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A reduced dynamics representation is introduced which is tailored to a hierarchical, Mori-chain type
representation of a bath of harmonic oscillators which are linearly coupled to a subsystem. We con-
sider a spin-boson system where a single effective mode is constructed so as to absorb all system-
environment interactions, while the residual bath modes are coupled bilinearly to the primary mode
and among each other. Using a cumulant expansion of the memory kernel, correlation functions
for the primary mode are obtained, which can be suitably approximated by truncated chains rep-
resenting the primary-residual mode interactions. A series of reduced-dimensional bath correlation
functions is thus obtained, which can be expressed as Fourier-Laplace transforms of spectral den-
sities that are given in truncated continued-fraction form. For a master equation which is second
order in the system-bath coupling, the memory kernel is re-expressed in terms of local-in-time equa-
tions involving auxiliary densities and auxiliary operators. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4752078]

I. INTRODUCTION

Harmonic oscillator models play a central role in the
modeling of dissipative effects on quantum systems. Among
the vast number of applications are the spin-boson model,1, 2

explicit models for (generalized) Langevin dynamics,3–7

models for the decay of a metastable state,8 and multidimen-
sional transition state theory.9–11 These models provide mi-
croscopic realizations of system-bath dynamics from which
different reduced dynamics formulations can be derived, e.g.,
master equations like the Caldeira-Leggett form12 and its non-
Markovian generalizations,13 influence functionals,2, 14, 15

stochastic algorithms,16, 17 and hierarchical approaches to
non-Markovian dynamics,18–21 to provide a non-exhaustive
list.

A variant of these highly versatile models are Brownian-
oscillator representations which can be derived from the con-
ventional harmonic-oscillator bath models by re-casting the
system-bath interaction in terms of collective environmental
modes.19, 22–27 These models have been used, e.g., to describe
reaction coordinates defined by the environment, i.e., gener-
alized “solvent coordinates.” Such environmental coordinates
provide a simple and intuitively appealing realization of non-
Markovian dynamics, where the environment’s intrinsic time
scale can be similar to the system time scale and the limit
of fast fluctuations does not apply. Analogs of these models
can be found in various fields, notably in solid-state physics
where so-called cluster modes or interaction modes28, 29 have
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been used to describe dynamical Jahn-Teller effects. In a sim-
ilar context, such models have recently been employed to
describe collective environmental effects on the dynamics at
conical intersections.30–32 Furthermore, the Brownian oscilla-
tor model with its characteristic Lorentzian spectral density25

has recently been applied to describe structured environments
in the context of quantum computation.33–38

In this paper, we address generalizations of the Brow-
nian oscillator model, involving the construction of chains
of effective modes which result from orthogonal transforma-
tions within the harmonic bath subspace. This construction
closely resembles the chains of observables that are used in
Mori theory.39–41 Further, analogies exist with respect to the
transformation techniques of the numerical renormalization
group approach which has recently been applied to bosonic
baths.42 Furthermore, the time-dependent form of the density
matrix renormalization group (DMRG) method,43 involving
a mapping of the system-bath Hamiltonian to a 1D harmonic
chain, was recently combined with the properties of orthogo-
nal polynomials.44, 45

The present approach is particularly suitable to de-
scribe short-time dynamical effects in high-dimensional sys-
tems. A paradigm example is photoinduced dynamics in
extended molecular systems, which often falls into a short-
time regime where inertial, coherent effects dominate, and
the many-particle dissipative dynamics has not yet set in.
This generally precludes the use of standard system-bath ap-
proaches and necessitates a non-Markovian treatment, or al-
ternatively, an explicit dynamical treatment of the combined
subsystem-plus-environment supermolecular system. The
effective-mode approach presented here provides a systematic
reduction scheme in such situations and has already been
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successfully applied, e.g., to elementary charge and energy
transfer processes in organic materials.46–48

The hierarchical chain representation naturally leads to
truncation schemes based on including a limited number of
effective modes. In Refs. 49–53, we have employed such trun-
cation schemes to construct a series of approximate spectral
densities from an arbitrary given distribution of bath modes. It
was shown in Ref. 52 that for an arbitrary spectral density of
typical complex multi-peaked form, a simple one-term recur-
rence relation can be derived that defines a sequence of resid-
ual spectral densities that converge to a quasi-Ohmic form.
That is, the spectral density associated with the final member
of the chain coupled to the residual bath will be quasi-Ohmic
(i.e., of Rubin form2, 51–53) provided a sufficient number of
effective modes are included. Furthermore, it was shown in
Ref. 53 that truncated chains with Ohmic closure for the nth
effective mode reproduce the memory kernel exactly to 4nth
order in time.

In the following, we use the same transformation tech-
niques in order to construct a non-Markovian master equation
representation that is specifically adapted to the hierarchy
of modes as described in Refs. 49 and 50. To this end, a
cumulant expansion of the memory kernel is employed in
conjunction with a truncated chain representation for the
residual bath.54–57 A series of reduced-dimensional bath cor-
relation functions are thus obtained. The cumulant expansion
described here corresponds either to a time non-local (TNL)
form, according to the so-called chronological ordering
prescription (COP),55, 56 or to a local-in-time (TL) master
equation54–56, 58, 59 obtained by a suitable resummation. For
both the TNL and TL forms, a local-in-time formulation
in terms of auxiliary density matrices (or operators) can be
obtained at the second order of the cumulant expansion,
similar to Refs. 58, 60–62. The present work generalizes
related approaches27 where second-order cumulant master
equations were formulated using a Brownian oscillator
representation of the bath.

The remainder of the paper is organized as follows. We
first describe the relevant transformation of the system-bath
Hamiltonian (Sec. II) and then formulate a non-Markovian
master equation using this transformed Hamiltonian in con-
junction with cumulant expansion techniques (Sec. III). Sec-
tion IV addresses a second-order master equation using an
auxiliary density/operator formulation. In Sec. V, we present
results for pure dephasing and population transfer dynamics
for a spin-boson model. Finally, Sec. VI concludes.

II. SYSTEM-BATH HAMILTONIAN

This section introduces the spin-boson Hamiltonian in
a transformed, chain type representation (Sec. II A) and
presents the concept of truncated chain models (Sec. II B)
which are useful as reduced-dimensional representations of
the system.

A. Spin-boson Hamiltonian and effective-mode
transformation

Our starting point is a spin-boson Hamiltonian,

Ĥ = ĤS + ĤSB + ĤB (1)

with the usual definitions for the two-level system (spin)
Hamiltonian ĤS , the system-bath (spin-boson) coupling ĤSB ,
and the bath (boson) Hamiltonian ĤB ,

ĤS = � σ̂z + λσ̂x

ĤSB =
NB∑
i=1

ci x̂Bi σ̂z (2)

ĤB =
NB∑
i=1

ωBi

2

(
p̂2

Bi + x̂2
Bi

)
1̂,

where ĤB is defined in mass and frequency weighted coordi-
nates with frequencies {ωBi}.

The spin-boson Hamiltonian under consideration has
been extensively studied over recent years using path in-
tegral methods,1, 2, 14, 63–66 numerically exact wavepacket
methods like the multi-configuration time-dependent Hartree
(MCTDH) method67–72 and its multi-layer variant (ML-
MCTDH),73, 74 semiclassical methods,75–78 time-dependent
coherent-state basis set methods,79 various mixed quantum-
classical techniques,80, 81 Markovian reduced dynamics
methods like Redfield theory82 and semigroup approaches,
non-Markovian approaches like those referred to above,
renormalization group approaches,42 and various other ex-
plicit or reduced dynamical schemes. In this paper, we apply
the above-mentioned effective-mode approach which relies
on coordinate transformations that allow one to re-formulate
the Hamiltonian in such a way that a series of reduced-
dimensional models and associated spectral densities are
generated.

The Hamiltonian Eq. (1) is transformed by an orthogonal
coordinate transformation, i.e., X̂ = T x̂, in such a way that
the system-bath coupling is entirely absorbed into a single ef-
fective mode X̂B1:

ĤSB =
NB∑
i=1

ci x̂Bi σ̂z = DX̂B1σ̂z (3)

and the resulting residual bath Hamiltonian has the following
structure:

ĤB =
NB∑
i=1

�Bi

2

(
P̂ 2

Bi + X̂2
Bi

)
1̂

+
NB∑

i,j=1,i �=j

dij (P̂BiP̂Bj + X̂BiX̂Bj )1̂. (4)

The new frequencies {�Bi} and couplings {di j} result
from the coordinate transformation introduced above, such
that �Bi = ∑NB

j=1 ωBj t
2
ji and dij = ∑NB

k=1 ωBktki tkj , where tji
are the elements of the transformation matrix T. The residual
modes are thus seen to be coupled bilinearly to the effective
mode X̂B1 and among each other, but do not couple directly
to the spin subsystem.

