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Abstract
Elementary processes involving atomic and molecular species at surfaces are reviewed. The

emphasis is on simple classical and quantum models that help to single out unifying dynamical

themes and to identify the basic physical mechanisms that underlie the rich variety of phenomena

of surface chemistry. Starting from an elementary description of the energy transfer between a

gas-phase species and a surface—for both classical and quantum lattices—the key processes estab-

lishing the formation of an adsorbed phase (sticking, diffusion and vibrational relaxation) are

discussed. This is instrumental for introducing the simplest chemical transformations involving

adsorbed species and/or scattering of gas-phase molecules: Langmuir–Hinshelwood, Hot-Atom,

and Eley–Rideal reactions forming complex molecules from elementary constituents, and dissocia-

tive chemisorption of molecules into smaller fragments. Applications are also provided illustrating

the ideas developed along the way at work in real-world gas-surface problems.
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1 | INTRODUCTION

The dynamics of the atomic and molecular species interacting with

solid surfaces plays an important role in several fields, from catalysis,

electrochemistry, hydrogen economy, and green chemistry to atmos-

pheric and interstellar chemistry. Heterogeneous catalysis is involved in

about one-third of the modern economy and electrochemical processes

employ charged surfaces and polarized interfaces. Surfaces measure

biological evolution, and biological systems improve by ever increasing

their interface-to-volume ratio.[1] The appearance of surfaces in the

Universe, which occurred when the first generation of stars generated

dust grains and “soot,” is widely believed to be a key step in the chem-

istry and physics of the interstellar clouds that made formation of com-

plex molecules possible.[2]

The theoretical understanding of the molecule-surface chemical

bonding and of the microscopic dynamics of adsorption, diffusion, and

reaction of adsorbates is of fundamental importance for modeling known

processes, understanding new experimental data, predicting new phenom-

ena, and controlling reaction pathways. This has become even more evi-

dent since the advent of two dimensional materials which, being “all-

surface” systems, are particularly sensitive to the presence of any chemical

species attached to them.[3] Microscopic (molecular) understanding of sur-

face phenomena helps the new generation of materials scientists to design

novel structures and to improve fabrication processes.[4] The importance

of gas-surface interactions, though, is not limited to applications and con-

cerns basic science, too. Fundamental questions remain open in the chem-

istry of the interstellar medium that involves the surface of the dust grains

as a key ingredient. And, in this case, theoretical modeling is the only viable

route to obtain reliable data, since experimental information on the inter-

stellar chemistry is rather scarce and indirect.

In this review, we present a theoretical overview of the basic

dynamical processes that may occur at the gas–solid interface. The

focus is on elementary steps, and on simple classical and quantum

models that have been developed over the years to understand surface

phenomena and rationalize experimental findings. We keep the level of

the discussion as simple as possible, and limit ourselves to general con-

cepts and ideas, rather than diving in the abundant, often debated, lit-

erature of specific surface phenomena.

We start investigating energy transfer between a particle and a

surface, a key issue in dynamics which determines the fate of the

atoms or molecules impinging on the surface, i.e. whether they will be

scattered back to the gas-phase or get trapped on the surface. We

describe mechanical energy transfer using both classical and quantum

lattice models, single out key factors, and establish general trends
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governing the transfer process. This is followed by a brief account of

electronic friction and related phenomena that occur when the sub-

strate is a metal and has a continuum of gapless excitations available.

Energy transfer is instrumental to sticking which is discussed next,

by means of simple but surprisingly accurate models. Accommodation

occurs via vibrational relaxation, but typically does not lead to immobile

species on the surface: depending on energy barriers and temperature,

thermal diffusion is always possible and makes surfaces a lively envi-

ronment for the adsorbed species.

The final goal of the discussion is chemical reactivity, which follows

next. Here the focus is on the main elementary reaction mechanisms

either forming or breaking bonds. We discuss direct Eley–Rideal and

thermal Langmuir–Hinshelwood recombinations, along with the Hot-

Atom mechanism which is a possible intermediate between the two

extremes; and we give a brief introduction to the dissociative chemi-

sorption of molecules at surfaces.

Finally, we conclude with a handful of applications and numerical

results from classical and quantum simulations. The emphasis here is to

show at work the main concepts developed along the way, rather than

presenting a detailed account of any specific aspect of the dynamics of

molecules at surfaces. As a consequence, the chosen literature has a

rather limited (illustrative) scope, and just reflects the personal taste

and expertise of the authors.

2 | ENERGY TRANSFER

We start from the simplest yet fundamental process: the energy

exchange between a colliding particle and the surface. When the projec-

tile, be it an atom, an ion or a molecule, reaches the proximity of a surface,

the coupling with the electronic or nuclear degrees of freedom deter-

mines a loss of the collision energy. The amount of energy deposited on

the surface influences the fate of the scattering particle, which may still

escape from the substrate attraction or get trapped and subsequently

relax on the surface. In this section, we provide an elementary overview

of the basic energy loss channels and mechanisms for this process.

2.1. | Classical lattice

The mechanical energy transferred by a scattering particle to the sur-

face phonons has been long studied, either with molecular beam

experiments or theoretical simulations, and a great wealth of results

exists for a variety of scatterers on metal surfaces: rare gas atoms or

ions, atomic hydrogen, diatomics, and other small molecules.[5] The first

realistic (many phonon) study dates back to the early work by Zwan-

zig,[6] who proposed a simple model consisting of a collinear collision

with a one-dimensional chain of atoms (see Figure 1). This one dimen-

sional description was later reconsidered by Adelman and Doll[7] who

developed a more complete Generalized Langevin Equation (GLE) clas-

sical treatment of the problem. Here, we present some elementary

approaches to the problem that—despite their simplicity—have proven

to be particularly useful in interpreting the experiments. For a more

detailed review of these concepts, we refer to the work by Harris[5]

and to some illuminating reports on atom/molecule-surface scattering

experiments.[8]

We start from the one-dimensional chain by Zwanzig, and we con-

ceptually split the process into two consecutive events: first the projec-

tile collides with the chain end and leaves an amount of energy to the

“surface atom” (the first atom of the chain). Then, this excitation leaves

the surface and travels along the semi-infinite chain. To estimate

energy transfer, it is thus necessary to consider the first collision and

develop a plausible kinematic description of this event. We begin with

a purely classical examination of the one-dimensional case, and later

extend it to consider additional factors: off normal incidence, surface

temperature, quantum nature of the phonon coordinates.

When the collision is much faster than the vibrational period of

the surface atoms, i.e. xSsc � 1 (where xS is the surface atom fre-

quency and sc the collision time), it is reasonable to assume that the

collision is impulsive, a limit in which both linear momentum and

mechanical energy are conserved quantities and the equations of

motion can be exactly integrated. The scattering event is particularly

simple in the center-of-mass (COM) reference frame of the binary sys-

tem, i.e. with the help of the center of mass V and of the relative veloc-

ity of the two particles v,

V5
mSvS1mPvP
mS1mP

(1)

v5vP2vS (2)

vP and vS being the projectile and surface particle velocities in the labo-

ratory frame, respectively, and mP and mS the corresponding masses.

Indeed, as a consequence of energy and momentum conservation, the

collision does not alter the velocity of the center of mass and simply

reverts the relative velocity,
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where we used unprimed and primed letters to indicate pre- and post-

collisional quantities, respectively.

Without any loss of generality, we first assume that the surface

atom is initially at rest. As a consequence, vP becomes also the velocity

of the projectile relative to the target atom. Under this assumption, we

can easily obtain that the final energy of the surface atom—which iden-

tifies with the energy transferred from the projectile atom—is given by

de54
a

ð11aÞ2
e (5)

where a5mP=mS is the mass ratio and e is the collision energy. This

equation is commonly known as the “Baule” formula.[5] When the pro-

jectile is lighter than the target, the fraction of exchanged energy grows

monotonically up to a complete transfer when the two masses are

equivalent. Beyond this optimal value, according to Eq. 5, de decreases

with increasing ratio of the masses, but the model goes beyond its lim-

its of validity. Indeed, when the projectile is heavier than the surface

atom, its motion is not inverted by the collision and its final velocity v'P
5ðmP2mSÞ=ðmS1mPÞvP still points toward the surface. This is the

regime where multiple collisions occur and cannot be captured by the

(binary) model above, unless the interaction of the surface atom with

the rest of the chain is taken into account.

One simple variant of the Baule model is commonly used, in which it

is assumed that the impulsive collision is preceded by an acceleration

of the projectile due to an interaction with the substrate. In light of this

consideration, the collision energy e is increased by an amount Dad, the

adsorption energy,

de5
4a

ð11aÞ2
e1Dadð Þ (6)

This formula is referred to as “modified” or “attractive” Baule

model. With respect to Eq. 5 it has a highly desirable property: in the

limit of a zero collision velocity, an amount of energy is still transferred

to the surface and thus it is possible to describe the trapping of the

incident particle (an aspect which will be examined in detail in the

following).

Harris[5] carried out an interesting analysis by comparing the

results of explicit 1D chain simulations with the two limits of Eqs. 5

and 6. For a choice of the parameters which was relevant for scattering

experiments, he showed that the actual energy transfer is intermediate

between the predictions of the Baule and the modified Baule formulas.

It is then reasonable to assume that for a single collision of a structure-

less particle the actual energy transfer is bounded from below by Eq. 5

and from above by Eq. 6. As the collision becomes faster—because of a

higher collision energy or of a stronger interaction with the surface—

the energy transfer tends toward the true impulsive limit, Eq. 5.

When lateral displacement is taken into account, different modelis-

tic choices have been made in the past. As far as we are interested in

the dependence of the energy transfer (or of any other quantity) on

the incidence angle, we can assume a simple scaling relation. For

instance, when the collision energy is small the projectile experiences a

modest surface corrugation, and the linear momentum parallel to the

surface is approximately a conserved quantity. This leads to normal

energy scaling, i.e. the amount of transferred energy is proportional to

the normal component of the incidence energy (e?5ecos 2h), as it is

assumed, for example, in the so-called hard-cube model.[9] However,

real surfaces can show a degree of corrugation, depending on many

factors. Heuristically, it has been found that deviations from normal

energy scaling are often comprised by a more general cosine scaling on

e cos nh with n � 2. The opposite limit n50 corresponds to total

energy scaling, which is usually an indication of a complex interaction

with the surface that causes energy to be randomized prior to collision,

e.g. because of partial trapping of the projectile.

