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ABSTRACT: We employ a simple multiconfiguration time-
dependent Hartree (MCTDH) ansatz tailored to an effective-
mode transformation of environmental variables that brings
the bath into a linear chain form. In this form, important
(primary) degrees of freedom can be easily identified and
treated at a high correlation level, whereas secondary modes
are left uncorrelated. The resulting approach scales linearly
with the bath dimensions and allows us to easily access
recurrence times much longer than usually possible, at a very
small computational cost. Test calculations for model atom−surface problems show that the system dynamics is correctly
reproduced in the relevant time window, and quantitative agreement is attained for energy relaxation and sticking, particularly in
non-Markovian environments. These results pave the way for tackling realistic system-bath quantum dynamical problems on the
picosecond scale.

■ INTRODUCTION

The quest for efficient quantum dynamical methods able to
handle high-dimensional systems is a long-standing issue in
chemical dynamics, due to the well-known exponential scaling
of conventional basis-set methods. Enormous progress has been
made in this respect in the last two decades, particularly with
the development of the multiconfiguration time-dependent
Hartree (MCTDH) method,1,2 which opened the door to
comparatively large systems comprising 10−50 degrees of
freedom, and describing a wide range of phenomena such as
photodissociation3−5 and photoabsorption spectra,6,7 dissocia-
tion,8,9 and reactive10−13 and molecule−surface scattering.14−17
Although the MCTDH method does not overcome the
problem of the exponential growth of computational cost
with system size, the method considerably alleviates the scaling
problem by an optimal choice of basis functions which, in
principle, can be systematically increased to give numerically
exact solutions of the dynamical problem. Further improve-
ments along these lines are obtained from multilayered variants
of the MCTDH method which can handle several hundreds of
degrees of freedom.18−20

Prompted by these developments, traditional open-system
problems, where a “system” of interest can be clearly
distinguished from its “environment”, can now be tackled
with “unitary” dynamical approaches, i.e., by following the
unitary evolution of the system combined with a “bath” of
harmonic oscillators chosen to represent the known statistical
properties of the environment. Unitary approaches are
attractive because they do not require specific approximations,
contrary to quantum master equation approaches.21,22 By the
explicit treatment of the bath degrees of freedom, medium and

strong system−bath coupling, non-Markovian effects, non-
linearities and anharmonicities in the bath and in the system-
bath interaction, and initial correlations between the system
and bath can be handled straightforwardly (i.e., limited only by
the required numerical effort).
MCTDH has thus been applied to various system-bath

dynamical problems,23,24 but realistic systems still remain
beyond current computational resources. In fact, hundreds of
bath degrees of freedom are necessary to make the Poincare ́
recurrence time longer than any time of interest for the
subsystem dynamics, and currently only the multilayer (ML)
version of MCTDH18−20 is feasible in such instances.
Alternative routes are provided by a number of approximate
schemes that have also been developed with the aim of
improving the scaling with dimensionality. Among these is the
Gaussian-based MCTDH (G-MCTDH) method,25−27 which
partially replaces the fully flexible single-particle functions with
Gaussian functions, allowing considerable savings of both CPU
time and random access memory by focusing attention on the
most important degrees of freedom. Variants specifically
designed for system-bath problems are the local coherent-
state approximation (LCSA) method28 and its generalization,29

which extend the previous continuous-configuration time-
dependent self-consistent field30 method (see also ref 31) by
introducing a simplified description of the bath dynamics while
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preserving as much as possible the important system-bath
correlations.
Here we present a hierarchical approximate scheme that only

involves standard MCTDH wave functions and can be easily
applied to any system−bath problem. The key of the method is
a recently introduced transformation of the bath degrees of
freedom to a suitable chain form that sequentially unravels the
response of the bath.32−36 In this way, the environmental
variables are naturally divided into two sets: those that are in
close contact with the system and require a highly correlated
treatment (primary modes) and those that play a secondary
role and can be treated in a simplified way (secondary modes).
We show here that, provided a sufficient number of modes are
included in the primary set, the simple Hartree product chosen
for the latter works rather well for typical problems, and does
not require extra effort in coding or special attention in the
dynamical simulations. This scheme is here applied for the first
time in the context of effective-mode representations for typical
system-bath models, with particular emphasis on the
description of gas-surface dynamics. A similar development in
the context of dynamics at conical intersections has been
proposed in ref 37. Further developments in line with more
approximate treatment of the secondary modes, e.g., using
Gaussian basis sets,26,28,38,39 will be considered in the near
future.
The remainder of the paper is organized as follows. We first

introduce the model problems, the corresponding Hamilto-
nians, the wave function ansatz, and some technical details.
Following this, we report and discuss the numerical results and
finally offer conclusions and an outlook.