Given the above, general form of the transformed bath
Hamiltonian ĤB , several realizations can be envisaged. A
particularly appealing transformation that has been detailed
in Refs. 49 and 50, and which we now outline, casts the
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bilinear coupling matrix into a band diagonal form, similar
to a Mori chain type construction.39–41, 83

B. Mori-type chain with Ohmic closure

For the Mori-type construction, the residual bath is trans-
formed to a band-diagonal representation exhibiting nearest-
neighbor couplings. We have referred to this variant as a hi-
erarchical electron-phonon (HEP) model.47, 84, 85 The chain is
terminated at a chosen order k by coupling the kth chain mem-
ber to a dissipative bath. The bilinear interaction Hamiltonian
therefore takes the form

Ĥ
(k)
B =

NB∑
i=1

�Bi

2

(
P̂ 2

Bi + X̂2
Bi

)
1̂

+
k−1∑
i=1

di i+1(P̂BiP̂Bi+1 + X̂BiX̂Bi+1)1̂ + Ĥ
(k)
diss, (5)

where Ĥ
(k)
diss corresponds to a dissipative bath composed of

modes {k + 1, . . . , NB} which are all coupled to the kth mode
of the chain,

Ĥ
(k)
diss =

NB∑
i=k+1

dki(P̂BkP̂Bi + X̂BkX̂Bi)1̂. (6)

The Brownian oscillator model19, 22–25 represents a special
case of this construction with k = 1. The distribution of dis-
sipative bath modes is usually approximated in terms of an
Ohmic spectral density, in which case the picture of a Mori-
type chain with Ohmic truncation at the kth order arises. As
demonstrated in Ref. 52, the model in fact provides a rigor-
ous description of non-Markovian dynamics, since the resid-
ual bath can be shown to converge toward a (quasi-)Ohmic
form under very general conditions.

We will assume throughout separable initial conditions.
This applies to both the pre-transformed and all of the trans-
formed versions of the system. At T = 0 K, the orthogonal co-
ordinate transformations in question leave the initial density
operator separable if mass- and frequency weighted coordi-
nates are referred to.32

III. NON-MARKOVIAN MASTER EQUATION

The above, transformed spin-boson Hamiltonian will be
analyzed using a master equation that is derived via cumulant
expansion techniques.55–57 In view of our previous analysis of
the Hamiltonian moments (cumulants) characterizing the evo-
lution under a truncated effective mode Hamiltonian,32, 47, 86

we will be particularly interested in such truncated expansions
in a reduced-dynamics setting. This could lead to a significant
simplification of the dynamical problem at least on short time
scales where few effective modes determine the dynamics. To
start with, the general form of the master equation will be out-
lined.

A. Master equation in cumulant expansion form

The relevant non-Markovian master equation is the fol-
lowing standard integro-differential equation for the reduced

density operator, here in TNL form,

∂ρ̂S

∂t
= −i

ˆ̂
LS(t)ρ̂S(t) +

∫ t

t0

dt ′ ˆ̂
G(t, t ′)ρ̂S(t ′), (7)

where ρ̂S = TrBρ̂ is the subsystem density operator. The
double hat symbol denotes Liouvillian superoperators, and
¯= 1 is used throughout. Equation (7) corresponds to the con-
ventional master equation obtained, e.g., by projection oper-
ator techniques.87 We disregard here the so-called inhomoge-
neous term87 which accounts for system-bath correlations at
the initial time t0, and we thus assume that the system and bath
are initially uncorrelated, ρ̂(t0) = ρ̂S(t0) ⊗ ρ̂ref

B , with the refer-
ence bath state ρ̂ref

B . A special case corresponds to ρ̂ref
B = ρ̂

eq
B ,

i.e., the equilibrium state of the isolated bath (as used in
Sec. III D. below). Initial correlations can be accounted for
as described in Refs. 57 and 90.

The master equation (7) can alternatively be derived us-
ing cumulant expansion techniques.54–57, 88, 89 This entails a
cumulant expansion of the memory kernel,

ˆ̂
GI (t, t ′) = − ˆ̂θ2(t, t ′) +

∞∑
m=1

(−i)m+2

×
∫ t

t ′
dτ1 . . .

∫ τm−1

t ′
dτm

ˆ̂θm+2(t, τ1, . . . , τm, t ′),

(8)

where the superscript “I” in ˆ̂
GI (t, t ′) refers to the interaction

frame, i.e., ˆ̂
GI (t, t ′) = ˆ̂

U
†
S(t, t0) ˆ̂

G(t, t ′) ˆ̂
US(t ′, t0). Noting that

ˆ̂
GI (t, t ′) is a superoperator acting on the system subspace,
the interaction frame transformation relating to the complete
system-plus-bath space reduces to the Liouvillian propagator
ˆ̂
US that is associated with the system Liouvillian ˆ̂

LS .

The cumulants or connected averages ˆ̂θn are related as
follows to the moments ˆ̂mn:

ˆ̂θ1(τ1) = ˆ̂m1(τ1)

ˆ̂θ2(τ1, τ2) = ˆ̂m2(τ1, τ2) − ˆ̂m1(τ1) ˆ̂m1(τ2),
(9)

which are in turn defined as

ˆ̂mn(τ1 . . . τn) = TrB
{ ˆ̂
LSB(τ1) . . .

ˆ̂
LSB (τn) ρ̂ref

B

}
, (10)

where the Liouvillian ˆ̂
LSB derives from the Hamiltonian ĤSB

of Eq. (2) and is given as follows in the interaction frame:

ˆ̂
LSB(t) = ˆ̂

U
†
0 (t, t0) ˆ̂

LSB
ˆ̂
U0(t, t0). (11)

Here, ˆ̂
U0(t, t0) is the Liouvillian zeroth-order propagator

ˆ̂
U0(t, t0) = exp(−i

ˆ̂
L0(t − t0))

= exp(−i
ˆ̂
LS(t − t0)) exp(−i

ˆ̂
LB(t − t0)), (12)

which is associated with the corresponding Hamilto-
nian zeroth-order propagator Û0(t, t0) = Û S

0 (t, t0)ÛB
0 (t, t0)

= exp(−iĤ0(t − t0)) where Ĥ0 = ĤS + ĤB .
Assuming separable initial conditions, the master equa-

tion (7) with the kernel (8) provides an exact representation
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of the system’s reduced dynamics. The form Eq. (8) of the
kernel corresponds to a COP series which is also known as
the time non-local (TNL), or time convolution approach as
mentioned above. The COP series of Eq. (8) can be equiv-
alently obtained by projection techniques and a subsequent
time-ordered perturbation expansion.55, 57

Alternatively, the “partial ordering prescription” (POP,
involving partial time ordering) is often used in cumulant
expansions55, 56, 88–90 which is also known as the TL, or time
convolutionless approach. The POP series represents a resum-
mation of Eq. (8) and leads to dynamical equations for the
reduced density operator that are local-in-time;56, 88–90 in this
case, the memory effects are entirely contained in the cumu-
lants. The TL form can be formally obtained from the TNL

form by making the substitution ρ̂S(t ′) = ˆ̂
U

†
S(t, t ′)ρ̂S(t).58 In

the TL form the equation of motion corresponding to Eq. (7)
is given by

∂ρ̂S

∂t
= −i

ˆ̂
LS(t)ρ̂S(t) +

∫ t

t0

dt ′ ˆ̂K(t, t ′)ρ̂S(t). (13)

The following development, which combines the cumu-
lant expansion technique with the transformed Hamiltonian
of Sec. II can be carried out for the TNL (COP) approach as
well as the TL (POP) scheme. In Secs. IV and V, we will com-
pare results obtained from the respective second-order master
equations.

B. Application to effective-mode Hamiltonian

The distinguishing feature of the transformed Hamilto-
nian described in Sec. II is that the system-bath coupling is
restricted to the primary effective bath mode X̂B1, i.e., ĤSB

= Dσ̂zX̂B1, see Eq. (3). Following the above development,
we thus obtain for the moment superoperators of Eq. (10),

ˆ̂mn(τ1, . . . , τn) ρ̂S(t0)

= TrB
{ ˆ̂
LSB (τ1) . . .

ˆ̂
LSB(τn)ρ̂ref

B

}
ρ̂S(t0)

= TrB
{ [

Dσ̂z(τ1)X̂B1(τ1),
[

. . .

