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Hydrogen-dimer lines and electron waveguides
in graphene†

Simona Achilli,ab Gian Franco Tantardiniab and Rocco Martinazzo*ab

The electronic and transport properties of graphene ribbons sandwiched between hydrogen dimer lines,

of the kind recently realized by Nilsson et al., Carbon, 2012, 50, 2052, are investigated with the help of

first principles methods. It is found that such lines of hydrogen atoms block conduction between

neighboring channels and effectively allow the confinement of graphene charge carriers, thereby

opening the possibility of imprinting nano-circuits in graphene by controlled hydrogenation.

1 Introduction

The isolation of graphene,1 the one-atom thick layer of carbon
atoms arranged in a honeycomb lattice, opened new avenues
for miniaturizing electronic devices, due to the combination of
the highly flexible, mechanically stable structure of graphene
and the extraordinary properties of its Dirac electrons.2–5 The
remarkable possibility of tuning its electronic properties to a
large extent upon nanostructuring makes it promising for
various applications, and graphene-based devices may be
superior to current technologies and help to facilitate new ones.

Well-known examples of graphene nanostructures are graphene
nanoribbons (GNRs)6,7 where, analogously to carbon nanotubes,8,9

electron confinement in the direction perpendicular to the ribbon
axis opens a band-gap in their electronic structure and makes them
suitable for logic applications, with potentially outstanding perfor-
mances.10 Current limitations to the practical exploitation of GNRs
arise from the lack of control over the edge geometry, though recent
progress in controlled hydrogen etching is promising in this
respect.11,12 Graphene nanoribbons with desired edges have indeed
been produced by a chemical synthetic route on a metallic
surface,13,14 and recently proved to be transferable onto an insulat-
ing substrate,15 but practical ways to realize bottom-up GNR
transistors remain challenging to develop. Likewise if atomic-
scale defects (e.g. carbon atom vacancies, voids and chemisorbed
atoms) are introduced in the lattice: whether precise control of the
defect positions was achieved, regularly arranged superlattice
structures would display highly desirable properties – including a

band-gap16,17 – thanks to the huge impact that such kinds of defects
have on the low energy electronic structure of graphene.18–20

Recently, it has been predicted that parallel lines of chemi-
sorbed hydrogen atoms split a graphene sheet into pseudo-ribbons
with semimetal or semiconducting properties, similar to conven-
tional nanoribbons.21–24 Analogues of armchair graphene nano-
ribbons (aGNRs) were conceived by placing lines of hydrogen
atoms along an armchair direction in graphene, and were found
to have a band-gap of a size similar to that of an aGNR with the
same width.23 Electron waveguides that could act as two or three
terminal junctions and serve as nano-diodes, nano-transistors or
logic network units were also envisaged with lines of hydrogen
atoms playing the role of confining walls.24 Along the same line of
thought, Rasmussen et al.25 have recently shown how to stabilize
single and multiple kinks in graphene by placing hydrogen lines
along an armchair direction, thereby forming pseudo-ribbons with
transport properties similar to those of conventional aGNRs.
Similarly, Gunlycke et al.26 investigated chemical decoration of a
common extended line defect (the 5-5-8 topological defect line),
and showed that such nano-structuring creates confinement and
resonance bands which trace the bands in zig-zag nanoribbons and
display remarkable valley polarization properties. Importantly, in
such approaches, defects (chemisorbed atoms) are used to imprint
ribbons on graphene rather than cutting them out of it, thereby
allowing the use of one and the same substrate as a support for
integrated (nano)circuits.

In practice, the possibility of realizing the above structures by
simply adsorbing hydrogen atoms on graphene is hampered by
the unavoidable randomness of the adsorption process. Though
well defined dimers (the so-called ortho- and para-dimers) do
preferentially form when exposing graphene (graphite) to a hot
hydrogen beam,27 the regioselectivity of the adsorption process
strongly depends on the number and position of the already
adsorbed species, as a consequence of the aromatic character of
the substrate.28 As a result, a random distribution of dimers is
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usually found on the surface, which turns into clustering at high
hydrogen doses,27,29 because the substrate softening accompa-
nying hydrogenations causes a (local) enhancement of the
reactivity of the surface. Eventually, disordered hydrogenated
graphene is achieved, possibly with local graphane-like
domains,30 and a metal–insulator transition is already triggered
at a modest hydrogen coverage.31