Alternatively, the dependence of the energy transfer on the scat-

tering angle can be captured by a binary collision model analogous to

the one described above for collinear collisions. This is the strong cor-

rugation limit where the impact of the (high energy) projectile with the

surface effectively becomes a binary collision between the projectile

and one of the surface atoms. The collision event is in the impulsive

limit and can be handled similarly to above but now taking the full

dimensionality of the problem into account. Specifically, the COM

velocity and the magnitude of the relative velocity are left unchanged

by the collision but now the post-collisional velocity v0 can make an

angle v (the COM scattering angle) with the initial velocity vector v,

and the amount of energy transferred to the surface atom depends on

v as well. In the most common situation where a<1, v uniquely fixes

FIGURE 1 One dimensional chain model for investigating mechanical energy transfer and sticking in the adatom scattering off surfaces
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the scattering angle h of the projectile velocity in the laboratory frame,

i.e. the angle between v'P and vP, and the energy transfer can be given

as

de52
a

ð11aÞ2
12cos h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12a2sin 2h
p

1asin 2h
h i

e (7)

Equation 7 extends the Baule formula to an arbitrary scattering

angle. When h5p the direction of the projectile velocity is inverted and

the fraction of energy deposited on the surface takes the same value

predicted by the Baule formula. However, de decreases at decreasing val-

ues of h and is zero for forward scattering (h50), i.e. when the projectile

dives into the surface (and likely collides with some sub-surface atom).

Hence, in an atom-surface experiment, if such a strongly corrugated limit

holds, projectiles which are directly scattered by the surface are

expected to have increasingly more (less) energy when moving toward

super- (sub-) specular directions. This is in sharp contrast with the predic-

tions one can make in the flat surface limit, where conservation of paral-

lel momentum forces the projectile to emerge in a super-specular

direction when it transfers energy to the surface, and sub-specular scat-

tering is only possible if the projectile gains energy from the surface (see

Figure 2). Traditionally, in atom-surface scattering experiments one iden-

tifies H5p2h as the “scattering” angle, and thus, in the above formula,

the square root comes with the opposite sign if h is replaced withH.

One interesting prediction of the model is the existence of a maxi-

mum scattering angle when the projectile is heavier than the target

(a>1). In this case, the square root in Eq. 7 limits the allowed values of

h around the forward direction (jhj � arcsin 1
a), a phenomenon that a

billiard player may experience when hitting the wrong balls. In such a

situation, for each value of the scattering angle h there exist two differ-

ent values of the COM angle v, corresponding respectively to near-

forward (v � 0) and to near-backward (v � p) collisions in the COM

frame: in the first case the ensuing energy transfer is still given by Eq.

7, while in the second case de is obtained from Eq. 7 upon changing the

sign in front of the square root (both cases appear forward-like in the

laboratory frame, and cannot be distinguished on the basis of h alone).

All the models described above assume a surface at a classical tem-

perature of 0 K, i.e. with the surface atoms fixed at their equilibrium

position before the collision. However, a rough qualitative dependence

on surface temperature can be simply included by solving the problem

with an explicit initial velocity of the surface atom vS and then averag-

ing the expression over a canonical distribution. In detail, from Eq. 3 we

can compute the energy gained by the surface atom after the collision

de5
1
2
mS v

0
S
22

1
2
mS v

2
S52lVv5

4aðe1Dad2
1
2mSv2SÞ12mPð12aÞvSvP
ð11aÞ2

(8)

and average over the thermal equilibrium distribution of the velocities

vS

de5
4a e1Dad2h12mSv2S i
� �
ð11aÞ2

5
4a

ð11aÞ2
e1Dad2

1
2
kBT

� �
(9)

Even if Eq. 9 does not compare quantitatively with scattering experi-

ments, it gives an useful indication on what is expected at finite tem-

peratures: the energy transfer is reduced and this decrease scales

linearly with the temperature. Interestingly, the averaging procedure

above can be used also to capture the effect of quantum fluctuations

of the surface in a simple quasi-classical model: the expression for hv2Si
coming from classical equipartition needs only to be replaced with the

appropriate quadratic deviation, e.g. hv2Si5 �hxS
2mS

for an harmonic oscilla-

tor of frequency xS.

When the scattering of molecules is considered, the presence of

internal and rotational degrees of freedom often severely limits the

success of the models based on the impulsive assumption. However,

Baule formulas still give an extremely useful reference even in the case

of failure, when their breakdown may give a clear indication on the

active mechanisms. Just to mention two recent examples (among

many), we refer to some recent experimental work on NO scattering

from Au(111)[10] and a theoretical study on methane scattering from Ni

(100) and Ni(111).[11]

2.2. | Quantum lattice

In the limit of low temperatures and/or light substrates, the quantum

nature of the surface cannot be disregarded and the description of the

FIGURE 2 Schematics representing the energy distribution of the scattered projectiles in two different dynamical limits. Left: in the strong
corrugation limit the exit energy increases with increasing H (the scattering angle as traditionally defined in surface scattering experiments).
Also indicated the scattering angle h of the binary collision. Right: in the flat surface limit the exit energy decreases with H and the sign of
the energy transfer changes in going from sub to super specular directions
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energy transfer due to collisions gets unavoidably more complicated.

To get the feeling with the relevant physics we adopt a mixed

quantum-classical description whereby the surface atom is treated

quantally as a harmonic oscillator of frequency xS and the projectile is

described classically and only weakly influenced by the interaction with

the surface. The projectile is assumed to couple linearly with the sur-

face atom coordinate q, VðqÞ52FðtÞq, along some pre-defined trajec-

tory which determines the force F(t) (FðtÞ ! 0 when t! 61 for a

scattering trajectory). The resulting model is analytically solvable and is

known as the Forced Oscillator Model.[12,13] Its Hamiltonian takes the

simple form

H5�hxS a†a1
1
2

� �
2�hfðtÞða†1aÞ5H01VðtÞ VðtÞ52�hfðtÞða†1aÞ

where a†5 q
2Dq2i p

2Dp (a5
q

2Dq1i p
2Dp) is the usual raising (lowering) opera-

tor, �hfðtÞ5FðtÞDq is the scaled force and the fundamental widths are

Dq5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=2mSxS

p
and Dp5�h=2Dq. The dynamical problem is best solved

in the interaction picture

i�h
djWIðtÞi

dt
5VIðtÞjWIðtÞi

where the interaction-picture coupling potential

VIðtÞ5e2
i
�hH0tVðtÞe1 i

�hH0t52�hfðtÞðaIðtÞ1a†I ðtÞÞ

is readily available from the well-known dynamical evolution of the

free HO, aIðtÞ � ae2ixSt. Indeed, the Baker–Haussdorf identity[14]

eA1B5eAeBe2
1
2½A;B� (10)

(that holds for arbitrary operators A and B such that

½A; ½A;B��5½B; ½A;B��50) allows one to write the following identity

(a;b 2 C)

eaa1ba†5eaaeba
†

e2
1
2ab5eba

†

eaae1
1
2ab (11)

and, together with

eaaða†Þn5ða1a†Þneaa n 2 N (12)

to prove that the operator

VðtÞ5eaðtÞa1bðtÞa†1UðtÞ; UðtÞ51
2

ðt
_aðsÞbðsÞ2aðsÞ _bðsÞ
� �

ds

is such that

dV
dt

5 _aa1 _ba†
� �

V

One then sees that the Schr€odinger equation

jWIðtÞi5UIðt; t0ÞjWIðt0Þi

is solved by the following time-evolution operator

UIðt; t0Þ5exp i g�ðt; t0Þa1gðt; t0Þa†1/ðt; t0Þ
� �	 


where

gðt; t0Þ5
ðt
t0

fðsÞeixSsds; /ðt; t0Þ

5

ð
½t;t0 �3½t;t0 �

fðs1Þfðs2ÞHðs12s2Þsin xSðs12s2Þ½ �ds1ds2

and H is the usual Heaviside (or step) function, HðxÞ51 for x � 0 and

zero otherwise.

Of major interest is the probability amplitude w that the HO makes

a transition n! m in the limit where the system is prepared in the infi-

nite past in n (t0 ! 21) and probed in the infinite future in m

(t! 11), i.e. wðm nÞ5hmjUIð11;21Þjni. Using the identities of

Eqs. 11 and 12, and the standard expression

jni5 ða
†Þnffiffiffiffi
n!
p j0i

one finally arrives at

wðm nÞ5 eiUffiffiffiffiffiffiffiffiffi
m!n!
p exp 2

j~f Sj2
2

 !
h0jði~f S1aÞmði~f �S1a†Þnj0i

where U5/ð11;21Þ; ~f S is the Fourier transform of the (scaled)

external force evaluated at the HO frequency

f̂ ðxÞ5
ð11
21

fðtÞeixtdt ~f S5f̂ ðxSÞ

and

h0jð1i~f S1aÞmði~f �S1a†Þnj0i5m!n!

im2nð~f �SÞm2n
Xn
k50

ð2Þkj~f Sj2k
ðn2kÞ!k!ðm2n2kÞ! m � n

in2mð~f SÞn2m
Xm
k50

ð2Þkj~f Sj2k
ðm2kÞ!k!ðn2m2kÞ! m<n

8>>>>>><
>>>>>>:

It follows, for instance, that excitation from the ground-state occurs

according to a Poisson distribution (we now use n to label the final

state)

Pðn 0Þ5 j
~f Sj2n
n!

e2j
~f S j2

where ~f S determines both the average excitation number (number of

phonons) and the width of the distribution through

hni5hDn2i5j~f Sj25 1
2mS�hxS

j
ð11
21

FðtÞeixStdtj2

Of interest is the impulsive limit considered above, where F(t) is sharply

peaked around the time t0 of the collision, FðtÞ � I0dðt2t0Þ, and I0 is

the momentum change, I052mPvP=ð11aÞ. In this limit the resulting

average energy transferred to the HO reads as

de5�hxShni5 I20
2mS

5
4a

ð11aÞ2
e
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i.e. just the classical Baule result of Eq. 5. As noticed above, though, this

impulsive limit only attains at energies high enough that scxS � 1 holds,

where sc is the collision time. Using Dq as relevant length scale of the

interaction (i.e., Dq5vPsc), this condition thus implies e	 a�hx=4, i.e.

hni 	 a2

ð11aÞ2

This means that, unless the projectile is much lighter than the target (e.g.,

electrons), the collisional transfer of energy in this impulsive limit is

always in the classical regime for the HO too (i.e., hni 	 1 and Pðn 0Þ
reduces to a Gaussian).