■ THEORY

Model Hamiltonians. The basic model adopted in this
work is the celebrated independent oscillator model, also
known as the Caldeira−Leggett model,22,40,41 where a system
degree of freedom x (the “system”) couples to a number N of
harmonic oscillators qk (the “bath”),
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Here the bath is represented in mass-weighted coordinates, p,
{pk} are the corresponding momenta, m is the system mass,
V(x) is a bare system potential which is chosen to be of Morse
form, V(x) = Dee

−αx(e−αx − 2), and f(x) is a coupling
function42

α
= − α−

f x( )
1 e x

such that f(x) ≈ x close to the equilibrium position, but with a
finite limit as x → ∞. The Morse potential parameters were set
to De = 1.55 eV and α = 1.238 a0

−1 and are representative of a
hydrogen atom chemisorbed on a graphene layer;39 corre-
spondingly, in the following m is the mass of a H atom.
In this model, the frequencies of the bath oscillators ωk and

the coupling coefficients ck can be chosen to sample a smooth
spectral density J0(ω) = mωReγ(̃ω) characterizing a generalized
Langevin equation22,41,43 (GLE, here written for state-depend-
ent friction)
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where γ(t) is the memory kernel, γ(̃ω) is its Fourier transform,
γ(̃ω) ≡ ∫ 0

∞ γ(t)eiωt dt, and ξ(t) is a Gaussian stochastic process
with zero mean.
In this way, the Hamiltonian dynamics of eq 1 becomes

equivalent22,41 to the GLE for times inferior to the Poincare ́
recurrence time (Trec) of the finite-size system. For a uniform
sampling

ω ω
ω ω ω

π
= Δ =

Δ⎛
⎝⎜

⎞
⎠⎟k c

J2 ( )
k k

k0
1/2

Trec takes the simple form Trec = 2π/Δω = 2πN/ωc, thereby
increasing linearly with the number of bath modes if a
maximum (cutoff) frequency ωc is fixed on physical grounds.
This implies that an exponential growth of computational effort
is to be expected if eq 1 is used in quantum dynamical
simulations aiming at longer and longer times.
Equivalently,35 the continuum limit of eq 1 can be

represented in a linear chain form involving the effective
modes {Xn}n=1

∞ , namely
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where {Pn}n=1
∞ are the conjugate momenta, ΔV(x) is a

renormalization potential
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∞ are effective mode coupling coefficients and

frequencies, respectively. The latter read as
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where Jn(ω) (the spectral density felt by the nth mode as a
consequence of its interaction with the remainder of the chain)
follows from a simple one-term recurrence,35 which can be
started with J0(ω).
The chain modes thus introduced effectively perform a

Markovian embedding of the dynamics35 and sequentially
unravel the memory kernel in time,36 thereby providing a
powerful tool to describe (non-Markovian) ultrafast phenom-
ena by means of either reduced-dimensional models or
Markovian master equations for an enlarged system.32,44−46

This approach has important predecessors in the seminal work
by Mori47,48 as well as related developments by Adelman49 and
others.
As we show below, the effective modes further offer the

opportunity of tackling long time problems in explicit
dynamical studies of the composite system.

Wave Function Ansatz. For the model Hamiltonians of
eqs 1 and 2 high-dimensional wavepacket dynamics as
implemented in the MCTDH method (Heidelberg package)50
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are performed to investigate typical (zero-temperature)
dissipative problems to be discussed below. In the MCTDH
method, the wave function is written as a combination of
variationally optimal time-dependent Hartree products which,
for the bath in normal form (i.e., according to eq 1), we take as

∑ ψΨ = Φ Φx q q c x Q Q( , ,..., ) ( ) ( )... ( )N
i i i

i i i i i i
P

P1
..