Progress in controlling hydrogenation has been made by
exploiting superlattice (Moiré) structures, which arise naturally
when graphene grows on a crystalline substrate. Indeed, beside
inducing superlattice potentials for graphene charge carriers,32

substrates may act as templates for patterned adsorption even
when graphene binds only weakly to them. This is the case, for
instance, for graphene on Ir(111) where hydrogenated structures
were formed which followed the superlattice periodicity, and
were shown to open a gap in the electronic band structure.33

More recently, it has been shown that pairs of hydrogen lines
of the type mentioned above do indeed form on graphite upon
hydrogen exposure if the surface is pre-covered with a self-
assembled monolayer of cyanuric acid.34 Such structures were
investigated by combining Scanning Tunneling Microscopy
(STM) with Density Functional Theory (DFT) calculations and
were found to be highly stable, thanks to the balanced mixture of
ortho- and para-dimer configurations which naturally appears
along an armchair direction. One specific pair of such hydrogen-
dimer lines was identified by its STM image and appeared as
bright lines enclosing a dark region, thereby suggesting a
reduction of the conductivity between the defect lines.34

In view of the above, in this paper we study in detail the
electronic and transport properties of the structures produced
by Nilsson et al.34 and similar structures of different sizes. In
particular, we investigate whether electronic confinement does
indeed occur and how it affects electronic transport. To this
end, we consider transport in a direction either parallel or
perpendicular to the dimer lines (in the disorder-free ballistic
regime where the geometry of the transport channels alone
determines the conduction properties), and characterize its
spatial features by means of transport eigenchannels. Our
results confirm that hydrogen-dimer lines indeed act as
impenetrable walls for graphene charge carriers and split the
graphene sheet into independent transport channels that can
be used for realizing nano-transistors and electron waveguides
in graphene.

The paper is organized as follows. Section 2 gives some
details concerning the chosen models and the adopted theore-
tical approach, Sections 3.1–3.4 describe, respectively, the
electronic structure and the transport properties of the systems
considered, and finally Section 4 summarizes and concludes.

2 Theory
2.1 Methods

Electronic structure and transport calculations were performed
at the Density Functional Theory level, within the generalized
gradient approximation, employing the Perdew–Burke–Ernzerhof

functional35,36 to handle exchange and correlation effects. Core-
electrons were described by separable norm-conserving pseudo-
potentials37 with a partial core correction,38 and a set of numerical
atomic orbitals with compact support of double-z plus polariza-
tion quality was used to expand the wavefunction, as implemen-
ted in SIESTA.39 Brillouin zone (BZ) sampling was performed
following the Monkhorst–Pack scheme40 with a few hundred
independent k-points for each periodic direction, depending on
the structure considered. Structural and transport calculations
were artificially periodic in the direction perpendicular to the
graphene plane, and a large vacuum layer (B20 Å) was introduced
to ensure negligible interaction between layers, along with a
simple one-k point sampling of the BZ along this direction,
as usual.

Transport properties were computed with standard non-
equilibrium Green’s function (NEGF) techniques that use the
corresponding Kohn–Sham one-electron Hamiltonian, HKS. In
such a set-up three different regions are identified, two semi-
infinite leads and a central scattering region. Transport proper-
ties require calculation of the retarded Green’s function of the
scattering region, upon proper inclusion of the electrodes self-
energies in the scattering-region Hamiltonian. The latter are
obtained separately by standard DFT periodic calculations for
the semi-infinite electrodes alone, and the Hamiltonian
(Green’s function) is made self-consistent with the charge
density it describes, for each applied bias, as implemented in
TRANSIESTA.41

The zero-temperature, linear-regime conductance G is given
(in units of quantum of conductance G0 = 2e2/h = 77.48 mS
appropriate for spin-unpolarized channels) by the cumulative
transmission probability N(e)42

N(e) = Tr[G†(e)GR(e)G(e)GL(e)]

(to be evaluated at the Fermi level eF) which is computed from
the scattering-region Green’s function G(e) and the imaginary
parts of the self-energies GLðRÞ ¼ i SLðRÞðeÞ � Sy

LðRÞðeÞ
� �

�
�2ImSLðRÞðeÞ of the left (L) and right (R) electrodes. In practice,

in the above expression Tr stands for an ordinary trace, and the
operators G, S, etc., are understood to be their matrix repre-
sentation in the chosen basis.