In a more realistic situation, the projectile interacts with a surface

atom that, in turn, interacts with the rest of the substrate. A more

appropriate forced oscillator model is thus

H5
X
k

p2k
2mk

1
mkx2

k q
2
k

2

� �
2qSF qS5

X
k

ckqk

where qk (pk) are normal mode—or phonon—coordinates (momenta), xk

their frequencies, qS is the displacement of the surface atom from its equi-

librium position and ck are numerical coefficients which describe the nor-

mal mode transformation. Using the above results the problem is readily

solved by replacing F with Fck for each normal mode oscillator, and this

allows one to define the probability density that the k-th oscillator gains

the energy e

qkðeÞ5
X
n

pðkÞn dðe2n�hxkÞ

where pðkÞn 5jhnikjnexp ð2jhnikjÞ=n! and hnik5jckj2j~FðxkÞj2=2mk�hxk .

Finding the statistical distribution governing the total energy transferred

to the surface becomes thus a standard statistical problem involving

uncorrelated variables, which only requires calculation of the (fundamen-

tal) characteristic functions associated to the above probability densities

qkðeÞ. The solution can be written as

qðeÞ5 1
2p

ð11
21

exp 2ies1
ð1
0
p1ðxÞðei�hxs21Þdx

� �
ds

where p1ðxÞ reads as

p1ðxÞ5j~FðxÞj2IðxÞ; IðxÞ5
X
k

jckj2
2mk�hxk

dðx2xkÞ

and is the overall one-phonon probability distribution. p1ðxÞ alone deter-

mines the total energy transferred to the lattice during the collision and is

a measure of both the strength of the force j~FðxÞj2 and the “density of

the coupling” IðxÞ between the surface atom and its environment. The

limit of p1ðxÞ “small” gives qðeÞ � PeldðeÞ1p1ðe=�hÞ and describes a trans-

fer of energy that only occurs through single excitation of the surface

oscillators. Interestingly, in this case, the elastic probability Pel reads as

Pel5exp 2

ð1
0
p1ðxÞdx

� �
5e2W

where, in the impulsive limit considered above (FðtÞ � I0dðt2t0Þ),W takes

a Debye–Waller-like form,W � I0Dq2=�h
2.

2.3 | Electronic friction

When an atom or a molecule impinges on a metal surface there exists

the possibility that the metal electrons are excited, and so-called elec-

tron–hole (e–h) pairs form. Such kind of excitation, obviously related to

the particular electronic structure of metals and to their continuum of

gapless excitations, forms an energy loss channel that may contribute

to the overall energy transfer to the surface. This may be particularly

important for light species which, according to Eqs. 5 and 6, exchange

only a little amount of mechanical energy with the surface atoms. The

effect may be even spectacular and lead to detectable chemical cur-

rents (chemicurrents), as it happens when energetic chemical processes

take place on the surface of a metal substrate.[15] More generally,

though, the effect of e–h pair excitations is rather difficult to ascertain,

both theoretically and experimentally, and the field presently lacks of

well-rounded and established concepts. The only unifying theme is that

these phenomena are electronically non-adiabatic, and thus involve

multi-state dynamics and non-radiative electronic transitions. Further-

more, the states involved in the process form a very dense set, and this

typically prevents any attempt to directly manage them. This is in strik-

ing contrast with the non-adiabatic dynamics in the gas-phase where a

handful of electronic states are needed at worst, and they can be accu-

rately described with the help of adiabatic surfaces and non-adiabatic

couplings between them (or, equivalently, diabatic states).

Actually, a kind of “molecular” non-adiabatic dynamics can also

occur at metal surfaces, but it is considerably more complicated than in

gas phase since it involves coupling to different continua: each molecular

electronic state comes with the e–h continuum of the metal, and it is all

but obvious whether “electronic excitations” primarily occur on the delo-

calized (i.e., metallic) states or the localized (i.e., molecular) ones or both.

One paradigmatic test case of this kind is the scattering of vibrationally

excited NO molecules off the Au(111) surface,[10,16–25] where both neu-

tral (NO/Au) and negative ion (NO2/Au1) molecular states appear to be

involved and coupled to the continuum of metal e–h excitations, result-

ing in a rather fast vibrational de-excitation of the projectile molecules.

Rather elaborate theoretical models have been developed to explain the

key experimental findings on this system,[16,19,21–25] and only recently a

sound perspective emerged on the basis of classical, non-adiabatic

molecular dynamics simulations using the impressive number of 1011

model adiabatic states in an independent electron transfer hopping

method.[23,24] However, later experimental results have suggested that

the agreement between theory and experiments may be fortuitous,

thereby calling for a deeper understanding of the scattering process.[26]

Interestingly, as long as only vibrational de-excitation is concerned,

open-system quantum dynamical results including couplings to the e–h

pairs at the Fermi-golden rule level but using a single potential energy

surface (i.e., without invoking any electron transfer) do reproduce the

observed vibrational distribution of the scattered molecules.[25] For a

more detailed account of the current status of the field we refer to the

excellent review article by Golibrzuch et al.[26]

Barring these “pathological” cases, in typical situations only electronic

excitations between delocalized states of the metal substrate are involved,

and these have little effects on the adsorbate-substrate energetics:

adsorption profiles for different levels of excitation are expected to be

almost identical to each other, just shifted in energy to account for their

different energy content. Their presence, though, does affect the
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adsorbate dynamics, because the possible energy loss into electronic exci-

tations: the metal electrons act like a “bath” that is able to exchange

energy with the atomic or molecular species we are interested in. In such

situations, there is no need to abandon the electronic adiabatic picture of

the dynamics, since one can subsume the role of the “electronic reservoir”

into dissipative effects on the dynamics. This is the molecular dynamics

with electronic friction[27] approach, whereby a frictional force is intro-

duced in the equations of motion along with the appropriate accompany-

ing random force. The approach is meaningful only when the classical

description of particle dynamics is possible, but can make use of accurate

information on the electronics. The electronic friction coefficient sub-

sumes the response of the electronic bath to the particle dynamics, and

can be computed from first-principles. It is necessarily state-dependent:

the effect of the metal substrate on the particle dynamics cannot be the

same if the particle is far from or close to the surface.

Even though rigorous formulations of the electronic friction effect

may be intricate, the main ideas can be easily understood already at a

classical level: particle dynamics induces electric fields into the metal and

sets free electrons in motion, which then undergo Ohmic damping. The

effect of the induced fields is best seen with a related physical problem,

that of a charged particle forced to move with constant velocity v in a

metal substrate.[28] The particle, of charge Zjej and mass m, creates a

total electric field Eðr; tÞ5Eextðr; tÞ1Eintðr; tÞ, which is the sum of the

bare field due to the charge Eextðr; tÞ and of a response field Eintðr; tÞ.
The rate of change of particle energy (i.e., the power that needs to be

compensated by external forces if the particle has to keep its speed) is

obtained from Lorentz law

d
dt

mv2

2

� �
5
dW
dt

5Zjej v 
 EðrðtÞ; tÞ

where rðtÞ5r01vt is the particle trajectory (there is no need to worry

about self-interaction effects since they do not contribute to the rate of

change of the energy). The total field can be computed from the charge

density qextðrÞ5Zjejdðr2rðtÞÞwith the help of Maxwell’s equations upon

moving to ðk;xÞ-space through space-time Fourier transforms, which

we define according to

fðk;xÞ5
ð
R3
d3r
ð11
21

dt eiðxt2krÞfðr; tÞ

in such a way that r! ik and @=@t! 2ix hold. Notice that for fðr; tÞ
real, a conjugation symmetry holds, namely f�ðk;xÞ5fð2k;2xÞ. The
charge density is easily transformed to qextðk;xÞ52pZjeje2ikr0dðx2kvÞ
and the field, in the approximation where it can be obtained from a scalar

potential, is purely longitudinal (i.e., Eðk;xÞ is parallel to k) and follows

directly from Gauss’ law

Eðk;xÞ52i
4p
k2

qextðk;xÞ
eðk;xÞ k

where eðk;xÞ is the total dielectric permittivity of the substrate. Hence,

upon taking conjugation symmetry into account, the required field reads as

EðrðtÞ; tÞ5 Zjej
2p2

ð
R3

d3k
k2

ð11
21

dx= 1
eðk;xÞ
� �

dðx2kvÞk

and the power loss can be written as

2
dW
dt

5
Z2e2

p2

ð
R3

d3k
k2

ð1
0
dxx= 2

1
eðk;xÞ

� �
dðx2kvÞ

where =eðk;xÞ � 0, a general (thermodynamic) property of the dielectric

permittivity, guarantees that the above expression corresponds to an

energy loss (stopping power).[29,30] For isotropic media the above expres-

sion simplifies to

2
dW
dt

5
2Z2e2

p

ð1
0
dxx

ð1
x=v

dk
k
= 2

1
eðk;xÞ

� �

and can be evaluated using, e.g., the analytic expression of eðk;xÞ for a
free-electron gas in the random phase approximation*.

From a different perspective, for slowly moving ions (v � vF, where vF

is the Fermi velocity of the metal), the interaction with the electron sea

can be seen as scattering of electrons at the Fermi surface off the

(screened) potential of the static impurity ion, similarly to the impurity

contribution to the resistivity of a metal. The energy loss per unit dis-

tance traveled in the medium, i.e. the frictional force acting on the ion,

is found to be linear in v[31–33]

Fg5
1
v
dW
dt

52vvFmenrt

where n is the density of the electron gas (taken to be homogeneous),

me the electron mass and rt the transport cross section. The ensuing

electron friction coefficient, g5vFmenrt, can be given in terms of scat-

tering phase-shifts at the Fermi energy

g5
4p�h2men

vF

X1
l50

ðl11Þsin 2 dlðkFÞ2dl11ðkFÞð Þ

and can be computed ab initio using the Khon–Sham eigenstates for

the impurity problem in a homogeneous gas at any desired density.