. . .
[
Dσ̂z(τn)X̂B1(τn), ρ̂ref

B ⊗ ρ̂S(t0)
] ] ] }

, (14)

where σ̂z(τ1) = Û
S†
0 (τ1, t0)σ̂zÛ

S
0 (τ1, t0). For example, the

second-order contribution leads to

ˆ̂m2(τ1, τ2) ρ̂S(t0)

= D2 [ σ̂z(τ1) , σ̂z(τ2)ρ̂S(t0) ] Tr
{
X̂B1(τ1)X̂B1(τ2)ρ̂ref

B

}
−D2 [ σ̂z(τ1) , ρ̂S(t0) σ̂z(τ2)] Tr

{
X̂B1(τ2)X̂B1(τ1)ρ̂ref

B

}
(15)

with the two-point bath correlation function

C(2)
B (τ1, τ2) = D2 Tr

{
X̂B1(τ1)X̂B1(τ2)ρ̂ref

B

}
≡ D2〈X̂B1(τ1)X̂B1(τ2)〉. (16)

It should be noted that the “coupling-weighted” mode
DX̂B1(t) corresponds exactly (apart from a change in sign)
to the random force ξ̂ (t) in the Langevin equation,52 provided
that the dynamics of interest is that determined by the free
evolution of the bath,

D2〈X̂B1(τ1)X̂B1(τ2)〉 = 〈ξ̂ (τ1)ξ̂ (τ2)〉. (17)

More generally, n-point bath correlation functions C(n)
B

appear that are the following—scalar—quantities derived
from the bath operators:

C(n)
B (τ1, . . . , τn) = Dn Tr

{
X̂B1(τ1) . . . X̂B1(τn) ρ̂ref

B

}
= Dn 〈X̂B1(τ1) . . . X̂B1(τn)〉. (18)

These expressions have a simple appearance since they
only involve Heisenberg operators of the primary bath mode
X̂B1. However, all complications of the many-body bath dy-
namics are contained in the time evolution of these operators,

X̂B1(t) = Û
†
B(t, t0)X̂B1ÛB(t, t0), (19)

where

ÛB(t, t0) = exp(−iĤB(t − t0))

= exp
(−i

(
Ĥ 0

B + Ĥ int
B

)
(t − t0)

)
, (20)

where the bath Hamiltonian is as defined in Eqs. (4) and (5)
and contains the bilinear couplings between the bath modes
according to the transformations discussed in Sec. II B. By
these couplings, the primary mode X̂B1 is coupled to the resid-
ual bath.

The simplest level of approximation would obvi-
ously consist in ignoring Ĥ int

B , and thus the residual bath
modes X̂B2, . . . , X̂BNB

altogether, in which case a purely
coherent dynamics of the effective mode results with
C(2)

B (τ1, τ2) = D2 exp(−i�B1(τ1 − τ2)). Even though this
crude approximation would reproduce the shortest-time dy-
namics accurately,32 all dissipative effects are then disre-
garded. In the following, we discuss a strategy to go beyond
this simplest approximation, which makes use of the chain
model described in Sec. II B.

C. Mori chain development for the secondary bath

The Mori chain model of Sec. II B is now used to derive
a hierarchical sequence of approximations for the secondary
bath. A truncated kth-order chain Hamiltonian corresponds to
an approximate propagator

Û
(k)
B (t, t0) = exp

(−iĤ
(k)
B (t − t0)

)
(21)

and likewise for the corresponding Liouvillian propagator
ˆ̂
U

(k)
B (t, t0) = exp(−i

ˆ̂
L

(k)
B (t − t0)).

When considering the zero-temperature cumulant (mo-
ment) expansion of the kth order propagator Tr{Û (k)

B ρ̂T =0
B }

where ρ̂T =0
B = |0B〉〈0B | (with |0B〉 the bath ground state), it

has been shown that this cumulant expansion agrees with the
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corresponding cumulant expansion of the exact propagator up
to the (2k + 1)th order.32, 47, 49, 53, 86 This implies that the dy-
namics is exactly reproduced by the approximate propagator
over a certain time scale, up to a point where the cumulant
expansions diverge. Even though the cumulant analysis does
not rigorously carry over to the case where the bath exhibits
initial excitations, the kth-order chain propagators can there-
fore be considered suitable approximants, involving a limited
number of bath modes.

With a kth-order approximate propagator, the two-point
correlation function of Eq. (16) now reads as follows:

C(2,k)
B (τ1, τ2)

= D2 Tr
{
X̂B1(τ1)X̂B1(τ2)ρ̂ref

B

}
= D2 Tr

{
Û

(k)†
B (τ1, t0)X̂B1Û

(k)
B (τ1, τ2)X̂B1Û

(k)
B (τ2, t0)ρ̂ref

B

}
,

(22)

where C(2,k)
B carries a double index which denotes the (n

= 2)-point correlation function (i.e., second order in ĤSB ),
approximated at the kth order in the chain expansion of ĤB .

D. Correlation functions from spectral densities

The most convenient way to calculate the relevant
two-point correlation functions for the equilibrium refer-
ence bath state ρ̂ref

B = ρ̂
eq
B , involves the Fourier-Laplace

transform relation to the corresponding spectral density
J(ω),24, 25, 91

C(2)
B (t) = 1

π

∫ ∞

−∞
dωJ (ω)nB (ω)eiωt

= 1

π

∫ ∞

0
dωJ (ω)[coth (βω/2) cos (ωt) − i sin (ωt)],

(23)

where nB(ω) = 1/(eβω − 1) is the Bose-Einstein distribution,
β = (kBT)−1, kB is the Boltzmann’s constant, and T is the
temperature. The correlation function is taken to be indepen-
dent of the choice of the time origin, C(2)

B (τ, τ + t) ≡ C(2)
B (t),

due to the invariance of the reference (equilibrium) bath state
under the zeroth-order propagator. Further, Eq. (23) is in-
variant with respect to the coordinate representation—pre-
transformed versus post-transformed—that is chosen, and is

most conveniently derived in the pre-transformed
representation.

The above correlation functions are often expressed
in terms of a summation over Matsubara frequencies
ν l = 2π l/β15, 24 using the series expansion

coth (βω/2) = 2

β

(
1

ω
+ 2

l=∞∑
l=1

ω

ω2 + ν2
l

)
, (24)

which converges rapidly for finite temperatures (but requires
an infinite number of terms in the T = 0 limit).

In order to apply Eq. (23) to the Mori chain form of the
bath Hamiltonian, the relevant spectral density has to be ex-
pressed in terms of the transformed representation. As demon-
strated in Appendix A and in Refs. 49, 50, and 92, the spectral
density associated with the original, pre-transformed Hamil-
tonian of Eqs. (1) and (2), J (ω) = π/2

∑
n c2

nδ(ω − ωn), can
be re-written analytically in the form of a continued fraction.
Truncation and Markovian closure of this continued fraction
at the kth order yields the form of Eqs. (A10) and (A11) of the
approximate spectral density J

(k)
eff (ω).

Following the strategy of Sec. II B, we will thus calculate
successive kth order spectral densities J

(k)
eff (ω) for truncated

Mori chains with Ohmic closure. From these spectral densi-
ties, the corresponding correlation functions (22) are obtained
from the relation (23),

C(2,k)
B (t)= 1

π

∫ ∞

0
dωJ

(k)
eff (ω)[coth (βω/2) cos (ωt)−i sin (ωt)].

(25)

For the lowest-order case where only the primary ef-
fective mode is accounted for (k = 1), we have following
Eqs. (A10) and (A11) for the spectral density,

J
(1)
eff (ω) = J

(1)
+,eff(ω) + J

(1)
−,eff(ω)

(26)

J
(1)
±,eff(ω) = 2ηωD′2

(�B1 ∓ ω)2 + (2ηω)2

i.e., a Lorentzian form, with the antisymmetric property
J

(1)
eff (−ω) = −J

(1)
eff (ω) and the definition D′ = D/

√
2 which

is introduced in Appendix A.
The corresponding correlation function is obtained from

Eqs. (23)–(26), with the following real part:

Re C(2,1)
B (t) = D′2

(
1

β�B1
+ 2

l=∞∑
l=1

�B1
[
�2

B1 + ν2
l (1 − 4η2 − i4η)

]
β
[
(�2

B1 + ν2
l (1 − 4η2))2 + 16η2ν4

l

])
exp(−iα(1 − i2η)t)

+D′2
(

1

β�B1
+ 2

l=∞∑
l=1

�B1
[
�2

B1 + ν2
l (1 − 4η2 + i4η)

]
β
[
(�2

B1 + ν2
l (1 − 4η2))2 + 16η2ν4

l

])
exp(iα(1 + i2η)t)

−
l=∞∑
l=1

8D′2ηνl

[
�2

1 − (1 + (2η)2)ν2
l

]
β
[
(�2

B1 − (1 + (2η)2)ν2
l )2 + (2�B1νl)2

] exp(−νlt), (27)
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where α = �B1/(1 + 4η2). The imaginary part Im C(2,1)
B (t) is

given by

− Im C(2,1)
B (t) = i

D′2

2

(
1 − i2η

1 + 4η2
exp(−iα(1 − i2η)t)

− 1 + i2η

1 + 4η2
exp(iα(1 + i2η)t)

)

= D′2 exp(−2ηαt)

[1 + 4η2]
(2η cos αt + sin αt). (28)

One should point out that the real and imaginary parts of
the correlation function are directly related through the rela-
tion (23), and can be derived from each other.24, 106

The above case again corresponds to the simplest Brow-
nian oscillator model. The higher order, k = 2, result C(2,2)

B is
given by Eq. (A14) of Appendix A.