More generally, the current flowing from L to R follows from

I ¼ �2jej
h

ðþ1
�1

f e� mLð Þ � f e� mRð Þ½ �NðeÞde

where f is the Fermi function and mL(R) are the chemical
potentials of the left and right electrode, respectively. Typically,
N(e) is only weakly dependent on the applied bias VSD = �(mL �
mR)/|e| and on the (charge) doping level. Thus, a zero-bias
evaluation of N(e) suffices to evaluate I for reasonably small
values of VSD, and G(e) = G0N(e) (the conductance function)
takes the meaning of zero-bias linear conductance when the
Fermi level is placed at e by e.g. a gate voltage. The calculations
to be described below are mostly of this type, though a full I–V
characteristic including the bias-dependence of N(e) will be
presented for a selected case.
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Spatial features of conduction modes were analyzed with
transmission (left) eigenchannels.43 These are eigenvectors of
the product current operator in the device subspace of the left-
incoming scattering states, and describe independent transport
channels with transmission probabilities tm(e) given by the

corresponding eigenvalues NðeÞ ¼
P
m

tmðeÞ
� �

. They were

computed with the above G(e) and GL(R), as described in
ref. 43 and 44, by means of INELASTICA.45

2.2 Structural models

Electronic structure was investigated in superlattices describing
parallel hydrogen-dimer lines, i.e. structures where hydrogen atoms
sit on every lattice position of parallel armchair directions in
graphene. Generally speaking, two such lines may be superimposed
by a lattice translation along one zig-zag direction, and two different
structures can be identified depending on whether such translation
can be taken orthogonal to the hydrogen line or not. We considered
only the first case – the one relevant to the work by Nilsson et al.34 –
and designed several superlattices that differ in the period of the
repeating units in the direction perpendicular to the dimer lines.
For the simplest of such structures there is one dimer line per unit
cell and the structures can be denoted as n-superlattices (n-SL),
n being the width of the channel in units of graphene lattice
constant a0 in such a way that e.g. n = 10 identifies a channel
E2.5 nm wide. Fig. 1 reports the unit cell of the 6-SL structure (the
one experimentally observed) along with the geometry resulting
from full structural relaxation. In more complex situations two or
more lines are needed to define the repeating unit and the
structures are denoted as (n1,n2,. . .)-SL where n1,n2,. . . is the width
of each channel in the same units as above. Thus, the (6,11)-SL
contains two channels, 6a0 and 11a0 wide (see Fig. 1), and an ideal
hydrogen-dimer channel in pristine graphene would be (n,N).

All the structures considered were fully relaxed until the
force acting on each cartesian coordinate was below 0.01 eV Å�1,
using a sufficiently large mesh cutoff for the real-space integration
(500 Ry) that minimized egg-box effects. Only the cell parameters
were kept fixed to the values they have in pristine graphene, to
mimic the behaviour of realistic dimer lines embedded in
graphene, disregarding the interesting effect of a tensile or a
compressive stress normal to the lines24 whose analysis would be
beyond the aims of this work.

Formation of hydrogen-dimer lines induces substantial
lattice reconstruction, as a consequence of the sp2–sp3 rehybri-
dization which necessarily occurs on the underlying carbon
atoms if they have to bind a hydrogen atom each. Structural
relaxation extends for quite large distances from the dimer lines
and determine a sizable curvature x of the graphene sheet which
scales linearly with the inverse lattice dimension up to n = 10; for
larger values of n the bending of the sheet extends B4–5a0 on
either side of each hydrogen dimer line and a flat region
resembling pristine graphene develops in the middle of the
channels. Similar results were obtained when allowing the cell
parameters to vary and/or accounting for the presence of a
substrate (see ESI†). The above bending of the graphene sheet
is essential for the hydrogen-dimer lines to act as effective
confinement walls, since transport calculations on model, flat
SL structures show sizable tunneling across the defect lines
(data not shown).

