in a quantum-mechanical set-
ting, and an exact Markovian embedding can indeed only be
achieved in the classical case. Quantum Ohmic friction can
be taken as the closest situation to classical Markovian be-
havior, and is the most natural limit that can be achieved by
the present procedure. It is to be stressed in this context that,
contrary to the classical case, the proper identification of a
non-Markovian dynamics in the quantum case is still to be
clarified, see, e.g., Ref. 14 for recent proposals in this direc-
tion.

We also stress that the above procedure generally fails to
converge for SD with gaps, e.g., those occurring in photonic
crystals. This can be traced back to the fact that ReW+

n (ω)
necessarily has a zero at some point ω̄ ∈ (0, ωR). If ω̄ falls
in the gap of the SD, one has W +

n (ω̄) = 0 and by virtue of
Eq. (9), this introduces an isolated pole in Wn+1(z) which
precludes the use of Eq. (6). Even in this case, however, an
orthogonal transformation of bath variables into linear-chain
modes can still be introduced to define a number of chains of
effective modes, one for each interval where J0(ω) > 0.

IV. NUMERICAL RESULTS

The above procedure for the determination of the se-
quence {Jn}n∈N of effective SDs can be easily implemented
numerically, relying on the recurrence relation Eq. (9) for the
SD Cauchy transforms. To demonstrate the rapidity of con-
vergence, we show results obtained for several representative
SDs, starting from the Lorentzian shaped case

J0(ω) = d2
0γω

(ω2 − ω2
0)2 + γ 2ω2

. (13)

This is the effective SD felt by a Brownian particle coupled to
a harmonic oscillator of frequency ω0 which, in turn, interacts
with an Ohmic bath.10 This coupling scheme is evident in the
middle panel of Fig. 1: J1 is a truncated Ohmic SD and Jn ,
for n > 2, is indistinguishable from the Rubin SD given by
Eq. (12) for the chosen cutoff ωR . Such convergence can also
be checked by computing the ratio �2

n/Dn → 2. As a second
example, we consider a highly structured and multipeaked SD
as plotted in Fig. 2. It is clear from the figure that also in this
case, convergence is quite fast, and the limiting Rubin SD is
obtained after few (say 10–15) iterations.

The effectiveness of the method has already been demon-
strated in Ref. 2, where the same effective mode chain was
closed with a strictly Ohmic SD and the reduced dynam-
ics of the enlarged system was compared with exact wave
packet calculations employing the original Hamiltonian of
Eq. (1). Notice that the closure necessarily modifies the quan-
tum dynamics of the complete system, but approximations
introduced at this point do not affect the short-time dynam-
ics, which is entirely determined by the first members of
the chain.2, 7 Here, we have proven that the procedure indeed
converges, and we have explicitly derived its universal limit,
given by the quasi-Ohmic Rubin SD.

V. CONCLUSIONS

We have presented a recursive procedure to recast the
non-Markovian dynamics of a Brownian particle, interacting
with a bath characterized by an arbitrary SD, into the dynam-
ics of an enlarged set of variables including effective modes of
the reservoir coupled to a quasi-Ohmic residual SD. The ap-
proach provides an explicit analytic relationship among suc-
cessive residual SDs, which can be easily evaluated numer-
ically starting from an arbitrary (gapless) initial SD. These
results pave the way for an efficient general treatment of dis-
sipation in the presence of arbitrarily complex environments.
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