...
(1)

1
( )

P

P P

0 1

0 1 0 1

where Q1, Q2, ..., QP are “combined” modes that can comprise
more than one bath coordinate qk, e.g., Q1 = {q1q2...qm},
{ψi}i=1

n0 ’s are single-particle functions (spf’s) for the test system,
and {Φi

(k)}i=1
nk are spf’s for the kth mode. In the calculations to

be discussed below we used N = 50 bath modes and typically
combined them in groups of five, setting n0 = 5−14 for the
system and nk = 3−14 for the bath modes. These numbers are a
good compromise between accuracy and computational cost
and resulted from extensive convergence tests performed at a
preliminary stage.
This approach has a limit of ∼100 modes that can be handled

with present computational resources, unless multilayer
MCTDH approaches are considered. To overcome these
difficulties with the standard MCTDH method, we take
advantage of the linear chain form of the bath (eq 2), and
identify a number NP of primary modes that closely couple to
the system, {Xn}n=1

NP . These modes are treated exactly by a full,
many particle expansion, whereas the remaining (secondary)
modes are described by a single spf per mode (Hartree
approximation), i.e.

ϕ ϕΨ = Φ +
+x X X X X X( , , ,..., ) ( )... ( )N p

N
N

N
N1 2

( 1)
1

( )P
p

where ΦP ≡ Φ(x,X1,X2,...,XNP
) is a full MCDTH wave function

like the one given above, but now restricted to the system
modes plus primary effective degrees of freedom (DOFs). We
call this a “partially correlated” chain description. In this way,
the computational effort scales exponentially only with the
number of primary modes, and is N( ) as a function of the
number of secondary modes. We typically grouped the primary
modes in 2−3-dimensional particles, and as we show below,
setting NP = 10−15 we obtain satisfactory results for the
problems considered. N could thus be increased up to several
hundred to easily attain recurrence times of several pico-
seconds, which is of the order needed to address typical
problems in condensed phase systems.
Spectral Densities. We considered two typical spectral

densities representative of non-Markovian dynamics. The first
is the Lorentzian introduced by Garg et al.51 (SD1),
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ω ω γ ω
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− +
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2 2 2 2 2

which describes the non-Markovian environment felt by a
particle interacting with a harmonic oscillator of frequency ω0
and mass m0, which in turn couples to an Ohmic bath with
relaxation time γ−1. The second spectral density (SD2),
illustrated in Figure 1, is a more structured and realistic
spectral density obtained from energy-gap fluctuations in an
oligo-phenylene-vinylene system, computed with molecular
dynamics simulations;52 here, some structure was added in the
high-frequency region (i.e., a “bump” around 2500 cm−1) to
obtain a more complex frequency dependence.
In addition, we considered several truncated Ohmic models,

J(ω) = mωγ for ω ≤ ωc and zero otherwise, for γ−1 = 50−200,

fs as characteristic of (quasi-)Markovian behavior. The cutoff
frequency was set to ωc = 0.02 au, and the same cutoff was used
for the Lorenztian model above; for the latter, we also set ω0 =
0.1 au, γ−1 = 50 fs and d0

2/m = 1.497 × 10−6 au, in a such a way
that D0 had the same value as in a truncated Ohmic model with
γ−1 = 50 fs. For SD2 we set a similar cutoff frequency, ωc =
5000 cm−1, i.e., ωc = 0.02278 au.
Note that we refer to the Ohmic case as quasi-Markovian

because an Ohmic spectral density still implies colored noise in
a quantum-mechanical setting.22 Also, the frequency cutoff ωc
introduces non-Markovian behavior at times shorter than ωc

−1.
Figure 1 shows the non-Markovian spectral density models,

along with the corresponding memory kernels and effective
mode parameters.

Dynamical Problems. To illustrate the dynamics in the
transformed representation, we have studied two problems that
are prototypical of atom−surface interactions. The first is the
small amplitude, damped motion of an anharmonic (Morse)
oscillator initially displaced from its equilibrium position. In this
case, we typically followed the evolution of the system energy
(corrected for half of the coupling with the bath23,24), and
further considered the position correlation function,

= ⟨ ⟩ = ⟨Ψ | |Ψ ⟩−C t x t x x x( ) ( ) (0) e ex
Ht Ht

0
i i

0

(where x(t) is a Heisenberg-picture operator) that requires two
wavepacket propagations at a time, namely |Ψt⟩ = e−iHt|Ψ0⟩ and
|Φt⟩ = e−iHtx|Ψ0⟩.
In the second type of dynamical problem, we initially placed

the Morse oscillator at a large distance from its equilibrium
position (here, at 6.35 Å), in the asymptotic region of the
potential, to mimic a particle impinging on a surface with some
given momentum. In this case we followed the fraction of the
wavepacket which gets trapped in the interaction region as a
consequence of the interaction with the bath,