All these properties translate almost unchanged in more
complex (n1,n2,. . .)-SL structures, where the geometry of each ni

channel closely resembles that of the constituent ni-SL struc-
ture, see e.g. the case of the (6,11) SL structure shown in Fig. 1.

As for the details of the relaxed structures, the smallest H–H
distance in the lines (i.e. the dimer extension) is 2.02 Å, the
separation between dimers is 2.24 Å and the carbon–hydrogen
bond length is 1.14 Å. Similarly to isolated ortho-dimers,28

the hydrogen atoms are not aligned perpendicularly to the
graphene sheet, rather they are slightly tilted by steric repulsion;
consequently, the benzene rings accommodating hydrogen
atoms in para-positions take a stable boat conformation.

3 Results
3.1 Electronic structure

Relaxed structures were analyzed in detail by computing the
band-structure and the corresponding density-of-states (DOS)
per unit volume r(e) as given by the Kohn–Sham Hamiltonian.
Fig. 2 shows the DOS and the low energy band structure of the
6-SL structure, referenced to the Fermi level, along the path
M–G–X, where M–G is perpendicular to the hydrogen-dimer
lines and G–X along that line (see inset in Fig. 2). The structure
features a small energy gap (of the order of 0.2 eV) at the Fermi
level and a set of quasi-1D van Hove singularities which signal a
vanishing dispersion perpendicularly to the dimer lines.
Indeed, the band structure shows several states which are
nearly flat along M–G and with quadratic or nearly conical
dispersion along the G–X path. In the energy range of Fig. 2,
there are five occupied (nh,m) and five unoccupied (ne,m) bands
showing this behavior. They closely resemble the electronic
states in armchair graphene nanoribbons, and form quasi-1D
conduction channels appearing at quantized energies em,
approximately electron–hole symmetric. Actually, on closer
inspection, the band structure closely resembles that of the
corresponding armchair graphene nanoribbon which can be
‘cut out’ from the superlattice structure. This is shown in Fig. 2
where the band structure of the 11-aGNR is given as dashed

Fig. 1 Fully relaxed 6-SL (top) and (6,11)-SL (bottom) structures along with
their unit cells projected on the surface plane. The inset is a blow-up of the
hydrogen-dimer line.
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lines, from G to X (in general, for the n-SL structure the relevant
ribbon to compare with is the (2n � 1)-aGNR, where 2n � 1
gives the number of CC dimers across the GNR axis, as
customary).

We further analyzed the spatial properties of the electronic
states by looking at the Local Density of States (LDOS) r(x,e) =
hx|d(e � HKS)|xi which measures the weight of the system
eigenstates at energy e in a given point of space x. For the
structure shown in Fig. 2 we evaluated the LDOS at several
energies above and below the Fermi level, close to the van Hove
singularities which mark the channel opening. An example is
given in Fig. 3, where the isosurfaces of the LDOS at the
energies of the nh,1 and ne,1 bands at the G point are reported.
Note that they are clearly electron–hole symmetric, with the
phase in one sublattice reverted when passing from h to e
and the bond patterning changing accordingly.‡ The zeros of
the localized state wave functions are clearly distinguished for
m = 1 only because for m > 1 a number of states (with different
kinetic energy along the channel) contribute to the LDOS.

Finally, the energy gap in n-SL structures is generally
decreasing for increasing n, though the actual decay depends

strongly on whether n = 3m, 3m + 1 or 3m + 2 (m integer),
analogously to what happens in armchair nanoribbons.6,7 This
is shown in Fig. 4 where the energy gap of several SL structures,
as computed at the above level of theory, is reported as a
function of n (for a comparison, notice that the number of
CC dimers belongs to the 3m + 2, 3m + 1 and 3m sequences,
respectively). Note in particular, that the sequence n = 3m has a
gap which is almost unchanged with the width. The computed
values agree reasonably well with those previously reported for
these structures,24 once the differences in the DFT functionals
adopted are taken into account.

Furthermore, we considered the energy gap of several (n1,n2)-SL
structures and found, in agreement with the dispersionless beha-
vior along M–G, that it is always given, to a good approximation,
by the ni-SL with the smallest gap. This supports the idea that
the conduction channels are independent of each other, as we
detail in the next section by showing the results of our transport
calculations.