This self-consistent approach to the stopping power remedies for the

deficiencies of the linear response theory—e.g. it correctly describes

the appearance of bound states in the (screened) impurity potential

that occurs when screening is not efficient enough (small n)—and pro-

vides a simple, “local” recipe to estimate the electronic friction coeffi-

cient for neutrals (the local density friction approximation, LDFA).[34,35]

3 | STICKING

When an incident particle, which is subjected to an attractive interac-

tion with the surface, loses some energy, there is the possibility that

the remaining kinetic energy may not be enough to escape from the

* The random phase approximation partially accounts for electron–electron
interactions, in the sense that it includes them at the mean-field (Hartree)

level. To be specific, in the exact expression that gives e in terms of the so-

called irreducible polarizability P (the density response to variations in the

total electric potential), namely eðk;xÞ512 4pe2

k2 Pðk;xÞ, one replaces Pðk;
xÞ with the independent-particle density response in the mean-field sys-

tem, v0ðk;xÞ. If the uniform electron gas is treated at the Hartree level, the

one-particle states are plane-waves, the one-electron levels are free-particle

energies, and v0 reads, in the collisionless limit, as

v0ðq;xÞ52 e2

4p3

Ð
d3k fðk2q=2Þ2fðk1q=2Þ

�h2kq=me1�hx
, where fðkÞ is the Fermi–Dirac occupa-

tion function for a free-electron at energy �h2k2=2me.
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adsorption well. At short time the adsorbed species is metastable and

this process is referred to as trapping. The name sticking is more appro-

priately used when the excess energy is completely dissipated to the

surface and thermal equilibrium is achieved.

A simple analytical model of the sticking dynamics is obtained using

the same assumptions we used above to estimate the energy transfer

(Figure 1). We consider an incident atom of massmP and kinetic energy e

that approaches a surface in the perpendicular direction. When the pro-

jectile is close to the surface it gets accelerated by the attractive poten-

tial, an effective well of depth Dad, and then collides with one of the

surface atoms losing an amount of energy equal to de. Soon after colli-

sion has occurred, the surface atom rapidly dissipates its energy to the

lattice through mass-matching collisions and comes to rest. If the colli-

sion is much faster than the time scale of the surface vibrational motion,

the collision dynamics can be considered impulsive and de can be esti-

mated with the modified Baule formula, Eq. 6. Note the use of standard

Baule formula would not be justified in this context, since an adsorption

interaction needs to be explicitly considered in the case of sticking and

the use of Eq. 5 would lead to inconsistent conclusions, such as a zero

sticking probability in the limit e! 0. The post-collision energy e05e2de

is the energy relevant for trapping to occur, i.e. e0<0 is the appropriate

trapping condition. Using Eq. 6 under this condition we obtain

e<
4a

ð12aÞ2
Dad5eth (13)

Thus this model predicts the existence of a threshold energy to

sticking which depends on the mass ratio a and the depth of the

adsorption well Dad.

This crude description predicts that the sticking probability Ps is a

simple step function centered at the threshold value, PsðeÞ5Hðeth2eÞ.
However, realistic sticking probability curves show some broadening

around eth and are effectively less than 1 (greater than zero) for ener-

gies slightly below (above) eth. Clearly, this is due to the thermal agita-

tion of the surface atoms, an effect that can be captured already in the

impulsive limit discussed above. Specifically, when the surface atom

moves with velocity vS, the trapping condition de>e, with de given by

Eq. 8, determines the values of vS that allow the projectile to get

trapped in the adsorption well, for each value of e,

vS 2 IðeÞ � ½v2; v1�; v652
12a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðe1DadÞ

mP

s
6
11a
2

ffiffiffiffiffiffiffiffiffiffi
2Dad

mP

s
(14)

Since trapping does occur with certainty for vS 2 IðeÞ, the sticking

probability is obtained by integrating the distribution of surface atom

velocities over this interval

PsðeÞ5
ð
IðeÞ

gðvÞdv (15)

where

gðvÞ5 mS

2p kBT

� �1=2

e2
mSu

2

2 kBT

is the Maxwell–Boltzmann distribution appropriate for a classical “tar-

get.” Notice that the range of relevant velocities is centered around a

value that optimizes the energy transfer, as can be readily seen with the

help of Eq. 3: for vS52ð12aÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðe1DadÞ=2mP

p
the post-collisional veloc-

ity of the projectile vanishes, i.e. the surface atom stops the projectile.

When adsorption is activated, the model presented above requires some

adjustment to account for the presence of a barrier, and its contrasting

effects. An energy barrier Eb in the adsorption profile limits the access of

the projectile into the adsorption region but, on the other hand, increases

the desorption threshold and makes trapping easier. Thus, the barrier

introduces a crossing condition and modifies the above trapping condition

into e0<Eb. We assume that the energy barrier Eb is in the relative motion

of the projectile w.r.t. the surface atom and, for definiteness, that the

projectile atom travels toward the surface (leftward). Then, for each

given e the barrier-crossing condition requires that the kinetic energy in

the relative coordinate exceeds Eb, or equivalently

vS � vthðeÞ � 2vPðeÞ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð11aÞEb

mP

s
(16)

where vP5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e=mP

p
is the projectile speed. The modified trapping condi-

tion, on the other hand, leads to

vS 2 IðeÞ � ½v2; v1�; v652
12a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðe1DadÞ

mP

s
6
11a
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðDad1EbÞ

mP

s

In turn, the sticking probability takes the same form of Eq. 15, but with a

different integration domain, IðeÞ ! IðeÞ \ ½vthðeÞ;11Þ (see Figure 3).
A word of caution is necessary on the presence of multiple collision

events, since they are predicted for both the non-activated and activated

models when vS<2ð12aÞvP=2. In these conditions, additional trapping

might occur beyond the “direct trapping” window vS 2 ½v2; v1�: when vS

<v2 projectiles that are not trapped at the first bounce may dissipate

the excess energy after a number of collisions. Trapping through multiple

collisions is hardly captured by the simple arguments given above and its

possible occurrence should always be born in mind.

Even if this impulsive sticking description might appear quite crude, it

has proven to capture the essential physics of the process with the help

of two system properties only, the height of the barrier Eb and the depth

of the interaction well Dad. These two parameters may either reflect the

true energetics of the system or can be considered as effective adjustable

parameters, which sum up dynamical effects in addition to the shape of

the potential energy surface. The model can also be extended to capture

the low temperature behavior of the surface, just by replacing g(v) with

the appropriate velocity distribution of the surface atom quantum oscilla-

tor, coupled to the rest of the lattice. As is shown in Appendix B of Ref.

[36], the function gqðvÞ required in this case is given by

gqðvÞ5
ffiffiffiffiffiffiffiffiffiffiffi
mS

p�hXT

r
e2

mSu
2

�hXT (17)

where the temperature-dependent effective frequency XT accounts for

the coupling with the bulk and is conveniently written in the form[36]

XT5

Ð11
0 dxJðxÞx2coth �hx

2kBT

� �
Ð11
0 dxJðxÞx (18)

Here the function JðxÞ is a so-called spectral density of the coupling (see

Appendix): in this case it subsumes the coupling of a hypothetical
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adsorbate that interacts bilinearly with the surface atom and in turn with

the bulk (the identity of the adsorbate is irrelevant since the strength of

the coupling factors out in the above ratio). In absence of coupling to the

bulk, for instance, JðxÞ reduces to a d2 peak centered around xS and XT

above only depends on the bare frequency of the oscillator.

The effective frequency XT takes the lowest value in the T50 K

limit,

X05

Ð11
0 dxJðxÞx2Ð11
0 dxJðxÞx (19)

and increases linearly with T at high temperatures,

XT � 2kBT
�h

(20)

provided the thermal energy is much larger than the zero point energy

at the cutoff frequency of the phonon “bath” (the so-called Debye fre-

quency xD), i.e. kBT 	 �hxD=2. In this limit, of course, gqðvÞ reduces to
the classical Maxwell–Boltzmann distribution, irrespective of the cou-

pling to the rest of the lattice.

4 | DIFFUSION

Once a particle has been adsorbed and equilibrated on the surface, dif-

fusive motion sets in because of the energy fluctuations that the cou-

pling to the lattice gives rise to. We shall assume that the surface

presents a periodic arrangement of stable adsorption sites, separated

by energy barriers Ed significantly smaller than the energy threshold for

desorption. The adsorbate then typically moves on a corrugated poten-

tial energy profile and is subjected to energy dissipation and fluctuation

due to its coupling with the surface phonon bath.[37]

In a discrete microscopic limit, we may think of a diffusing particle

as a “random walker,” a particle which jumps from one adsorption site

to another with a well definite hopping probability.[38] Let lw be the

average step length and C21
w be the average time required for a step. If

we take an ensemble of walkers, initially placed at x50, after N steps

the average (squared) distance travelled by the walkers is

hx2Ni5h
XN
k51

Dx2Ni5
XN
k51

hDx2Ni5Nl2w (21)

where hDxkDxji5dkjlw holds because the steps Dxj are assumed to be

uncorrelated. Since each step takes place in a time C21
w ; N5Cwt and

we obtain

hx2Ni5l2wCwt (22)

i.e., the average squared displacement scales linearly with time, and the

constant of proportionality is given by microscopic quantities, the aver-

age step length lw and the hopping rate Cw.

The same results is obtained when the opposite limit is assumed, i.e.

when the dynamics is considered as a continuous process and the well

known Fick’s law j52Drf is used to “close” the continuity equation for

the particle distribution density† fðx; tÞ
@f
@t
ðx; tÞ52rj5Dr2fðx; tÞ (23)

Here D is the diffusion coefficient, and is directly related to the

rate of variation of the squared displacement, as it follows from the

chains of identities

dhxi2t
dt

5

ð
x2

@f
@t

dtx5D
ð
x2r2fdtx � 2mD

where m is the dimensionality of the problem (m52 in our case). More

generally, in realistic cases, only at long time the diffusive behavior sets

in, and the diffusion coefficient is best defined as

D5
1
2m

lim
t!1

dhxðtÞ2it
dt

(24)

where xðtÞ is a trajectory started at xð0Þ50 and the average is

taken over the equilibrium distribution of initial velocities and

over the environmental variables.‡ The diffusion coefficient is the

fundamental quantity that characterizes the diffusion process,

regardless of the details of the subsumed microscopic model of

transport. It measures the ability of particles to spread over the

surface and to offset any concentration gradient that may build

on it, because of e.g. reactions or adsorption at specific locations.