∑= |Ψ ⟩⟨Ψ |
ν

νP t P t t( ) Tr( ( ) ( ) )B
(3)

where Tr is the trace operation and Pν = |ν⟩⟨ν| projects onto
the νth bound state in the Morse potential well. In this case a

Figure 1. Spectral densities used in this work. Top: (left) spectral
densities for the non-Markovian models discussed in the main text
(black and red for SD1 and SD2, respectively), along with that of a
truncated Ohmic model for γ−1 = 50 fs (green); (right) corresponding
memory kernels relating to the GLE. Bottom: effective mode
(squared) frequencies (left) and couplings (right) for the models
above (squares, circles, and stars, respectively).
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complex absorbing potential was added at large x to prevent the
reflected part of the wave function from producing artifacts in
the trapping probability. We chose a quadratic absorbing
potential with length ∼5.5 au and a strength in the range η =
(8−120) × 10−5 au, for an initial momentum of the H atom in
the range 4−12 au.
In each case considered, we took a product state initial wave

function,

ψΨ = Φx q x q( , { }) ( ) ({ })k k0 0

where the bath wave function Φ({qk}) was chosen to be the
ground state of a hypothetical bath interacting with a classical
system positioned at x0 = ⟨ψ0|x|ψ0⟩. The latter is of product
form for the normal form eq 1 of the bath. For the bath in the
linear chain representation, we performed imaginary time-
propagation to find the corresponding ground state.

■ RESULTS AND DISCUSSION
Small Amplitude Vibrations. We first consider the small

amplitude, damped motion of the Morse oscillator. Figure 2

shows the evolution of the system energy when the Morse
oscillator (MO) is initially displaced from its equilibrium
position, with two different non-Markovian environments (left
and right panels for SD1 and SD2, respectively). Results for the
bath in linear chain form, all with N = 100 and different
numbers of primary modes NP = 5, 10, 15 as detailed in the
caption of Figure 2, are compared with those obtained with the
usual prescription, eq 1, for N = 50. The latter are well-
converged with respect to the number of spfs and can be
considered numerically exact for the dissipative problems at
hand for times less than the recurrence time (here Trec ≈ 300
fs).
Also shown for comparison (left panel) are the results

obtained for fully correlated truncated models, i.e., when N =
NP = 5, 10, 15, for times slightly longer than the recurrence
times of the truncated chains. These results demonstrate
numerically that, when the effective modes are treated exactly in
the dynamics, the response of the bath is very accurately
reproduced over time scales that depend on the length of the
chain, a result previously obtained by analyzing the
corresponding GLE.36

For longer times, the effect of the finiteness of the chain
becomes evident in the artificial flow of energy back to the
system. Figure 2 shows that this reflected flow may be corrected
by adding further (secondary) modes and treating them at a
single particle (Hartree) level, provided a sufficient number of
primary modes are considered. Results for NP = 5, 10, 15
primary modes out of N = 100 total modes are exceptionally
good for times much longer than those of the corresponding
truncated chains. The net effect is that Trec can be pushed to
significantly longer times, at much lower cost due to the linear
scaling properties in the secondary subspace.
This shows that, at least in the examples considered here, a

large number of modes play only a “dissipative role” and can be
treated at a simplified level without corrupting the system
behavior. The effective mode transformation plays a central role
in identifying these modes that are otherwise mixed with the
important, primary modes in the standard normal mode
representation of the bath Hamiltonian, eq 1.

Figure 2. Small amplitude motion. Evolution of the system energy for
the two non-Markovian models described in the text (left and right
panel for SD1 and SD2, respectively), using the first N = 100 effective
modes. Results for NP = 5, 10, 15 (red, green, blue, respectively) are
compared with the benchmark (bath in normal form), given by the
black line. In the left panel, thin lines represent results for truncated
chains N = NP = 5, 10, 15, with the same color code.