3.2 Transport across and along the channels

Transport calculations were performed on channels of finite
length, periodically repeated in the directions perpendicular to
the transport direction, according to the geometry depicted in
Fig. 5 for the case of transport along the hydrogen-dimer lines
in the (6,11)-SL structure (i.e. along an armchair line). Similarly
for transport perpendicular to the hydrogen-dimer lines, with y
playing the role of transport direction and the electrodes placed
on the left and right sides of the slab reported in Fig. 5.

Fig. 6 reports the zero-bias cumulative transmission func-
tion N(e) � G(e)/G0 of 6-SL structures, both along the hydrogen-
dimer lines and perpendicular to them. The results refer to a
single unit cell along (x, y), and were obtained with a fine
k-mesh containing 100 k-points parallel to the slab. It is evident
from this figure that electronic transport is strongly aniso-
tropic, with a nearly vanishing transmission probability

Fig. 2 Density of states (left) and band structure (right, solid lines) of the
6-SL structure. The inset gives the superlattice Brillouin zone with its high
symmetry points. Also shown in the right panel the band structure of the
armchair nanoribbon cut out from the 6-SL structure and terminated with
hydrogen atoms (dashed lines, from G to X).

Fig. 3 Isosurfaces of the local density of states evaluated in correspon-
dence of the lowest energy van Hove singularity of Fig. 2, nh1 and ne1, in the
left and right panels, respectively.

Fig. 4 Dependence of the energy gap in n-SL structures as a function of n
(orange symbols).

‡ Electron–hole symmetry implies that the phase of the wavefunction on one
sublattice is reverted when moving from electrons to holes, i.e. if c = fA + fB is the
wavefunction at a given energy e and fA, fB its amplitudes on the A, B sublattices,
then f = fA � fB is its e–h counterpart at energy �e.
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perpendicular to the lines, despite the presence of a single
hydrogen-dimer line to be crossed. In contrast, transport along
the dimer lines occurs without scattering and the transmission
function shows an almost perfect step-like behavior as expected
when transmission modes progressively open. Similar results
were obtained for different SL structures considered, and thus
in the following we focus only on the case where transport
occurs parallel to the hydrogen lines.

In general, transport along the dimer lines remains rather
simple in all the n-SL structures: the step-like behavior of N(e)
marks the opening of transport channels, with a step occurring
at any energy where a transverse mode appears. The height of
each step reaches its maximum (usually corresponding to one
perfectly conducting channel) in the very small energy window
where dispersion along the transverse direction occurs.

Less trivial results are obtained upon combining superlat-
tices with different widths, and exploiting their different elec-
tronic properties (energy gap). For instance Fig. 7 reports the
transmission results for the (6,7)-SL structure, along with its
band structure. Notice that in this case, the energy gap of the
constituent 7-SL structure is about 0.5 eV larger than that of the

6-SL one, despite its larger width (see Fig. 4). As a consequence,
the gap in the transmission function closely resembles that in the
constituent 6-SL structure (Fig. 6, and black lines in Fig. 7), while
the steps mainly follow the denser energy levels of the 7-SL
structure. In fact, on closer inspection, the transmission function
of the compound (6,7)-SL structure is given, to a very good
approximation, by the sum of the transmission in the two
constituent structures, the 6- and 7-SL structures. This was similar
for all the compound structures we considered (not reported).

Stated differently, the channels confined by the hydrogen-
dimer lines essentially act as independent conduction channels,
i.e. as resistors in parallel, as a consequence of the weakly
dispersing character of the energy bands along the direction
transverse to the dimer line. Thus, hydrogen-dimer lines work as
hard-wall confining potentials for the electrons in graphene,
much like the presence of edges in nanoribbon geometries.

3.3 Transmission eigenchannels

The above considerations suggest that the conduction proper-
ties of the channels confined by hydrogen-dimer lines are
superimposable because conduction channels are spatially
separated. To check this we computed the transmission eigen-
channels at the G point for a number of selected energies below
the Fermi level (notice though that the results for the square
moduli of the transmission channels are insensitive to the exact
value of the energy, in the range where they transmit).