Since the correlation functions as defined above consist
of complex exponentials that result from the poles of the spec-
tral densities they take the general form

C(2,k)
B (t) =

nM+2k∑
l=1

fl,k exp(pl,kt), (29)

where {fl, k, pl, k} are complex parameters. There are nM poles
resulting from the Matsubara summation which lie along the
imaginary axis and 2k terms from the k effective modes. The
exponential property is an important ingredient in the de-
velopment that is described in Sec. IV, by which the non-
Markovian memory kernel is replaced by a set of coupled
local-in-time equations. It will also be convenient to separate
C(2,k)

B (t) into its real and imaginary parts

C(2,k)
B (t) =

nM+2k∑
l=1

al,k exp(pl,kt) − i

nM+2k∑
l=nM+1

bl,k exp(pl,kt),

(30)

where the {pl, k, al, k, bl, k} are complex parameters. The rela-
tion between the coefficients al, k and bl, k again follows from
the relation between the real and imaginary parts of the corre-
lation functions, see Ref. 106.

IV. SECOND-ORDER MASTER EQUATION USING
AUXILIARY DENSITY FORMULATION

Using the above construction of the relevant correlation
functions, we now return to the master equations (7) and (13)
and focus on the second order form as a special case. As will
be shown below, the complex exponential form Eq. (30) of
the correlation functions leads to a useful formulation of the
reduced dynamics problem, allowing one to convert the con-
volution form of the master equation to a set of coupled local-
in-time equations. The approach bears some similarity to the
scheme introduced by Meier and Tannor60 where the relevant
spectral densities were fitted to a sum of complex Lorentzian
functions; this scheme has meanwhile been successfully ap-
plied to various problems.58, 61, 62 The present approach, by
comparison, does not necessitate any fitting procedure since
the relevant spectral densities and the associated correlation

functions are determined by the transformations described in
Sec. II.

We will address both the time non-local (TNL) and the
time local (TL) form of Eqs. (7) and (13), respectively.

A. Time non-local approach

The weak-coupling non-Markovian master equation re-
sulting from truncation of the cumulant expansion of Eq. (7)
at the second order in ĤSB , and taken to the kth order in the
interaction with the residual bath, reads as follows:

∂ρ̂S

∂t
= −i

ˆ̂
LS(t)ρ̂S(t) −

∫ t

t0

dt ′ ˆ̂
US(t, t0) ˆ̂θ2(t, t ′) ˆ̂

U
†
S(t ′, t0)ρ̂S(t ′)

= −i
ˆ̂
LS(t)ρ̂S(t)

−
[
σ̂z,

∫ t

t0

dt ′ C(2,k)
B (t, t ′) ˆ̂

US(t, t ′)σ̂zρ̂S(t ′)
]

+
[
σ̂z,

∫ t

t0

dt ′ ˆ̂
US(t, t ′)ρ̂S(t ′)σ̂zC∗(2,k)

B (t, t ′)
]

= −i
ˆ̂
LS(t)ρ̂S(t)

−
[
σ̂z,

∫ t

t0

dt ′ Re C(2,k)
B (t, t ′) ˆ̂

US(t, t ′)[σ̂z, ρ̂S(t ′)]
]

− i

[
σ̂z,

∫ t

t0

dt ′ Im C(2,k)
B (t, t ′) ˆ̂

US(t, t ′)[ρ̂S(t ′), σ̂z]+

]
,

(31)

where Eqs. (15) and (16) were used, and it was assumed that
the first moments ˆ̂m1(t) which appear in the second-order cu-
mulant according to Eq. (9) vanish. In the above equation,
[ , ]+ denotes the anticommutator. Equation (31) can be for-
mally re-written as follows:

∂ρ̂S

∂t
= −i

ˆ̂
LS(t)ρ̂S(t) −

[
σ̂z,

nM+2k∑
l=1

ρ̂
(l,k)
R (t)

]

+ i

[
σ̂z,

nM+2k∑
l=nM+1

ρ̂
(l,k)
I (t)

]
, (32)

where the auxiliary density matrices ρ̂
(l,k)
R and ρ̂

(l,k)
I were in-

troduced,

ρ̂
(l,k)
R (t) =

∫ t

t0

dt ′al,k exp(pl,k(t − t ′))

× exp(−i
ˆ̂
LS(t − t ′))[σ̂z, ρ̂S(t ′)]

(33)

ρ̂
(l,k)
I (t) =

∫ t

t0

dt ′bl,k exp(pl,k(t − t ′))

× exp(−i
ˆ̂
LS(t − t ′))[σ̂z, ρ̂S(t ′)]+.
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From this definition, the equations of motion of these quanti-
ties are given as

∂ρ̂
(l,k)
R

∂t
= (pl,k − i

ˆ̂
LS)ρ̂(l,k)

R (t) + al,k[σ̂z, ρ̂S(t)]

(34)

∂ρ̂
(l,k)
I

∂t
= (pl,k − i

ˆ̂
LS)ρ̂(l,k)

I (t) + bl,k[σ̂z, ρ̂S(t)]+,

where we used the general form Eq. (30) of the correlation
functions. Furthermore,60 expressing Eq. (31) in terms of the
real and imaginary parts of the correlation functions reduces
the number of auxiliary density matrices from 2(nM + 2k) to
(nM + 4k).

The coupled equations for the subsystem operator ρ̂S and
auxiliary operators {ρ̂(l,k)

R , ρ̂
(l,k)
I }, Eqs. (32) and (34), replace

the convolution form of the master equation (31). The kth or-
der auxiliary densities are generated from the corresponding
correlation functions C(2,k)

B (t, t ′).

B. Time local approach

As explained in Sec. III A, the TL master equation is ob-
tained from the TNL form of Eq. (31) by resummation. In the
TL form the equation of motion corresponding to Eq. (31) is
given by

∂ρ̂S

∂t
= −i

ˆ̂
LS(t)ρ̂S(t)

−
[
σ̂z,

∫ t

t0

dt ′ C(2,k)
B (t, t ′) ˆ̂

US(t, t ′)σ̂z
ˆ̂
U

†
S(t, t ′)ρ̂S(t)

]

+
[
σ̂z, ρ̂S(t)

∫ t

t0

dt ′ ˆ̂
US(t, t ′)σ̂zC∗(2,k)

B (t, t ′)
]

= −i
ˆ̂
LS(t)ρ̂S(t)

−
[
σ̂z,

∫ t

t0

dt ′ Re C(2,k)
B (t, t ′) ˆ̂

US(t, t ′)[σ̂z, ρ̂S(t)]

]

− i

[
σ̂z,

∫ t

t0

dt ′ Im C(2,k)
B (t, t ′) ˆ̂

US(t, t ′)[ρ̂S(t), σ̂z]+

]

= −i
ˆ̂
LS(t)ρ̂S(t) −

[
σ̂z ,

[nM+2k∑
l=1

ϒ̂
(l,k)
R (t), ρ̂S(t)

]]

+ i

[
σ̂z ,

[ nM+2k∑
l=nM+1

ϒ̂
(l,k)
I (t), ρ̂S(t)

]
+

]
, (35)

where the auxiliary operators ϒ̂
(l,k)
R and ϒ̂

(l,k)
I were intro-

duced,

ϒ̂
(l,k)
R (t) =

∫ t

t0

dt ′al,k exp(pl,k(t − t ′)) exp(−i
ˆ̂
LS(t − t ′))σ̂z

(36)

ϒ̂
(l,k)
I (t) =

∫ t

t0

dt ′bl,k exp(pl,k(t − t ′)) exp(−i
ˆ̂
LS(t − t ′))σ̂z.

From this definition, the equations of motion of these quanti-
ties are given as

∂ϒ̂
(l,k)
R

∂t
= (pl,k − i

ˆ̂
LS)ϒ̂ (l,k)

R (t) + al,kσ̂z

(37)
∂ϒ̂

(l,k)
I

∂t
= (pl,k − i

ˆ̂
LS)ϒ̂ (l,k)

I (t) + bl,kσ̂z.

As mentioned above, the advantage of the present scheme
as compared with the related approaches of Refs. 58, 60, and
61 lies in the fact that the decomposition Eq. (29) of the spec-
tral density in terms of complex exponential terms does not
result from a fitting procedure, but is a unique result of the
effective-mode transformations described in Sec. II.