Figure 3. Real (top) and imaginary (bottom) parts of the position autocorrelation function for the two non-Markovian models considered in the
main text (left and right for SD1 and SD2, respectively). Red, green, and blue lines for NP = 5, 10, 15 and black lines for the benchmark calculations.
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Such a good agreement is not limited to averaged quantities
like the system energy or the mean position and width of the
wavepacket along the MO coordinate (data not shown). Figure
3 shows for instance the evolution of the position
autocorrelation for the two non-Markovian models considered
above, with different numbers of primary degrees of freedom.
Results are shown only up t = 100, 200, 300 fs for NP = 5, 10,
15, respectively, for the sake of clarity, but they are reasonably
good (when compared to the benchmark) over the whole time
window considered. This is particularly true for the imaginary
part of the autocorrelation function, which is a genuine
quantum object. Deviations from the exact results at long times
become noticeable, even though they are tolerable, especially in
light of the computational cost of the calculations (see below).
For comparison we also considered two (quasi) Markovian

cases, the truncated Ohmic spectral densities with relaxation
times γ−1 = 50 and 100 fs. Results are given in Figures 4 and 5

for the truncated chains N = NP = 5, 10, 15, and for the partially
correlated chains with the same number of primary modes and
N = 100, along with benchmarks. Here the agreement is not as
good as observed above for the non-Markovian models, and an
artificial non-Markovian behavior becomes evident for the
partially correlated chain. This behavior is due to the uneven
correlation treatment of chains that are uniform for an Ohmic
model, as shown for instance by the effective mode parameters
reported in Figure 1. The approximate treatment necessarily
introduces an effective non-Markovian behavior that shows up
as a deviation from the smooth exponential decay of the energy
and of the envelope of the position autocorrelation. Thus, in
this case, unless the required number of primary modes is
sufficient to cover a time window 2−3 times larger than γ−1,

some deviation from the Markovian exponential decay is
expected.
We have not yet understood how to minimize this

correlation-related non-Markovian behavior of the approximate
chains, without increasing the number of primary modes. It
seems, though, that (differently from the non-Markovian
models discussed above) there is a continuous flow of energy
to the “secondary” modes, which thus saturate before
dissipating energy to their neighbors. If this is the case, ad
hoc correlation schemes that smoothly interpolate between
primary and secondary modes prescriptions may help in
removing dynamical bottlenecks in the energy flow. However,
we did not investigate this point further because Markovian
models hardly apply to realistic situations, especially in the
context of ultrafast molecular processes. Further, quasi-exact
master equations can be employed in this limit that are solvable
with standard techniques.

Sticking. Next we consider the paradigm “sticking” problem
where the system initially placed in the asymptotic region is
launched toward the region of small x where it starts to interact
with the bath (the “surface”). As a result of the interaction, a
fraction of the “system wavepacket” becomes trapped in the
interaction region and eventually undergoes a relaxation
dynamics similar to that described above, whereas the
remaining fraction goes back into the asymptotic region.
Despite its simplicity, this kind of process necessitates a
correlated description of the dynamics: the above wavepacket
splitting cannot be captured by any mean-field approximation,
which thus badly fails in describing the dynamics even
qualitatively. Notice further that for the model to be sound
the choice of the coupling function with a correct limiting
behavior is essential.
The results for the sticking probability PS in the two non-

Markovian models described above, as well as those for two
quasi-Markovian environments (γ−1 = 100, 200 fs) are shown in
Figure 6, in the energy range 0.5−1 eV. PS has been extracted as
the long time limit of the population of the system bound
states, PS = limt→∞PB(t) where PB is defined in eq 3, and each
energy point corresponds to a wavepacket with an incident
energy distribution peaked around its mean value. Similar
results are expected for an appropriate energy-resolved analysis
of a wavapacket dynamics covering the whole energy range.
Parallel to the previous analysis, we compare in Figure 6 the

results of the approximate calculations with NP = 5, 10, 15 and
N = 100 with those of the benchmark. No truncated model
makes sense here, because sticking require a fully dissipative
bath.
As is evident from Figure 6, the results steadily converge

toward the correct values when the number of primary modes
increases, irrespective of the environment model. In particular,

Figure 4. Same as in Figure 2 for two Ohmic models, γ−1 = 50, 100 fs
(left and right panel, respectively). Red, green, and blue lines for NP =
5, 10, 15 and black lines for the benchmark calculations. As in Figure 2,
thin lines represent results for truncated chains N = NP = 5, 10, 15 for
comparison.