Under special circumstances, it may also happen that D50 and

then the motion is at most subdiffusive, or D51 and the motion

is superdiffusive.[39]

FIGURE 3 Sticking probabilities for an activated model system
with a5 0.01, Dad51.5 eV and Eb50.4 eV, as obtained using Eq.
15. Results are shown for the Maxwell–Boltzmann (dashed lines)
and for the quantum (solid lines) distribution of the velocities of
the surface atom, at different temperatures (black, blue and red for
T51, 300 and 1000 K, respectively). The surface atom frequency
xS was set to 400 cm21

†

The corresponding quantity in random walk dynamics is fNðxÞ, the proba-

bility that a walker is found in x after N steps; in particular, if the walkers

are all started in x50, fNðxÞ (fðx; tÞ) is the fundamental transition probability

that a walker makes a displacement x in N steps (in a time t). Noteworthy,

since the steps are uncorrelated, fNðxÞ readily follows from gðxÞ5f1ðxÞ, the
one-step transition probability, and its characteristic function

ĝðkÞ5hexp ðikxÞig . Specifically, in m dimensions it reads as

fNðxÞ5ð2pÞ2mÐ exp ð2ikxÞ½ĝðkÞ�Ndmk.
‡

Depending on the adopted approach, this “environmental averaging” is

either over the initial conditions of the phonon bath or over the realizations

of the stochastic force it exerts on the system.
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We now address the problem of identifying the different dynamical

regimes for diffusion and characterize D in terms of simple microscopic

quantities (Figure 4). When the thermal energy kBT is much larger than

the energy of the diffusion barrier, the adsorbate moves essentially

free on a flat surface. In this case, the surface potential plays no role

except to prevent particle escape and the motion is free diffusion, simi-

lar to original Brown’s observation.[40] We assume that for a variable

time interval, the particle moves undisturbed with a constant velocity

(i.e., ballistically). After this time, a collision takes place and the particle

moves again uniformly but with a different velocity—randomly picked

from the local equilibrium distribution—until the next collision. In this

simplified description, the collisions are random events determining an

exchange of energy between the adsorbate and the environment (the

phonon bath of the surface in particular). If sc is the average time

between collisions, dt=sc is the probability that a particle undergoes a

collision in the time interval dt, and then the survival probability P(t) that

the particle travels for a time t after its last collision at t50 satisfies

Pðt1dtÞ5PðtÞ 12
dt
sc

� �

and takes the form

PðtÞdt5e2t=sc dt (25)

The time sc is indeed the average time between collisions, as can be

readily seen by computing the collisional probability PcðtÞ that a colli-

sion occur at time t, PcðtÞ � PðtÞ3dt=sc since this is the probability

that a particle survives for time t and then undergoes a collision. The

variance of the collision time is obtained similarly,

ht2i5
ð1
0
t2

1
sc
e2t=sc dt52s2c (26)

and determines the average squared displacement of the particle

between one collision and the next, hx2i5v2ht2i52v2s2c , where v is the

r.m.s. velocity at the given temperature, v2 � mkBT=m if classical equi-

librium prevails. Then, upon identifying l2w5hx2i and Cw5s21
c ; we

obtain the diffusion coefficient

D5
hx2i
2msc

5
v2sc
m

(27)

and the Einstein relation

D5
kBT
mc

5lkBT (28)

where c5s21
c is the relaxation rate (damping coefficient) and l51=mc

the particle mobility under an external driving field (i.e., the limiting veloc-

ity for unit field strength). The latter is a kind of fluctuation–dissipation

relation, and could also be obtained more generally by observing that,

under the influence of a uniform driving field F along a direction2z (e.g.,

gravity), the equilibrium concentration profile nðzÞ / exp ð2Fz=kBTÞ is
realized when the particle flux j52Drn offsets the drift jd5nlF.

Equation 28 expresses the diffusion coefficient in terms of a single micro-

scopic parameter, the relaxation rate c or the collision time sc, and shows

that the free diffusion coefficient depends linearly on the temperature.

Despite the simplicity of the arguments used in its derivation, this result is

rather general: if the “Markov approximation” fails and the particle keeps

some memory after a collision, the damping coefficient becomes fre-

quency dependent [c! ~cðxÞ, where ~c comes from the Fourier analysis of

the memory] but the motion remains diffusive and only the x50 limiting

value of ~cðxÞ matters for the diffusion coefficient (i.e., in Eq. 28

c! ~cð0Þ)[40]; if the particles motion is quantum, the short time behavior

of hx2it may differ from the classical result, but the long-time limit remains

classical,[41] and so is the expression of the diffusion coefficient, Eq. 28.

When the thermal energy kBT is lower than the energy of the dif-

fusion barriers, adsorbates are confined in the energy minima and diffu-

sion proceeds through a hopping mechanism. The energy fluctuations

induced by the coupling with the phonon bath (or the inherent quan-

tum fluctuations of the system) determine the possibility of random

jumps from one adsorption site to a next one. To derive a simple

description, we will assume that hopping is much slower than equilibra-

tion, so that between two consecutive jumps there is enough time for

thermal equilibrium to set in. In this way, two subsequent jumps are

not correlated, or—in other words—the diffusion is a Markov process.

In this hopping regime, we can write the average squared displace-

ment over a surface as a sum over contributions from the attainable sites

hx2it5
X
n

Cnr
2
n t (29)

where Cn is the hopping rate to the nth site and rn is its distance from

the starting site. Consequently, the overall diffusion coefficient can be

FIGURE 4 A schematics illustrating the different diffusion regimes discussed in the main text
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written as D5 1
2m

PN
n51

Cnr2n where m52 for a surface. If the surface is iso-

tropic and the hopping events involve only the symmetry equivalent

nearest neighbors, the sum is restricted to N equal terms, each having

the same distance r and the same hopping rate Cs

D5
1
4
NCs r

25
1
4
Cer

2 (30)

where NCs5Ce is the total escape rate from the starting adsorption site.

In the last formula, all the dynamical information is condensed in Cs (or

Ce) while the rest of the parameters are defined by the arrangement of

the surface. In fact when diffusion proceeds mainly by nearest-neighbors

jumps, both N and r are fully determined by the symmetry of the surface

(Figure 5). For instance, for an atom adsorbing on the top sites of a FCC

(111) surface, N56 and r is equal to the lattice constant a; the diffusion

coefficient is hence given by D5 Ce
4 a25 3

2Csa2. Similarly, for adsorption

on the top site of a (100) surface N54 and D5Csa2. When the adsorb-

ate binds to the hollow site of a (100) surface, the number of attainable

sites and the average hopping distance are unaltered. Instead, for the

(111) surface, N53 and r5 affiffi
3
p a so that D5 1

12Cea25 1
4Csa2.

More generally, if the surface is not symmetric and non-equivalent

sites are accessible, diffusion becomes anisotropic and individual hop-

ping rates are needed. In this case, the particle flux is no longer parallel

to the concentration gradient and the scalar diffusion coefficient D

needs to be replaced by a 2 3 2 tensor (in 2D). The tensor is symmetric

(both Dxy and Dyx accompany @2f=@x@y in the corresponding diffusion

equation) and can thus be put in diagonal form by an appropriate rota-

tion of the coordinate system: along its principal directions i5X;Y one

has distinct diffusion coefficients

Di5
1
2

X
n

CnðrnÞ2i

where ðrnÞi5rnei is the projection onto the ith principal axis of the posi-

tion vector of the nth site; the averaged trace D5
Xm

i51
Di=m, then,

describes overall diffusion, but it is meaningful only if the surface is

symmetric enough or if it is made up of randomly oriented crystallites.

The rate Cs is dictated by the dynamics of the hopping event. When

the force driving transport is thermal excitation, it can be determined

using Transition State Theory (TST), which assumes that a pseudo-

equilibrium is established between the starting condition—the particle

at the bottom of the adsorption well—and the transition state located

at the top of the diffusion barrier Ed. In our problem, the use of this

approach is only justified if jumps are limited to nearest neighbor sites.

Furthermore, transition state theory is known to work only for thermal

energies smaller than Ed, where TST provides a reliable upper bound to

the exact (classical) rate; higher energies lead to re-crossing and cause

the diffusing particle to get back to the starting minimum, thereby mak-

ing the TST upper bound useless§. With this premise in mind, the (clas-

sical) transition rate expression for Cs reads as

Cs5
kBT
h

z‡

z
e2bEd5

kBT
h

exp
DS‡

kB

� �
e2bEd (31)

where z is the adsorbate partition function referenced to the bottom of

the adsorption well, z‡ is a TS partition function referenced to the barrier

top, DS‡ is the entropy change between the initial and the transition

state, Ed is the diffusion barrier and b51=kBT, as usual. In the simple

case of one dimensional hopping of a structureless adsorbate uncoupled

to the phonon bath, z21 � b�hx0 and the expression above simplifies to

Cs � x0

2p
e2bEm (32)

Where x0 is the frequency of the adsorbate vibration which leads to

barrier crossing, the so-called “attempting frequency”, x0�1014 s21 in

typical situations.

In his celebrated work, Kramers[42,43] investigated classical barrier

crossing under the influence of a friction c and obtained some expres-

sions which generalize Eq. 32 in the presence of a coupling to the pho-

non bath. In the moderate-to-strong friction regime, c=xd>kBT=Ed

where xd is the frequency of the inverted potential at the barrier top,

the Kramers’ rate reads as

Cs5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4 c

21x2
d

q
2 1

2 c

xd

x0

2p
e2bEd (33)

This is the so-called spatial-diffusion-limited rate which becomes

vanishingly small for increasing friction, i.e. (Smoluchowski limit)

c=xd 	 kBT=Ed Cs � x0xb

2pc
e2bEd

Equation 33 was later re-obtained (and generalized to memory fric-

tion) by applying transition-state-theory to the multidimensional prob-

lem involving the diffusing particle and the phonon bath.[43–45] The

improved rate, Eq. 33, is smaller than Cs given by Eq. 32, a simple mani-

festation of the variational character of TST. The simple one-

dimensional TST result of Eq. 32 is recovered only for c50 where,

however, TST is completely inadequate (i.e., it provides an unreliably

large upper bound to the true rate). Indeed, in the case of weak friction,

c=xd<kBT=Ed, particle escape becomes diffusion in energy space and

the hopping rate is given by

Cs5
c

kBT
Ed
xd

x0

2p
e2bEd (34)

We thus see that the hopping rate decreases for both c! 0 and

c!1, and attains its maximum at intermediate values of c. This is a

simple manifestation of the twofold influence of the environment. On

the one hand, in the strong friction regime, the increase of c results in a

stronger energy dissipation, which considerably slows down the pro-

cess of barrier crossing. On the other hand, in the weak friction regime,

increasing c increases the strength of fluctuations (which is propor-

tional to c), thereby helping the system to cross the barrier.