V. RESULTS AND DISCUSSION

The results presented here refer to the TNL and TL mas-
ter equations, Eq. (7) and Eq. (13), using either analytical
solutions (Sec. V B) or else the auxiliary density/operator
approach (Sec. V C) as detailed in Sec. IV. We begin this
section by analyzing the two-point bath correlation function
C(2)

B (t, t ′), in accordance with the discussion of Sec. III D.
In Sec. V B, we focus on a pure dephasing example, which
is interesting because the TL equations are exact for the
case under consideration, as also demonstrated in Ref. 93.
In Sec. V C, results are shown for the more general spin-
boson example of Eq. (2). For comparing the TL and TNL
form, comparison is made with explicit system-bath multi-
dimensional wavepacket calculations carried out using the
MCTDH method70–72, 98 as further detailed in the supplemen-
tary material.108

A. Bath correlation functions

We focus here on the low-order correlation functions
C(2,k)

B (t, t ′) for k = 1, 2, which determine the short-time dy-
namics within the Mori chain model. The parameters of the
relevant correlation functions are obtained from the effective
mode transformation described in Sec. II. For each order k
the hierarchy is terminated by approximating the coupling of
the final member of the chain to the bath by an Ohmic spec-
tral density. The correlation functions are analytically deter-
mined from the corresponding spectral densities, as described
in Sec. III D.

In Fig. 1, the correlation function C(2,k)
B is depicted for k

= 1 and 2. At the k = 1 level that involves the primary effec-
tive mode coupled ohmically to the bath, C(2,1)

B as defined in
Eqs. (27) and (28) consists of (1) an expansion in exponen-
tially decaying terms determined by the Matsubara frequen-
cies and (2) it also possesses an exponential term that has a
single carrier oscillation of frequency �B1/(1 + 4η2) with an
exponentially decaying envelope—as depicted in Fig. 1. The
rate of decay is determined by both the friction parameter η

and �B1.
At high temperatures, Eqs. (27) and (28) yield

C(2,1)
B (t) ∼ Re C(2,1)

B (t)

= 2D′2kBT

�B1
exp(−2αηt) cos(αt) + C(1)

M (t), (38)
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FIG. 1. Bath correlation functions C(2,k)
B for the imaginary part (blue) and at various temperatures for the temperature dependent real part. (a) depicts the lowest

k = 1 order correlation function with parameters D′ = 0.0007, �B1 = 0.0015, and η = 2/15; (b) depicts the k = 2 order correlation function with parameters
D′ = 0.0004 = d12, �B1 = 0.0015, �B2 = 0.0014, and η = 1/7. The inset figures in both part (a) and (b) depict Re C(2,k)

B (t, T = 0) evaluated with (black) and

without (cyan) C(k)
M .

where the contribution of Re C(2,1)
B overwhelms that of

Im C(2,1)
B and the Matsubara sum gives the term C(1)

M (t)
= −(D′2/π )(4η/(1 + 4η2) ln(1 − exp(−2πt/β)) which is
only important at short times.

As the temperature is lowered the Matsubara fre-
quencies get denser and the summation may be re-
placed by an integral over the Matsubara frequencies
ν l → x:

lim
T →0

2

β

∞∑
l=1

→ 1

π

∫ ∞

0
dx. (39)

Evaluating this integral for Eq. (27) gives

Re C(2,1)
B (t, T = 0) = iD′2

2

(−i + 2η

1 + 4η2
exp(iα(1 + i2η)t)

− i + 2η

1 + 4η2
exp(−iα(1− i2η)t)

)
+ C(1)

M .

(40)

The first two exponential terms on the right-hand side arise
from the complex exponential components of Eq. (27), and
for t > 0

C(1)
M = D′2

2π

{
i+2η

1+4η2
(exp(−iα(1 − i2η)t)�[0,−iα(1 − i2η)t]

+ exp(iα(1 − i2η)t)�[0, iα(1 − i2η)t])

+ −i + 2η

1 + 4η2
(exp(iα(1 + i2η)t)�[0, iα(1 + i2η)t]

+ exp(−iα(1 + i2η)t)�[0,−iα(1 + i2η)t])

}
(41)

arises from the exp (−ν lt) part of Eq. (27). The term
�[a, b] is the incomplete gamma function. At short
times, C(1)

M diverges but stays integrable, C(1)
M (t → 0)

∼ −(D′2/π )(4η/(1 + 4η2) ln t ; the same holds, at all tem-
peratures, for the last term on the r.h.s. of Eq. (37)
and Eq. (38). At long times C(1)

M decays algebraically
to zero, C(1)

M (t → ∞) = (4ηD′2/π�2)(1/t2). If C(1)
M is

neglected the correlation function C(2,1)
B (t, T = 0) then

consists of only a single complex exponential term
−iD′2(i + 2η)exp (−iα(1 − i2η)t)/(1 + 4η2).107

For the k = 2 case of the primary effective mode coupled
to the secondary effective mode which is ohmically coupled
to a bath, the explicit form of C(2,2)

B is given by Eq. (A14) in
Appendix A. The temperature dependency of C(2,2)

B is quite
similar to the k = 1 case. However, as illustrated in the inset
of Fig. 1(b), at T = 0 K the short-time influence of C(2)

M is
not very noticeable for the k = 2 case. C(2,2)

B is then very well
approximated as

C(2,2)
B (t) = − i4D′2d2

12η

1 + 4η2

2∑
r=1

pr exp(−ipr t)

�4
j �=r (pr − pj )

(42)

where the term pr is defined in Eq. (A15) of Appendix A.

B. Pure dephasing

A pure dephasing situation is obtained when ĤS = �σ̂z

in Eq. (2). For this model σ̂z is a conserved quantity and the
same holds for any function of it. The resulting equations of
motion for the reduced density matrix elements are uncoupled
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and only the coherences are time-dependent,
∂ρ11

∂t
= 0 = ∂ρ22

∂t
(43)

∂ρ12

∂t
= −i2�ρ12(t) − 4

∫ t

t0

dt ′ Re C(2,k)
B (t, t ′)ρ12(τ ) = ∂ρ∗

21

∂t
,

where τ = t for the TL approach and τ = t′ for the TNL
approach. The equation of motion for the coherence in TL
form is easily solved to give

ρTL
12 (t) = ρ12(t0) exp

(
−2i�t − 4

π

∫ ∞

0
dωJ (k)(ω)

× coth (βω/2)
1 − cos ωt

ω2

)
. (44)

In Appendix B, it is shown that the TL form defined in
Eq. (44) for pure dephasing is exact for the harmonic
oscillator thermal bath. It was also shown in Ref. 93 that
the TL form is exact if the bath modes are Gaussian. Exact
solutions for the TL form have further been discussed in
Refs. 88, 89, 94, and 95.

To investigate more clearly the influence of the bath on
the system dynamics we set � = 0. The system dephasing
dynamics is then completely determined by the influence of
the bath on the system.

1. k = 1 case

At T = 0 K the exact TL expression for the coherence is
given by

ρTL
12 (t, T = 0) = ρ12(t0) exp

(
−4D′2

�2
B1

[1 − exp(−2αηt)

× (cos αt + 2η sin αt) + M(1)]

)
, (45)

where M(1) is the term that arises from C(1)
M of Eq. (41) and

for t > 0 is given by

M(1) = 4η

π

{
γE + ln

�B1t√
1 + 4η2

+ 1

8η

[
2

(
cos−1 2η√

1 + 4η2
− cos−1 −2η√

1 + 4η2

)

+ (−i + 2η)

(
exp

(
�B1t

i − 2η

)
�

[
0,

�B1t

i − 2η

]

+ exp

(
�B1t

−i + 2η

)
�

[
0,

�B1t

−i + 2η

])

+ (i + 2η)

(
exp

(−�B1t

i + 2η

)
�

[
0,

−�B1t

i + 2η

]

+ exp

(
�B1t

i + 2η

)
�

[
0,

�B1t

i + 2η

])]}
. (46)

The term γ E � 0.577216 is Euler’s constant. Figure 2 depicts
ρTL

12 (t, T = 0) and for the TNL case ρTNL
12 (t, T = 0), evalu-

ated using the parameters defined in Table I along with η

= 1/15, and initial condition ρ12(t0) = −i/2. The TL and TNL
form differ significantly. The TL case has a damped oscilla-
tion of frequency α followed by a long time decay of the co-
herence. The TNL coherence oscillation is shifted to a higher
frequency of

α′ =
√

4D′2(1 + 4η2) + �2
B1

1 + 4η2
. (47)

In Fig. 2(a), ρTNL
12 (t, T = 0) evaluated with and without the in-

clusion of C(1)
M is depicted. By excluding C(1)

M , ρTNL
12 (t, T = 0)

is evaluated relatively straightforwardly by Laplace transform

0 200 400 600 800
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TNL

TNL no C
M

(1)

0 200 400 600 800

Time /fs
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(b)

FIG. 2. Pure dephasing dynamics at the k = 1 level using the parameters defined in Table I along with η = 1/15, and initial condition ρ12(t0) = −i/2 for the
TL and TNL approach. (a) depicts the T = 0 K case for ρTL

12 (t, T = 0) (black), and ρTNL
12 (t, T = 0) evaluated with (red), and without (green) inclusion of C(1)

M

of Eq. (41). In (b) ρTL
12 (t) and ρTNL

12 (t) are depicted at T = 300 K and T = 1000 K.
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TABLE I. Parameters, quoted in atomic units.