Figure 5. Same as in Figure 3 for an Ohmic bath model with γ−1 = 50 fs. Red, green, and blue lines for NP = 5, 10, 15 and black lines for the
benchmark calculations.
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for NP = 5 the correct shape of the sticking curve is recovered
(at a very low computational cost, see below) and, for NP in the
range 10−15 the computed sticking probability agrees
quantitatively with the exact one to within ∼1% for all but
the lowest incident energy.
This contrasts with our previous results on vibrational

relaxation dynamics, which showed that Ohmic models tend to
perform worse than non-Markovian ones. Indeed, in this direct
scattering process a correct sticking probability requires only
that dissipation of energy during the first round trip of the
projectile into the interaction region is well described. This is
an impulsive process that hardly saturates the bath modes, if
treated approximately in a linear chain representation. The
detailed way in which the trapped component relaxes toward
the ground state in the well is irrelevant for the total sticking
probability. The main issues here are thus the short-time
relaxation dynamics during the collision and a long recurrence
time necessary to reach a well-defined long-time limit, both well
captured by our partially correlated chain description.
In contrast, in approximate treatments with the bath in

normal form, saturation of the low-frequency modes is likely to
occur, and sticking probabilities are generally smaller than the
exact ones.29

■ COMPUTATIONAL PERFORMANCE
To better appreciate the results of the previous sections, it is
worth mentioning that the calculations with the partially
correlated chains are considerably less time-consuming than the
normal bath benchmarks. Table 1 reports the timings for the
SD2 model of the environment, for the vibrational relaxation
dynamics discussed above. The values refer to a standard
workstation with Intel Xeon CPUs E5430@2.66 GHz and
should be compared with a 400 fs propagation of the
corresponding normal bath, which required 11 562 CPU
seconds for N = 50 modes. Similar results hold for the
memory requirements.

Apart from the absolute amount of time, which is clearly
much smaller for linear chains, the most promising feature of
the partially correlated approach presented here is the scaling
with the length of the part of chain, which is treated at a single
spf (Hartree) level, which is approximately linear. This means,
in turn, that the recurrence time of the finite-size model is only
a linear function of the CPU time. This is shown in Figure 7,

where the CPU time needed for a given simulation time is
reported as a function of the estimated recurrence time of the
bath. The latter was extracted by looking at energy decay curves
shown in the top panel as the time where energy goes back to
the system and is approximately given by the longest (quasi)
period of the truncated chain. Also reported, for comparison,
are the corresponding values for the bath in normal form,
where an increase of Trec is accompanied by an exponential
increase of computational cost.

■ CONCLUSIONS
In this work, we considered the vibrational relaxation and
sticking processes for an anharmonic (Morse) oscillator
coupled to a thermal bath describing the environment, in
accordance with the well-known independent oscillator model
of dissipative dynamics. Using the MCTDH method, we
studied these dynamical phenomena comparing the normal-
form representation (eq 1) of the bath degrees of freedom with

Figure 6. Sticking probability as a function of the incident energy, for
the two non-Markovian models of the main text (top row, left and
right panel for SD1 and SD2, respectively) and for two Ohmic bath
models with γ−1 = 100, 200 fs (bottom row, left and right panel,
respectively). Squares are benchmark results obtained with the bath in
normal form and red, green and blue circles are for NP = 5, 10, 15,
respectively. Lines are spline interpolations of the data.

Table 1. CPU Times of the Vibrational Relaxation Dynamics
in the SD2 Model for the Environment, for a 1 ps Simulation
Time

N NP = 10 NP = 15

100 616 s 1746 s
200 818 s 3034 s
300 1079 s 3985 s

Figure 7. Top: energy relaxation in the non-Markovian model SD2,
for different total number of effective modes, N = 100, 200, 300 (red,
green and blue, respectively) and NP = 10, 15 (thin and thick lines),
along with the benchmark in normal form for N = 50. The “blowing
up” of the energy curves signals the recurrence times of the finite-size
model. Bottom: CPU timings (in real seconds per femtosecond of
simulation) vs the recurrence time estimated from the top graph, for
NP = 10 (circles) and NP = 15 (diamonds). The square is the
corresponding value for the benchmark.
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a novel, effective-mode based, linear chain representation (eq
2) of the bath.32,35,36,45,46