The above results hold for thermal energies not too smaller than

Ed. At very low temperatures thermal fluctuations become negligible,

and hopping is primarily determined by tunneling of the system

through the diffusion barrier. In this case, the rate can be written as

§ If kBT 	 Ed there is no separation of time-scales between barrier crossing

and aging, and a kinetic description of the hopping process is impossible.

This is the free-diffusion limit discussed above.
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Cs5
X
m

pm Tð ÞCt
m (35)

where pm Tð Þ is the thermal occupation probability of the mth quantum

level of the adsorption well and Ct
m is the tunneling rate from that level.

In this case a rather different (very weak) dependence on T is expected,

and Cs approaches a limiting value for T ! 0 which is provided by the

tunneling escape rate from the ground-state in the adsorption well.

Notice, though, that the lattice does play a role in this limit too, even if

the coupling is too small to affect the tunneling rate: it determines the

loss of coherence in adatoms dynamics, without which the dynamics

would be governed by a “band structure,” as it is appropriate for a

quantum particle on a periodic potential.

5 | VIBRATIONAL RELAXATION

Vibrational relaxation plays an important role in the dynamics at surfaces,

and governs the establishment of the equilibration conditions. The time

scale of vibrational relaxation determines whether or not a dynamical

event comes close to an end, and a stepwise (kinetic) description is

appropriate for the overall process or some more complex dynamical

pathways need to be considered. So far we have implicitly assumed that

it occurs somehow and just exploited its consequences. In the previous

sections, for instance, we have seen how a gas-phase species may be

trapped onto the surface, and assumed that relaxation was so much

faster than desorption that any trapped species was eventually converted

into a stuck species. Even the simple analysis of the mechanical energy

transfer that occurs when a projectile hits the surface made use of the

fact that relaxation of the surface atom(s) hit by the projectile is faster

than any competing process, and this allowed us to use kinematics to

obtain simple expressions for the amount of energy left on the surface.

Now we look a bit into the details of such process, considering a

“vibrator” (being it an ad-species on the surface or an excited surface

atom) and its dynamics under the influence of the lattice. Under typical

conditions, the thermal energy is much smaller than the vibrational

quantum and this makes a quantum treatment necessary. The interest

is then in the rate of transition cmfmi from a given vibrational state mi to a

given final state mf, which can eventually be used in a master equation

to investigate population and energy decay. In the following we focus

on the weak coupling regime and use the Fermi’s golden rule to write

down explicit expressions for the vibrational relaxation rates; the same

results follow from the general linear response theory when applied to

compute (up to second order) the change in the density operator

induced by the vibration–phonon interaction.

We consider the following model Hamiltonian

H5
p2z
2m

1vðzÞ1
X
k

p2k
2mk

1
mkx2

k q
2
k

2

� �
1Hint5H01Hint

where a vibrational degree of freedom z is coupled to a phonon bath of

coordinates qk; the potential v(z) and the interaction term Hint may take

a general form. We are interested in the rate of transition between sta-

tionary states I5ðmi; iÞ and F5ðmf; fÞ of the uncoupled Hamiltonian H0,

where mi; mf label states of the vibrator and i5ði1; i2; ::ik; ::Þ and f5ðf1; f2;
::fk; ::Þ are bath states with i1(f1) phonons in Mode 1, i2(f2) phonons in

Mode 2, ik(fk) phonons in Mode k, etc. The corresponding energies are

EI5emi1Ei and EF5emf1Ef, where emi (emf ) are vibrator energies and Ei5P
k �hxkðik1 1

2Þ (Ef5
P

k �hxkðfk1 1
2Þ) are bath energies. The Fermi’s

golden rule expression for the microscopic transition rate reads as

CF I5
2p
�h
jhFjHintjIij2dðEF2EIÞ

and, in general, allows transitions between arbitrary phonon states.

However, if the coupling is close to be linear in bath coordinates,

Hint �
X
k

Vkqk5
X
k

VkDqkðak1a†k Þ

only transitions between states that differ by one phonon are allowed

hFjHintjIi5

ffiffiffiffi
ik
p

DqkhmfjVkjmii if f5i21kffiffiffiffiffiffiffiffiffiffi
ik11
p

DqkhmfjVkjmii if f5i11k

0 otherwise

8>>>><
>>>>:

where 1k is the kth canonical vector, i.e. with a 1 in the kth position and

zero otherwise. Hence, upon averaging over the bath initial states and

summing over the final states we can write the vibrational transition

rate in the form

cmfmi5
2
�h
Iðjxmfmi jÞ

nbðjxmfmi jÞ xmfmi>0

nbðjxmfmi jÞ11 xmfmi<0

(

where xmfmi5ðemf2emi Þ=�h is the Bohr frequency, nbðxÞ5ðeb�hx21Þ21 the

Bose–Einstein occupation function and

Imfmi ðxÞ5
p
2

X
k

jhmf jVkjmiij2
mkxk

dðx2xkÞ

FIGURE 5 Some typical surface structures, adsorption sites and jumps

1586 | BONFANTI AND MARTINAZZO



is the appropriate spectral density of the coupling that subsumes both

the strength of the vibration–phonon interaction and the density of pho-

non modes. In the above expression xmfmi>0 refers to upward transitions

(") and xmfmi<0 refers to downward transitions (#), similar to photon

absorption and photon emission processes. The first can only be

phonon-induced and occurs with a rate proportional to the number of

phonons at the required frequency; the latter, on the other hand, have a

spontaneous contribution gmvmi52Iðxmfmi Þ=�h which adds to the phonon-

induced one. Clearly, under the above circumstances, only the rate of

the spontaneous emission max fmf; mig ! min fmf; mig is needed, the

others are easily obtained from known thermal factors, namely c"fi5gif3n

ðxfiÞ and c#fi5gfi3ðnðxifÞ11Þ. At equilibrium, detailed balance holds, i.e.

cfipi5cifpf (pi being the probability that the system is found in state i),

and we obtain the equilibrium distribution of the vibrator pf5pie2b�hxfi .

Of particular interest is the case where Hint is further linear in z,

since it allows one to extract general trends. In that case, in fact, Vk5ck

z and Imfmi ðxÞ5jhmfjzjmiij2JðxÞ where

JðxÞ5 p
2

X
k

c2k
mkxk

dðx2xkÞ

completely characterizes the coupling to the phonon bath. If the vibra-

tor is well approximated by a harmonic oscillator of frequency x0, only

Dm561 transitions are allowed,

hmfjzjmii5
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�h
2mx0

s ffiffiffiffi
mi
p

dmf ;mi211
ffiffiffiffiffiffiffiffiffiffi
mi11

p
dmf ;mi11

� �

and the downward rates depend linearly on mi (on mi11 for the upward

rates). They can be obtained from the rate of the 0 1 spontaneous

emission g0;15Jðx0Þ=mx0,

gm;m115m g0;1

and this provides a very useful scaling rule.

Realistic systems are neither linear in the bath coordinates nor in

the system one. Thus, the apparent similarity with photon absorption/

emission problems does not hold in practice, and multiphonon absorp-

tion/emission processes are the rule rather than the exception. To see

the new physics emerging in such problems, we consider an interaction

of the product form, Hint5f3U where f(U) is a system (bath) operator,

and assume that thermal equilibrium conditions prevail for the phonon

bath.[46] This allows us to re-write the Fermi’s golden rule rate in an

alternative form, that is very useful in practice. To this end, we replace

the energy-conserving d-function with its Fourier representation and

perform the appropriate sums over bath states. We find

cmfmi5
X
f;i

piCF I � jfmfmi j
2

�h2

ð11
21

dteixmfmi
thUð0ÞUðtÞib (36)

where fmfmi5hmfjfjmii, and

hUð0ÞUðtÞib5TrB qbUð0ÞUðtÞ
� �

is a canonical autocorrelation function of the operator U at a tempera-

ture T51=kBb. In the last expression, qb is the equilibrium density oper-

ator of the phonon bath, and UðtÞ is the Heisenberg-picture U operator,

UðtÞ5eiHBt=�hUe2iHBt=�h, HB being the phonon bath Hamiltonian.

Next, we take U of the exponential form

U5exp aqSð Þ5exp a
X
k

ukqk

 !

where a21 is a characteristic length of the interaction and qS is a collec-

tive coordinate (a combination of phonon modes), and compute the

required correlation function. With the help of the Baker–Haussdorf

identity, Eq. 10, we write the product of operators that appears in the

correlation function by gathering all operators in a single exponential

Uð0ÞUðtÞ5exp aqSð0Þð Þexp aqSðtÞð Þ

5exp a qSð0Þ1qSðtÞ½ �ð Þexp a2

2
½qSð0Þ; qSðtÞ�

� �

where qkðtÞ5Dqkðake2ixkt1a†ke
1ixktÞ, qSðtÞ5

P
k ukqkðtÞ and ½qSð0Þ;

qSðtÞ� is a c-number (½qSð0Þ; qSðtÞ� � 2i
P

k Dq
2
k u

2
k sin ðxktÞ). Finally,

we use the Bloch identity

hexp ðLÞib5exp
hL2ib
2

 !

to evaluate the correlation function. This identity holds for arbitrary linear

combinations L of the coordinates and momenta operators in general, lin-

ear systems in canonical equilibrium, and follows from the fact that, under

such circumstances, L is zero-centered Gaussian distributed,[41] i.e.

hL2n11ib50 hL2nib5
ð2nÞ!
n!

hL2ib
2

 !n

The final result is

hUð0ÞUðtÞib5ea
2hq2Sibea

2hqSð0ÞqSðtÞib (37)

where

hqSð0ÞqSðtÞib5
�h
p

ð1
0
JðxÞ coth

b�hx
2

� �
cos ðxtÞ1isin ðxtÞ

� �
dx

is the position correlation function of the collective mode, hq2Sib
� hqSð0ÞqSð0Þib the squared width of its equilibrium distribution and

JðxÞ5 p
2

X
k

u2k
mkxk

dðx2xkÞ

is the appropriate spectral density of the coupling. The rate then reads

as

cmfmi5
jfmfmi j2
�h2

ea
2hq2Sib

ð11
21

dt eixmfmi
texp a2hqSð0ÞqSðtÞib

� �
(38)

and contains multiphonon transitions already at the adopted

theory level (first order in perturbation theory): the correlation is

linear in the phonon occupation function and appears in the

exponent.