�B1 �B2 D′ d12

Dephasing 0.0015 0.0014 0.0007 0.0004
Spin-boson 0.0015 0.0014 0.00025 0.0004

to give

ρTNL
12 (t, T = 0)

= ρ12(t0)

{
�2

B1

4D′2 + �2
B1

+ 4D′2 exp(−2αηt)

4D′2 + �2
B1

[
cos α′t

+ 2η�B1 sin α′t√
4D′2(1 + 4η2) + �2

B1

]}
. (48)

From the definition of α′ it is clear that ρTNL
12 (t, T = 0) be-

comes more accurate for high frequency (large �B1) weakly
coupled (small D value) baths where α gets closer to α′.

As the temperature increases the coherence decays more
rapidly to zero for both the exact ρTL

12 (t) and ρTNL
12 (t). In the

high temperature limit and excluding the contribution of C(1)
M

in Eq. (38)

ρTL
12 (t) = ρ12(t0) exp

(
− 8D′2

β�2
B1

[
2ηt

+α−1(1 − exp(−2αηt) cos αt)

− 4η

�B1
exp(−2αηt) sin αt

])
. (49)

In Fig. 2(b), ρTL
12 (t) is depicted at T = 1000 K along with

ρTNL
12 (t) which becomes more oscillatory and is shifted to even

higher frequency. For ρTNL
12 (t) the high temperature expres-

sion is quite complicated and its explicit form is not very in-
structive.

2. k = 2 case

The explicit analytical expression for ρTL
12 (t) is more com-

plicated than the corresponding k = 1 expression, and al-
though its evaluation is straightforward its analytical expres-
sion is not very instructive. Due to the dependency of ρ12(t)
on the primary and secondary effective mode frequencies, the
coupling between the modes and the friction term, the coher-
ence dynamics will be more complicated than the k = 1 case.
Figure 3 depicts ρTL

12 (t) and ρTNL
12 (t) at (a) T = 0 K, (b) T

= 300 K, and (c) T = 1000 K. Figure 3(a) also depicts ρ12(t)
evaluated with and without M(2); however, the coherences
are virtually indistinguishable because C(2)

M contributes little to
Re C(2,2)

B (t, T = 0), as clearly illustrated in Fig. 1(b). As in the
k = 1 case the TL and TNL coherences differ significantly,
especially at high temperature, as illustrated in Fig. 3(c). At
high temperature ρTNL

12 (t) oscillates at a higher frequency and
possesses a relatively large amplitude which takes over 40 ps
to decay, compared to around 500 fs for ρTL

12 (t).

C. Spin-boson model

This section focusses on the more general spin-boson
Hamiltonian ĤS = � σ̂z + λσ̂x where neither the second or-
der TNL or TL form are exact. The dynamics of ρTNL(t)
and ρTL(t) are evaluated using the auxiliary approaches of
Eq. (34) or Eq. (37), respectively. The accuracy of the two ap-
proaches is assessed at T = 0 K by comparing the dynamics of
ρTNL(t) and ρTL(t) with multi-dimensional wavepacket calcu-
lations using the MCTDH method70–72 (Heidelberg MCTDH

package98).
For the wavepacket calculations, a procedure similar to

the one described in Refs. 49–51 was employed. An explicit
discretized representation using 30 modes sampled from the
kth-order spectral density J

(k)
eff (ω) (see Eq. (A10)) with equally
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FIG. 3. Pure dephasing dynamics at the k = 2 level using the parameters defined in Table I along with η = 1/14, and initial condition ρ12(t0) = −i/2 for the TL
(black) and TNL (red) approach. (a) depicts the T = 0 K case for ρTL

12 (t, T = 0) (black), and ρTNL
12 (t, T = 0) evaluated with (red), and without (green for TL

and blue for TNL) inclusion of C(2)
M . In (b) ρTL

12 (t) and ρTNL
12 (t) are depicted at T = 300 K, and (c) at T = 1000 K.
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FIG. 4. (a) Population and (b) coherence dynamics at the k = 1 level and temperature T = 0 K for the TL, TNL, and wavepacket MCTDH approach. The
parameters are defined in Table I along with η = 4/15 and initial condition ρ11(t0) = 1.

spaced frequencies was employed to simulate the system-bath
dynamics at T = 0 K, where all the bath modes are in the
ground state. The system-bath coupling coefficients cn (here,
in the pre-transformed representation) are related to the spec-
tral density by51

cn =
√

2

π
J

(k)
eff (ω)�ω. (50)

Further details are provided in the supplementary material.108

Results are presented for the lowest order k = 1 case of
the primary effective mode �B1 coupled directly to the Ohmic
bath, and for the k = 2 case which consists of the primary
effective mode coupled to a secondary effective mode �B2

which is directly coupled to the bath. Initial conditions ρ11(t0)
= 1, ρ12(t0) = ρ21(t0) = ρ22(t0) = 0 were used for both the
k = 1 and k = 2 case.

1. k = 1 case

Figure 4 depicts the population and coherence dynamics
at T = 0 K using the system parameters � = 0.0004 = λ

and bath parameters defined in Table I along with η = 4/15
and initial condition ρ11(t0) = 1. All three calculations are in
good agreement with each other. The TL approach is in closer
agreement with the MCTDH results than the TNL approach.
This is in stark contrast to the dephasing results of Sec. V B
where the TNL results differed significantly from the exact
TL results. However, in this case the system parameters were
set to zero and so the system dynamics was completely due
to the interaction with the bath. In this spin-boson case the
system dynamics masks some of the influence of the bath and
so the discrepancy between the TL and TNL form is not as
pronounced. Furthermore, a large D coupling parameter was

chosen for the dephasing results which amplifies the differ-
ences between the two approaches.

The population dynamics of Fig. 4(a) displays a decay-
ing almost Rabi oscillatory profile of frequency ∼ √

λ2 + �2.
The imaginary part of the coherence ρ12 is depicted in
Fig. 4(b).

In Fig. 5, the population and coherence dynamics is
depicted for various temperatures. For the populations the
amplitude of the Rabi oscillation diminishes as temperature
increases and the populations relax almost to a Boltzmann dis-
tribution. The coherence decays more rapidly as temperature
increases.

2. k = 2 case

Figure 6 depicts the population and coherence dynamics
at T = 0 K using the system parameters � = 0.0004 = λ

and bath parameters defined in Table I along with η = 2/14,
and initial condition ρ11(t0) = 1. All three calculations are in
good agreement with each other. The TL approach is in closer
agreement with the MCTDH results than the TNL approach,
as was the case for k = 1.

Both the population and coherence dynamics of Fig. 6
is very similar to the corresponding dynamics illustrated in
Fig. 4 for the k = 1 case. This is not surprising because
we expect a low order truncation of the effective mode
chain to accurately reproduce the short-time dynamics of the
system.49–53 The accuracy of the dynamics persists as the tem-
perature is varied, as illustrated in Fig. 7, which should be
compared with the k = 1 model of Fig. 5.

D. Discussion

The above examples have focused on the analytically
solvable pure dephasing case (Sec. V B) and a more general
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FIG. 5. (a) Population and (b) coherence dynamics at the k = 1 level at temperatures T = 0, 100, 300, and 1000 K for the TL approach using the initial condition
ρTL

11 (t0) = 1 and parameters defined in Table I along with η = 4/15.

spin-boson dynamics where the second-order master equation
result was in very good agreement with numerically exact,
non-perturbative MCTDH results (Sec. V C). The C(2,k)

B , k
= 1, 2, correlation functions were calculated from the ana-
lytical expressions of Sec. III D (see Fig. 1), and the resulting
dynamics were compared. The results of Figs. 4 versus 6 and
Figs. 5 versus 7 illustrate the similarity of the k = 1, 2 calcu-
lations for a broad range of temperatures. These results, even

though restricted to low orders in k, are useful by themselves,
and could capture the dominant non-Markovian behavior in
a class of systems where the Brownian oscillator picture pro-
vides a good zeroth-order model.