This equivalent chain formulation of the independent
oscillator Hamiltonian allows us to introduce an approximation
scheme in which a large number of oscillators can be included.
In this “partially correlated chain” scheme, the number of
modes that are fully correlated is rather small, and the majority
of modes are treated at a Hartree level. Within the standard
MCTDH framework, this approximate description is conven-
iently applied by using a single spf for the mean-field part of the
chain.
For the relaxation problems considered, we followed the

evolution of typical averages such as the system energy and the
position correlation, starting from an initial condition where the
oscillator was displaced from its equilibrium position. We found
that the exact short-time dynamics could be reproduced with
reduced-dimensional models where the chain is truncated at
some point. For longer times, we found that the simplified,
mean-field description of the remaining chain modes gives very
satisfactory results, particularly for non-Markovian relaxation
models.
The corresponding computational cost is modest and

increases linearly with the dimension of the secondary bath.
This is in contrast to fully correlated calculations that are
subject to an exponential scaling (and which are often found to
require a larger cost for chain models as compared with
pretransformed normal-mode models). Hence, very long
recurrence times become possible with the proposed “partially
correlated” scheme using standard MCTDH techniques.
We further considered a model sticking problem, where the

above properties (exact short time dynamics and long
recurrence times) are already sufficient to correctly describe
impulsive sticking. Results with several bath models showed
excellent agreement at a very low computational cost,
irrespective of the type of environment, and suggest that the
full quantum description of realistic gas−surface problems can
be quantitatively addressed in the near future with the proposed
approach. Possible extensions of the effective mode approach to
anharmonic system-bath couplings, which would be of key
importance, e.g., for vibrational energy relaxation of high-
frequency modes mediated by cubic anharmonities, could be
addressed along the lines of ref 53.
Prospectively, the method can be of help in many complex

situations occurring in condensed phase systems. For instance,
in exciton dynamics, excitation is transferred among a number
of sites, each having their own environment. A simplified
description where NP = 5−10 (out of N ≈ 100) per site is
feasible with the present computational resources for some tens
of sites and would allow one to quantitatively describe energy
transfer and decoherence in realistic models without incurring
finite-size effects.
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(12) Huarte-Larrañaga, F.; Manthe, U. J. Chem. Phys. 2000, 113,
5115.
(13) Sukiasyan, S.; Meyer, H.-D. J. Chem. Phys. 2002, 116, 10641.
(14) Ehara, M.; Meyer, H.-D.; Cederbaum, L. S. J. Chem. Phys. 1996,
105, 8865.
(15) Milot, R.; Jansen, A. P. J. J. Chem. Phys. 1998, 109, 1966.
(16) Heitz, M.; Meyer, H.-D. J. Chem. Phys. 2001, 114, 1382.
(17) van Harrevelt, R.; Manthe, U. J. Chem. Phys. 2004, 121, 3829.
(18) Wang, H.; Thoss, M. J. Chem. Phys. 2003, 119, 1289.
(19) Wang, H.; Thoss, M. In Multidimensional Quantum Dynamics:
MCTDH Theory and Applications; Meyer, H.-D., Gatti, F., Worth, G.
A., Eds; Wiley-VCH: 2009; Chapter 14.
(20) Manthe, U. J. Chem. Phys. 2008, 128, 164116.
(21) Breuer, H. P.; Petruccione, F. The theory of open quantum
systems; Oxford University Press, New York, 2002.
(22) Weiss, U. Quantum Dissipative Systems, 3rd ed.; World Scientific:
Singapore, 2008.
(23) Nest, M.; Meyer, H.-D. J. Chem. Phys. 2003, 119, 24.
(24) Burghardt, I.; Nest, M.; Worth, G. A. J. Chem. Phys. 2003, 119,
5364.
(25) Burghardt, I.; Meyer, H.-D.; Cederbaum, L. S. J. Chem. Phys.
1999, 111, 2927.
(26) Worth, G. A.; Burghardt, I. Chem. Phys. Lett. 2003, 368, 502.
(27) Worth, G. A.; Robb, M. A.; Burghardt, I. Faraday Discuss 2004,
127, 307.
(28) Martinazzo, R.; Nest, M.; Saalfrank, P.; Tantardini, G. F. J.
Chem. Phys. 2006, 125, 194102.
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