An exponential coupling model arises for instance when the vibra-

tor couples strongly to a surface atom qS through an anharmonic

(Morse) surface potential,

Hintðz; qSÞ5Vðz2qSÞ5De2aðz2qSÞ e2aðz2qSÞ21
� �

� 22aDUðqSÞz for z

� 0

with

UðqSÞ5eaqS ðeaqS21Þ

BONFANTI AND MARTINAZZO | 1587



For this specific interaction term we obtain, after some algebra,

hUð0ÞUðtÞib5e4a
2hq2Sibe4a

2hqSð0ÞqSðtÞib

1ea
2hq2Sibea

2hqSð0ÞqSðtÞbi22e
5
2ahq2Sibe2a

2hqSð0ÞqSðtÞib

Differently from Eq. 37 this expression has the correct limiting

behavior

a! 0 hUð0ÞUðtÞib ! a2hqSð0ÞqSðtÞib
in the weak coupling limit, as it follows from the judicious choice of the

interaction term which becomes bilinear in vibration-phonon coordi-

nates (Hint ! 22a2DzqS in the above limit). The corresponding rate fol-

lows from Eq. 36 and generalizes Eq. 38 to realistic gas-surface

systems; similar results can be obtained, more generally, when the pop-

ular independent oscillator model (see Appendix) is extended to non-

linear phonon baths[47] in the context of the effective mode

theory.[48–51]

6 | DESORPTION

At high temperature diffusion is limited by the competition with

desorption, the process in which a trapped particle overcomes the

adsorption barrier and returns to the gas phase. Similarly to diffusion,

we can estimate the probability of desorption by applying TST to a one

dimensional reaction coordinate that goes from the adsorption well to

the top of the barrier. In this description, the desorption probability is

given by

Pdes � x0

2p
e2bEdes (39)

where Edes is the desorption barrier energy, i.e. the adsorption energy

plus the adsorption barrier (if any), and x0 is the frequency of the “sur-

face stretching,” i.e. the vibrational mode that elongates the bond

between the surface and the adsorbate. Also in the case of desorption,

the effect of the coupling to the surface can be incorporated with

Kramers theory, and a damping dependent pre-factor introduced. The

relevant formulas for the weak and strong friction regimes have already

been given in Eqs. 33 and 34, and need no further comments.

One of the reasons for the interest in the desorption lies in the possi-

bility to use it to gain information on the inverse process, namely

adsorption. The time-reversal symmetry of the equations of motion

(for the adsorbate and the surface in conjunction) implies the validity

of the principle of detailed balance, which relates the probabilities for

the two events. Let Psðe; n; TÞ be the probability that a particle in a spe-

cific internal state n with a given incidence energy e is adsorbed on a

surface at temperature T. Further let Pdðe; n; TÞ be the probability that

a particle adsorbed on a surface at temperature T desorbs and emerges

to the gas-phase with a kinetic energy e in an internal state n. The prin-

ciple of detailed balance requires that Ps and Pd are related by

Pdðe; n; TÞ / Psðe; n; TÞ exp 2
En1e
kBT

� �
(40)

with En being the energy associated to the internal state of the particle.

7 | REACTIONS

We now turn the attention to some elementary reactions, some proc-

esses in which either a new bond is formed (the Eley–Rideal, Lang-

muir–Hinshelwood, and Hot-Atom molecule formation) or an existing

bond is broken (the Dissociative Chemisorption of a molecule) because

of the presence of a surface. In all these processes, besides its possible

key catalytic effect on the kinetics, the surface plays a simple but

unique role: it may act as a sink that dissipates the reaction energy,

thereby allowing reactions that would be otherwise forbidden. This is

clear when considering the general “recombination reaction” between

two species A and B to give the product AB: without a “third body”

that takes the excess of energy away from the colliding partners such a

process cannot occur, and is thus extremely slow in low density envi-

ronments where only the photon bath—the ubiquitous electromagnetic

field—is available for exchanging energy. This was the case of the inter-

stellar medium prior to the first generation of stars (the so-called Early

Universe) that underwent a kind of “chemical revolution” when the first

surfaces (those of the dust grains freed by stellar explosions) appeared.

The presence of a relatively large number of degrees of freedom

often makes hard to derive a comprehensive, yet simple analytical

treatment of the processes under consideration. Thus, in the following,

we shall only focus on those aspects that can be interpreted in terms

of simple mechanical concepts, and use them to extract general trends.

7.1 | Eley–Rideal

The Eley–Rideal mechanism is one of the possible routes for the forma-

tion of a molecular species mediated by the presence of a surface. It is

a direct dynamical process, in which an atom or a molecule from the

gas phase (the incidon) collides with another species (the targon), ini-

tially adsorbed on and in thermal equilibrium with the surface. As a

consequence, under carefully controlled conditions, product molecules

show some signatures of the pre-collisional state, e.g. a dependence on

the incidence angle.[52–56] Among the surface recombination processes,

this is the most exothermic one: only a single surface-atom bond gets

broken and this is generally weaker than that holding the atoms

together in the product molecule. Since only a fraction of the excess

energy is deposited on the surface, the reaction exoergicity generally

produces rovibrationally hot and fast moving molecules, the exact

energy partitioning depending on the details of the molecular forma-

tion process.

Generally speaking, the Eley–Rideal dynamics (and the size of the

corresponding reaction cross-section) largely depends on the strength

of the atom-surface bond(s).[57] When the target is strongly bound to

the surface—as it happens for hydrogen atoms on metal surfaces

where the binding energy is �2.5 eV—it is also placed very next to it.

Under such circumstances, for the reaction to occur the projectile

needs to get near the surface, and only in close encounters it can tear

the target off the surface attraction. In addition, if the projectile-

surface bond is comparably large (e.g., when H recombines with H on a

metal surface), incoming trajectories are focused along the surface nor-

mal, and hardly adjust their in-plane position before bouncing off the
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surface. As a consequence, in this case, reaction cross-sections are

small, �1 Å2, and only weakly dependent on the collision energy: only

small impact parameter trajectories successfully end up in reaction, and

the surface-atom interaction energy dominates over the collision

energy. On the other hand, when the target-surface bond is weak-to-

moderate the target is placed well above the surface and better

“exposed” to the projectile, which thus does not need to come close to

the surface to form the reaction product. In this case, the effect of the

projectile-surface interaction is less drastic, and large impact parameter

trajectories may find their way to react, too. As a result, Eley–Rideal

cross-sections become large and with a marked dependence on the

collision energy which signals a competition between different attrac-

tive interactions (projectile-target vs. projectile-surface).

Hence, we see that two different collision mechanisms are poten-

tially operative. Small impact parameter trajectories undergo head-on

collisions, give only a small contribution to the reaction cross-section

and lead to the vibrationally hottest product molecules, at the expense

of a negligible rotational excitation. Large impact parameter trajectories,

if possible, undergo glancing collisions, give a major contribution to the

reaction cross-section and allow rotational excitation of the products.

In head-on collisions the reaction is governed by the energy trans-

fer from the projectile to the target. Hence, the dependence of the

reaction probability on the collision energy of the projectile species is

well captured by a simple, impulsive model of the dynamics, analogous

to that introduced above for the sticking dynamics.[58] In this model,

the projectile with mass mP and speed vP5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e=mP

p
undergoes a binary

collision with the target of mass mT and speed vT, slows down its

motion, and gets captured by the targon after the latter elastically

bounces off the surface. Reaction occurs when the final kinetic energy

of the targon e0T is larger than e�, a dynamical threshold that we intro-

duce to replace the details of the dynamics and filter out those trajec-

tories in which the target is too slow to capture the projectile before

leaving the reaction region. Also in this case, conservation of mechani-

cal energy and of linear momentum translate into some simple kine-

matic conditions. Unlike the sticking dynamics, though, the main

acceleration might be provided by the target-projectile interaction, and

be in the relative velocity v rather than in laboratory velocity vT. This is

the case, for instance, of formation of H2 isotopologues on graphite,

where the H–H attraction dominates over the H–surface interactions.

The exit targon velocity v0T, given by

v'T52V2
l
mT

~v (41)

results from the acceleration of the colliding pair, the projectile-target

collision and the bounce of the targon off the surface. Here V is the

center of mass speed of the colliding pair, ~v25v212Dm=l (Dm being

the projectile-targon well depth) and l the reduced mass of the binary

system. The final kinetic energy of the targon is subjected to a reaction

condition, namely e0TðvT; vPÞ>e�, which determines a domain IðeÞ of
target velocities leading to reaction (IðeÞ depends on the collision

energy e5mPv2P=2). Finally, the Eley–Rideal reaction probability PERðeÞ
is obtained by integrating the distribution of target velocities g(v) over

IðeÞ. In the simplest case, g(v) is simply related to the momentum space

wavefunction (/mðpÞ) of the target initial vibrational state—i.e. through

gðvÞ5mTj/mðmTvÞj2—but a corrective factor has to be expected on

general grounds to account for the fact that the collision is hardly in

the true impulsive limit (scx0 � 1, sc being the collision time and x0

the targon vibrational frequency).

On the other hand, glancing collisions, which become relevant when

the targon–incidon potential dominates the dynamics, occur for large

impact parameters and are ruled by the orbital angular motion of the

colliding pair. In this case it is more appropriate to think about the reac-

tion as a “capture” of the projectile by the target. If it were for the

binary system interaction only, knowledge of the long-range tail of the

projectile-targon potential would suffice to determine the “capture

radius” qc at a given energy e, i.e. the maximum value of the impact

parameter for which capture does occur (and then the size of the cap-

ture cross-section r5pq2c ). For a potential of the form UðrÞ � 2a=rn

(n>2), one readily obtains

qc5

ffiffiffiffiffiffiffiffiffiffi
n

n22

r ffiffiffiffiffiffiffiffiffiffiffi
n
2
21

n

r ffiffiffi
a
e

n

r
(42)

This result holds for collisions in the gas-phase and determines, for

instance, the Langevin capture rate that accurately describes low-

temperature ion-molecule reactions (n54) (the assumption here is that

once the ion–molecule complex is formed, reaction occurs with unit

probability).[59] In our gas-surface case, however, the projectile–targon

attraction competes with the projectile–surface interaction and this

competition strongly modifies the energy dependence of qc. The sur-

face is seen to shield the targon from low-energy projectiles and, con-

versely, to focus higher energy trajectories toward the target, thereby

reducing (increasing) the capture radius at low (high) collision energies.