Some focus was placed upon the comparison between the
TL and TNL dynamics. In particular, it was shown that for
the pure dephasing model the TL form is exact for thermal
harmonic baths, see also Refs. 88, 89, 94, and 95. The TNL
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FIG. 6. (a) Population and (b) coherence dynamics at the k = 2 level and temperature T = 0 K for the TL, TNL, and wavepacket MCTDH approach. The
parameters are defined in Table I along with η = 2/14 and initial condition ρ11(t0) = 1.
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FIG. 7. (a) Population and (b) coherence dynamics at the k = 2 level at temperatures T = 0, 300, and 1000 K for the TL approach using the initial condition
ρTL

11 (t0) = 1 and parameters defined in Table I along with η = 2/14.

form only showed good agreement with the exact result for
weak coupling and high frequency baths. This observation has
also been noted in Refs. 101 and 102 in the study of optical
line shape widths of excitonic molecular aggregates.

For the spin-boson case neither the TL or TNL form
is exact, but in the results presented here the TL form was
more accurate than the TNL form and this was generally
the case for other caclulations that we performed (but did
not highlight in this paper) using different parameters for the
spin-boson model. However, one should not assume that the
TL form is globally superior to the TNL form; as noted in
Refs. 94, 96, 97, and 101 the accuracy of the TL versus TNL
forms is dependent on the system under study.

Future work will address higher-order correlation func-
tions, and their approximation by lower order C(2,k)

B ’s. While
the analytical correlation function expressions become in-
creasingly demanding, and are in practice difficult to obtain
beyond k = 2, the numerical calculation of the correlation
functions is straightforward. Also, it is feasible to numeri-
cally obtain the complex poles that are required for the repre-
sentation Eq. (29), as a prerequisite for the auxiliary density
matrix/operator approach.

VI. CONCLUSIONS AND OUTLOOK

The hierarchical approach developed here can be
viewed as a Liouville-space analog of the Mori-chain
representation39–41, 83 which is generally applied in the
Heisenberg picture. This chain representation of the environ-
ment provides a natural approach to non-Markovian dynam-
ics, as is manifest already for its simplest realization, i.e., the
Brownian oscillator model. By the coupling of the primary
oscillator to the residual chain of bath modes, the dynamics
of the former becomes more complicated and eventually re-

veals all details of the many-body environment and its cou-
pling to the quantum subsystem. Note that the approach is
distinct from multi-mode Brownian oscillator models.24

While the transformation techniques addressed here have
been explored in our recent work30–32, 46, 47 and the useful-
ness of the method has been demonstrated, e.g., to describe
the photophysics of extended systems,46–48 the interest of the
present work is to systematically construct a reduced dynam-
ics approach that builds upon the effective mode picture. Cu-
mulant expansion techniques are the method of choice since
they connect to our previous analysis in terms of moments
(cumulants) of the Hamiltonian propagator,32, 47 as well as the
analysis of Ref. 86 in terms of moments of the Liouvillian
propagator.

In keeping with earlier works,25–27, 99, 100 we have used
the fact that the central quantities appearing in the analysis
are correlation functions of the primary effective mode, which
is the only bath mode that is directly involved in the system-
bath coupling ĤSB . The residual bath appears in terms of the
coupling to the primary mode, and can be accounted for using
various levels of approximation. In particular, the intra-bath
couplings are cast into a band-diagonal form resulting in a
chain of residual modes. In accordance with the Mori chain
picture, an Ohmic closure is introduced at the kth-order trun-
cation point within the chain.

The present analysis is parallel to our recent development
of Refs. 49 and 50 where we proposed to generate a hierar-
chical series of approximate spectral densities J

(k)
eff (ω), using

the same effective mode description with successive kth order
truncations. The two-point correlation functions C(2,k)

B which
are the central quantities of interest in the present study—at
the level of a second-order master equation description—are
obtained as the Fourier-Laplace transforms of these spectral
densities.
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Using the complex exponential property of the corre-
lation functions, we have further introduced a time-local
form of the second-order master equation which employs
a formulation in terms of auxiliary densities for the TNL
form or auxiliary operators for the TL form, similar to
Refs. 58, 60, and 61. Importantly, no fitting procedure to
a sum of complex exponentials is necessary in the present
approach.

This procedure, which would be able to capture impor-
tant aspects of the dynamics even at the level of the weak-
coupling (second-order) non-Markovian master equation, has
been illustrated for the first few orders in the chain expan-
sion. Analytical results have been obtained for the two-point
correlation functions C(2,k)

B , k = 1, 2, which are 2nd order in
ĤSB and kth order in the chain expansion. In view of our re-
cent study of the convergence properties of the hierarchical
effective-mode approach of Ref. 53, we expect convergence
with respect to k to be rapid. Specifically, it has been shown in
the latter reference that the random force correlation functions
of the Langevin equation (which are essentially the same cor-
relation functions as those described in this work) are rapidly
convergent and accurately reproduce the memory kernel to
4kth order in time.

Although powerful numerical techniques are available to
explicitly provide exact solutions for the spin-boson problem
in many dimensions,64–67, 73 the present transformation tech-
niques can be useful for more general system-bath problems,
as exemplified by our recent applications.49, 50 An approxi-
mate, reduced-dimensional treatment of the residual bath can
thus bring significant advantages for ultrafast system-bath dy-
namics in markedly non-Markovian regimes.

Various extensions and applications of the present ap-
proach can be envisaged. First and foremost, the proposed
approximation schemes need to be carefully assessed and
compared with the approximations made in reduced dynam-
ics descriptions of the original Hamiltonian (prior to the ef-
fective mode transformation). A priori, the present approach
is not limited to weak coupling, provided that higher orders
in the cumulant expansion are included. This can in princi-
ple be done, based on the observation that the bath in the
chain representation represents a Gaussian process – as is
the case in the pre-transformed representation. Further, rel-
evant extensions involve the generalization to more compli-
cated quantum subsystems like conical intersections, where
several effective modes appear at each order of the Mori chain
hierarchy.30–32 Finally, interesting connections exist to numer-
ical renormalization group techniques, which have recently
been extended to bosonic baths, using very similar chain con-
structions as the one employed here.42 Overall, we hope that
the present approach could provide a useful alternative to
other hierarchical schemes that have recently been developed
in order to make non-Markovian reduced dynamics feasible
in practice.18, 20, 58, 60, 103, 104
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APPENDIX A: CONTINUED-FRACTION SOLUTION
OF MORI CHAIN EQUATIONS WITH MARKOVIAN
CLOSURE

In this appendix, we derive a general form of the spec-
tral density for a truncated Mori chain with Ohmic closure,
which yields by Fourier transformation the correlation func-
tions of Sec. III D. The resulting spectral densities are the
analog, in mass and frequency weighted coordinates, of the
spectral densities obtained in Refs. 49 and 50. Similarly to
these references, the spectral density pertaining to the chain
representation Eq. (5) is obtained in terms of the imaginary
part of a Laplace-domain propagator K̂B(z) which describes
the effect of the bath on the subsystem.

For a two-level system, we consider the Heisenberg oper-
ators {σ̂x, σ̂y, σ̂z}. For convenience, we employ the operators
σ̂± = 1/2(σ̂x ± iσ̂y) which are found to evolve independently
under the coupling to the bath,

(z ± 2�)σ̂±(z) ∓ λσ̂z(z) − iσ̂±,0 = K̂
(±)
B (z)σ̂±(z). (A1)

The operator σ̂z is independent of the bath, and its evolution
follows from the relation ˙̂σz = −i2λ(σ̂+ − σ̂−).

From the propagator K̂
(±)
B (z), the spectral density is ob-

tained as follows:25, 49, 50

J (ω) = lim
ε→0+

ImK̂B(ω − iε), (A2)

i.e., the spectral density is given as the imaginary part of the
dynamic susceptibility.25

As in Refs. 25, 49, and 50, we now employ a mixed
quantum-classical representation and replace the bosonic cre-
ation and annihilation operators ÂBn = 1/

√
2(X̂Bn + iP̂Bn)

and Â
†
Bn = 1/

√
2(X̂Bn − iP̂Bn) by their c-number analogs,

αBn = 1

21/2
(XBn + iPBn); α∗

Bn = 1

21/2
(XBn − iPBn),

(A3)

noting that αn is the eigenvalue of the annihilation opera-
tor when acting on the corresponding coherent state, Ân|αn〉
= αn|αn〉, and likewise, 〈αn|Â†

n = 〈αn|α∗
n. We emphasize that

the classical approximation for the bath degrees of freedom
only concerns the construction of the spectral densities, and
does not impose any approximation regarding the dynami-
cal treatment of the bath. (See also the discussion of Ref. 92
where a full quantum treatment of the bath is addressed.)