Fig. 8 shows how the eigen-transmissions in the (6,7)-SL
structure sum up to give the cumulative transmission prob-
ability: they are perfectly conducting channels with different
threshold energies (i.e. t(e) � 1 when the channel is open).
Correspondingly, the eigenchannels localize in different super-
lattice regions, according to the band structure of the consti-
tuent elements. For instance, the first and fourth steps in the
conductance function are due to the energy levels in the 6-SL
structure (see also Fig. 7) and the corresponding eigenchannels
localize in the six-unit-wide canal.

These results confirm that confinement is indeed at work
in electronic transport and that each section defined by a pair

Fig. 5 Geometry adopted for transport calculation along the hydrogen-
dimer lines (z axis) in the (6,11)-SL structure, showing the left (L) and right
(R) electrodes as rectangles. The large arrows mark the width (red) and
length (cyan) of the scattering region. The system is periodic along x, y,
with a B20 Å wide vacuum along x.

Fig. 6 Conductance function for the 6-SL structure along the hydrogen-
dimer lines (red) and perpendicularly to them (black). The latter values have
been multiplied by a factor of 10 for clarity.

Fig. 7 Band structure (left) and conductance function (right) for transport along
the hydrogen-dimer lines of the (6,7)-SL structure. Also shown in the right panel
are the results of the constituent 6-SL structure (black) for comparison.
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of hydrogen-dimer lines acts as an independent transport
channel, as previously suggested by the spatial distribution of
the HOMO–LUMO in multiple period structures22 (compare
also Fig. 3 with the m = 1 eigenchannel reported in Fig. 8).

3.4 I–V characteristic

Finally, we analyze the effect that finite bias voltages VSD have
on the transmission functions. Fig. 9 shows the results
obtained for the (6,7)-SL structure at different bias voltages
(VSD = 0.25, 0.50, 0.75 and 1.00 V), well beyond the size of the
band-gap of this structure.

As expected, the effect of the bias is rather simple: the
potential drop inside the channel occurs smoothly from one
electrode to the other, and determines a band-mismatch
between the left and right ends. As a consequence, the shape
of the conductance function is simply determined by an overlap
requirement and can be calculated to a good approximation as
G(e,VSD) = min{G(e � |e|VSD/2,0),G(e + |e|VSD/2,0)}.

An exception is for energies within the gap region, where trans-
port can occur, depending on the channel length, from the valence
band of one end to the conduction band of the other end, upon
tunneling through the gap region. Thus, the peak at the center of the

conductance spectrum reflects the increase of tunneling probability
that occurs when the barrier width decreases as a consequence of a
bias increase. In this regime, the transistor simply breaks down, and
the total current has an approximately cubic increase, which fits
well to Simmons’ tunneling in the intermediate-voltage range,42

I E JL(V + gV3). This is shown in the inset of Fig. 9 which reports
the I–V characteristic obtained with the above bias values.

4 Summary and conclusions

We reported on the electronic and transport properties of a family
of hydrogen-dimer line structures, one of which has been recently
realized on graphite after hydrogen treatment of a monolayer of
cyanuric acid self-assembled on the surface. The electronic struc-
ture of these ordered hydrogenated domains agrees with previous
theoretical results suggesting that hydrogen-dimer lines could
behave as hard-wall confinement potentials for the electron,
and turn graphene into (armchair) nanoribbons. We support this
interpretation with the results of NEGF-DFT transport calculations
on several single and compound structures, which show conduc-
tance plateaus clearly related to the states which are confined in
between the dimer lines, as further confirmed by the spatial
properties of the transmission eigenchannels.

All this suggests that hydrogen-dimer lines may represent a
valid alternative to graphene nano-ribbons to be used in one
and the same support for fabricating (chemically imprinting)
integrated nano-circuits. Such lines may be used to define
insulating layers and create electron waveguides (as exempli-
fied by a (n1,n2)-SL structure with n1 small – the insulating
sections – and n2 c n1 – the electron waveguides), or to draw
semiconducting ribbons (when n is sufficiently small), provided
transverse lines are introduced in the remaining armchair
directions to block conduction outside the channel.
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