As a result of the Fourier/Laplace transform, we obtain
for the Heisenberg operators of the two-level system,

−izσ̂±(z) − σ̂±,0 = ±i2�σ̂±(z) ∓ iλσ̂z(z) ± iD′(α1(z)

+α∗
1 (z)) ∗ σ̂±(z)

−izσ̂z(z) − σ̂z,0 = −i2λ(σ̂+(z) − σ̂−(z)), (A4)

where the * symbol denotes the frequency domain convo-
lution and σ̂±,0 and σ̂z,0 correspond to the operator initial
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conditions. For the bath variables, we obtain

−izα1(z) = −i�B1α1(z) − iD′σ̂z(z) − id1,2α2(z)

−izα2(z) = −i�B2α2(z) − id1,2α1(z) − id2,3α3(z)

...
...

−izαk(z)=−i�Bkαk(z)−idk−1,kαk−1(z)−i

N∑
n=k+1

dk,nαn(z)

−izαk+1(z) = −i�Bk+1αk+1(z) − idk,k+1αk(z)

...
...

−izαNB
(z) = −i�BNαN (z) − idk,Nαk(z) (A5)

and a corresponding set of equations for the α∗
n quantities.

From the first equation of Eq. (A5), an expression for
α1(z) is obtained, which is to be inserted into Eq. (A4):

α1(z) = D′σ̂z(z)

z − �B1 − d1,2
α2(z)
α1(z)

. (A6)

With an analogous equation for α∗
1 (z), and referring back to

Eq. (A1), we have

K̂
(±)
B (z)σ̂±(z)

= ±D′2

⎛
⎝ 1

z − �B1−d1,2
α2(z)
α1(z)

+ 1

z + �B1+d1,2
α∗

2 (z)
α∗

1 (z)

⎞
⎠ σ̂±(z),

(A7)

where we used σ̂zσ̂± = ±σ̂± and the convolution form on the
rhs of Eq. (A4) was approximated by assuming σ̂±(z − z′)
∼ σ̂±,0δ(z − z′) in the interaction frame.92 To continue, an
equation for α2(z)/α1(z) is obtained from the third equation
of Eq. (A5), and similarly for the following orders. A contin-
ued fraction pattern thus develops.49, 50

When the kth member is reached, the hierarchy termi-
nates as follows:

αk(z)

αk−1(z)
= dk−1,k

z − �Bk − ∑NB

n=k+1
d2

k,n

z−�n

, (A8)

where we used αn(z) = dk, nαk(z)/(z − �Bn) from the last
N − k equations of Eq. (A5).

In the limit where the last N − k modes conform to an
Ohmic bath, one can replace

NB∑
n=k+1

d2
k,n

z − �Bn

−→ i2ηz, (A9)

where η is the friction coefficient from a Langevin treatment.
Analogous expressions can again be obtained for the α∗

n vari-
ables.

With an Ohmic closure at the kth order, we thus ob-
tain the kth order spectral density as follows according to
Eq. (A2):49

J
(k)
eff (ω) = lim

ε→0+
ImK̂

(k)
B (ω − iε) (A10)

with K̂
(k)
B given as a continued fraction of order k,

K̂
(k)
B (z) = K̂

(k)
B,+(z) + K̂

(k)
B,−(z)

K̂
(k)
B,±(z) = − D′2

�B1 ∓ z − d2
1,2

�B2 ∓ z − · · · d2
k−2,k−1

�Bk−1 ∓ z − d2
k−1,k

�Bk ∓ z + i2ηz

≡ − D′2|
|�B1 ∓ z

− d2
1,2|

�B2 ∓ z
− . . .

d2
k−2,k−1|

�Bk−1 ∓ z
− d2

k−1,k|
�Bk ∓ z + i2ηz

, (A11)

where the continued-fraction notation of Pringsheim105 was used.
At the first order of the hierarchy, k = 1, the relation (A10) results in the Lorentzian spectral density of Eq. (26). The

corresponding correlation function is obtained by Fourier transformation and is given by Eq. (27).
At the second order, k = 2, we obtain the spectral density

J
(2)
eff (ω) = J

(2)
+,eff(ω) + J

(2)
−,eff(ω) (A12)

with

J
(2)
±,eff(ω) = 2D′2d2

12ηω{
(�B1 ∓ ω)[�B2 ∓ ω(1 − i2η)] − d2

12

}{
(�B1 ∓ ω)[�B2 ∓ ω(1 + i2η)] − d2

12

} (A13)
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and the corresponding correlation function is given as

C(2,2)
B (t) = − i2D′2d2

12η

1 + 4η2

×
4∑

r=1

exp(−ipr t)

�4
j �=r (pr − pj )

(
pr + 2

β

{
1 +

n=∞∑
n=1

2p2
r

p2
r + ν2

n

})

− 2

β
D′2d2

12η

∞∑
n=1

νn exp(−νnt)

×
(

1{
(�B1 + iνn)[�B2 + iνn(1 − i2η)] − d2

12

}{
(�B1 + iνn)[�B2 + iνn(1 + i2η)] − d2

12

}
+ 1{

(�B1 − iνn)[�B2 − iνn(1 − i2η)] − d2
12

}{
(�B1 − iνn)[�B2 − iνn(1 + i2η)] − d2

12

})
, (A14)

where

p1(2) = �B2 + �B1[1 + i2η]

2[1 + i2η]

+ (−)

√
(�B2 − �B1[1 + i2η])2 + 4d2

12[1 + i2η]

2[1 + i2η]
, (A15)

p3(4) = −�B2 + �B1[1 − i2η]

2[1 − i2η]

+ (−)

√
(�B2 − �B1[1 − i2η])2 + 4d2

12[1 − i2η]

2[1 − i2η]
. (A16)

APPENDIX B: ANALYTICAL SOLUTION FOR THE
PURE DEPHASING CASE

For the dephasing example,

Ĥ = ĤS + ĤSB + ĤB

= �σ̂z + σ̂z

∑
n

cnxn +
∑

n

ωn

2

(
x̂2

n + p̂2
n

)
1̂. (B1)

We assume factorised initial conditions ρ̂S ⊗ ρ̂B . The
harmonic oscillator bath is in thermal equilibrium with a den-
sity matrix given by2

ρB(x, x ′, β) = 1√
2π sinh βω

exp

(
− (x + x ′)2

4
tanh

βω

2

− (x − x ′)2

4
coth

βω

2

)
, (B2)

where x represents the collective bath coordinates {x̂n}NB

1 .
The presence of the interaction σ̂z

∑
n cnxn shifts the har-

monic potential along the bath coordinate for state 1 to x0, n

= −cn/ωn and the other is shifted to −x0, n = cn/ωn. Further-
more, ĤS raises state 1 by � and lowers state 2 by an equal

amount. The total system plus bath density matrix for the off-
diagonal dephasing part is then given by a thermal coherent
state,

ρ12(x, x ′, β) = 1√
2π sinh βω

exp

(
− [x + x0(1 − cos ωt) + x ′ − x0(1 − cos ωt)]2

4
tanh

βω

2

)

× exp

(
− [x + x0(1 − cos ωt) − x ′ + x0(1 − cos ωt)]2

4
coth

βω

2

)

× exp(ix0(x + x ′) sin ωt − i2�t)

= 1√
2π sinh βω

exp

(
− [x + x ′]2

4
tanh

βω

2

)

× exp

(
− [x − x ′ + 2x0(1 − cos ωt)]2

4
coth

βω

2

)

× exp(ix0(x + x ′) sin ωt − i2�t). (B3)
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Taking the trace gives

ρ12 = 1√
2π sinh βω

exp

(
−i2�t − x2

0 (1 − cos ωt)2 coth
βω

2

)

×
∫

dx exp

(
−x2 tanh

βω

2
+ i2x0x sin ωt

)

=
√

π

2π sinh βω tanh βω

2

exp

(
−i2�t − x2

0 (1 − cos ωt)2 coth
βω

2

)

× exp

(
−4x2

0 sin2 ωt

4 tanh βω

2

)

=
√

1

2 sinh βω tanh βω

2

exp

(
−i2�t − x2

0 (1 − cos ωt)2 coth
βω

2

)

× exp

(
−x2

0 sin2 ωt coth
βω

2

)

= 1

2 sinh βω

2

exp

(
−i2�t − 2x2

0 (1 − cos ωt) coth
βω

2

)
. (B4)

For N → ∞

2
N∑
n

c2
n

ω2
n

(1 − cos ωnt)

= 4

π

∫ ∞

0
dω

c2
n

ω2
n

(1 − cos ωnt)δ(ω − ωn)

= 4

π

∫ ∞

0
dω

J (ω)

ω2
(1 − cos ωt) (B5)

and so we have

ρ12(t) = 1

2 sinh βω

2

exp

(
−i2�t − 4

π

∫ ∞

0
dω

J (ω)

ω2

× coth
βω

2
(1 − cos ωt)

)
, (B6)

which is essentially what we have for the time-local form
ρTL

12 (t).
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