This is best seen in a simple model where the targon is held fixed

at a height h (h>0 when the target atom lies above the “surface”) and

the surface is represented by a hard wall that has the simple effect of

reverting the normal component of the projectile velocity, vz ! 2vz

(see Figure 6 ). In this model, the relative orbital angular momentum of

the projectile target binary system undergoes a sudden change l! l0

upon collision with the surface, namely

Dl25l022l2524uhvxvz (43)

if rP5ðu;2hÞ represents the projectile position in the scattering plane

(referenced to the targon) at the time of the impact and v5ðvx; vzÞ its
speed (Figure 6). Since for an attractive interaction vxvz � 0 (� 0) holds

to the right (left) of the targon atom, the change Dl is negative for a tar-

gon above the surface and positive otherwise. As a consequence, the

effective barrier ruling the capture process decreases (increases) when

the target lies above (below) the surface and, correspondingly, the cap-

ture radius becomes larger (smaller) than its gas-phase value. Real surfa-

ces are not hard walls and display a more intricate competition with the

targon field of forces than the one outlined here. Nevertheless, for the

large-impact parameter trajectories we are interested in, the picture

above is modified only to the extent that the height of the turning point

becomes energy dependent, the smaller the collision energy is the

higher the “altitude” where the projectiles reverts its motion.

BONFANTI AND MARTINAZZO | 1589



7.2 | Langmuir–Hinshelwood

At ambient conditions, Langmuir–Hishelwood is the most common

mechanism for recombination at a gas–solid interface. The elementary

microscopic event is particularly simple: two species A and B diffusing

on the surface meet and react, forming a product AB that then may

leave the surface for the gas phase. Since in the Langmuir–Hinshelwood

mechanism diffusion plays a primary role, and eventually impedes reac-

tion at low enough surface temperatures, here we limit ourselves to

some simple considerations on the microscopic LH rate constant. The

latter takes a slightly different form depending on whether association

is thermally activated or proceeds as soon as the reaction partners come

close to each other (here, with the term association we mean reaction

from two ad-species located in neighboring sites).

We consider a surface at low coverage of atoms and look first at

the case in which association is facile. Under these conditions, the time

between collisions is much larger than the time involved in a collision

and the number of “three-body” encounters is negligible compared to

two-body events. We further simplify association and assume that

those atoms that come close to each other within a distance r do react

and leave the surface. In this simplified picture, this critical distance r—

the “linear” cross-section of the reaction—does not depend on the

velocity of the particles and needs to be of the order of the lattice con-

stant of the surface. Using standard results in the kinetic theory of

gases (in two dimensions) we can then write the rate constant as

k5v r (44)

where v is relative velocity of the colliding partners, i.e.

v5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðvA2vBÞi2

q
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2A1v2B

q

if it is taken to be the root-mean-squared one. The appropriate veloc-

ities are those describing diffusion of the two species on the surface,

and are the thermal velocities when diffusion is free and

v2X5
4DXC

X
e

N2
5
16D2

X

N2r2X
X5A;B

when diffusion is a thermal hopping process (here DX is the diffusion

coefficient of the species X, CX
e its total escape rate, N the number of

hopping sites and rX the jump length, see Eq. 30).

On the other hand, when a barrier Ea is present in AB formation,

association is a slow process and can be modeled as a distinct kinetic

step. In this case, the rate given above becomes that for having the two

partners in neighboring sites (we call AB� this configuration), and must

be corrected to include the association step. The latter occurs with a

rate ka that can be estimated with the help of transition state theory,

ka5
kbT
h

z‡AB
zAzB

e2bEa

where zA is the partition function of reactant A, zB similarly for B, and

z‡AB is the partition function of the transition state. When A and B are

simple atoms zA, zB take a simple form (e.g., �ðkBTÞ3=x2
kx? for an ada-

tom placed in a symmetric site with two degenerate in-plane frequen-

cies xk and a frequency x? for the motion along the surface normal)

and zAB is only slightly more complicated, being that of an adsorbed dia-

tomic with a hindered translation-like mode. Then, it follows

kLH5k
ka

ka1kd
(45)

where kd5fAC
A
e1fBC

B
e is the “dissociation” rate of AB�, given in terms of

the total escape rates Ce and the fraction fX5ðNX21Þ=NX of sites

FIGURE 6 A schematics of the hard-wall model used in themain text to illustrate the effect of the surface on projectile capture. The targon is held fixed at
a height h above the surface (h<0 in the left panel and h>0 on the right) and collision of the projectile with the surface occurs at a position rP5ðu; hÞ in the
scattering plane. The arrows indicate the projectile speed before (dashed) and after (thin line) the bounce and q1 is the impact parameter of the trajectory
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available for “dissociation” (X5A;B). Equation 45 of course reduces to

the previous estimate kLH � k when association is a fast process

(ka 	 kd).

7.3 | Hot Atoms

When a light atom impinges on a metal surface, because of the unfav-

orable mass ratio, it hardly dissipates enough energy to get trapped at

the impact site in a single collision (see Eqs. 5 and 6). Nevertheless,

there exists the possibility that the intrinsic corrugation of the surface

(or that created by any species adsorbed on it) allows some energy to

be channeled in the motion parallel to the surface, thereby forming

trapped but fast moving species. In this case, the light atoms travel

along the surface and repeatedly collide with it, eventually transferring

enough energy to become permanently trapped. The resulting hot-

atoms have energies much in excess to the thermal energy and may

react with adsorbed species located tens Å away from the impact posi-

tion, even when the surface temperature is so small that thermal diffu-

sion cannot occur. Only a small fraction of the initially trapped species

finds a collision that re-convert energy in the direction normal to the

surface (and thus potentially desorbs before “stabilization” occurs), but

also in this case these metastable hot-species may travel for ps along

the surface and find a reaction partner prior to desorption.

The situation is common for (but not limited to) H atoms on

metal surfaces, where the large value of the binding energy of �2:5
eV makes trapping easier, and H atoms with �2 eV kinetic energy

along the surface are common. The corresponding reaction mecha-

nism is intermediate between Eley–Rideal and Langmuir–Hinshel-

wood, and is called Hot-Atom (HA) mechanism.[60] It is not as direct

as ER but does proceed neither through thermally equilibrated spe-

cies like LH. As a result, HA products are typically as hot as Eley–

Rideal products, and show limited surface temperature dependence.

They are hard to distinguish from ER products in experiments

where detailed information on the dynamics cannot be obtained (e.

g., kinetic experiments), if not for the extremely large apparent

cross-sections they can give rise to.

Modeling of the reaction dynamics proceeds along lines similar to

those illustrated above for LH, in the limit where diffusion is free and a

linear (most likely energy dependent) cross-section characterizes reac-

tive collisions in two dimensions. The main departure from LH is in the

diffusive process: the squared velocity v2 determining the size of the

diffusion coefficient is given by the large, non-equilibrium hot-atom

energy rather than its thermal value,

D5
v2sc
2

5
EHA

mc

where sc (c) is the collision time (rate), m the hot-atom mass and EHA

	 kBT its energy. For instance, in a typical situation one finds EHA�2
eV, to be compared with the room-temperature thermal energy of

0.025 eV. Actually, hot-atoms move ballistically for rather long times

(ps) that, depending on the surface coverage, the transition from ballis-

tic (Dx2�t2) to diffusive (Dx2�t) may not be complete before they

react, i.e. in the time window of interest for their dynamics.

We emphasize here that the situation is quite different from that

described by the standard Langevin dynamics (see Appendix): hot-

atoms do behave essentially free but undergo random quasi-elastic col-

lisions changing the direction of their velocity vectors rather than

inelastic interactions (collisions) with an equilibrated environment. To

better explain this difference, we notice that in the Langevin descrip-

tion of Brownian motion the average energy change “per collision” is a

fixed, large fraction of the energy in excess to the thermal one

—hei�5hei2eb where hei5mhv2i=2 and eb5kBT=2 for Brownian motion

in 1D—clearly at odds with the energy transfer process of interest

here. To see this, let us consider the Langevin equation appropriate for

this case

m _v1mcv5n

(see Appendix, namely Eq. 56 for V50, and v5_z), multiply it by v and

take the ensemble average

dhei
dt

12chei5hvni (46)

Here the average hvni can be computed from the explicit solution of the

LE above, vðtÞ5vð0Þe2ct1
Ð t
0 e

2cðt2sÞnðsÞds=m, and easily seen to be

hvðtÞnðtÞi5 1
m

ðt
0
e2cðt2sÞhnðsÞnðtÞids5ckBT

where use has been made of the fluctuation-dissipation theorem, Eq.

57, for cðtÞ52cdðtÞ. Thus, energy excess decays exponentially accord-

ing to he�iðtÞ5e�ð0Þ3exp 22ctð Þ, and the energy transfer per collision

is de5jDhe�iðc21Þj � 0:86 he�i where he�i is the excess energy at the

given time. Such collisional energy transfer is small only in near equi-

librium conditions (in fact, it is zero in equilibrium because of the fact

that energy gain and energy loss processes become equally likely),

but it is clearly enormous at the typical hot-atom energies where

he�i � hei � 2 eV.

Were it not for the slow energy decay, hot atom dynamics could

be modeled by free-atom dynamics with a random purely re-orienting

force (e.g., a term like v�H where H is a constant, “pseudo-magnetic”

field that is randomly switched on parallel or antiparallel to the surface,

for variable times tH), or, more accurately, by simple Hamiltonian

dynamics in the fully corrugated static surface potential V5VSðxÞ.
However, introducing energy transfer in a reduced description without

resorting to a full lattice dynamics is highly desirable, at least in the

“short” time (few ps) where hot atoms stabilize on the surface and

slightly slow down their motion before reacting. This is because a full

lattice dynamics could be computationally demanding even today, since

large simulation cells are required to accommodate hot-atom trajecto-

ries. Furthermore, one can also introduce in this way the energy trans-

fer to the electronic system by e – h pair excitations, a process which

may occur irrespective of the lattice dynamics.

Fortunately, it turns out that such “quasi-Langevin” description is

possible.[61] Energy decay to phonons is a slow process, inelastic colli-

sions are random and memory-less, and roughly limited to the hot-

atoms interaction with the repulsive wall of VS. The resulting stochastic

equation of motion for this rigid-surface hot-atom dynamics—a

Langevin-like equation with state-dependent friction—reads as
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m€x1rVSðxÞ1ða1fÞFðxÞ _z
j_zj ẑ50 (47)

where VSðxÞ5Vatt
S ðxÞ1Vrep

S ðxÞ is the rigid-surface potential separated

in an attractive (att) and a repulsive (rep) contribution and FðxÞ52@

Vrep
S ðxÞ=@z � 0 is the repulsive force along the surface normal. Further-

more, a>0 is a constant that characterizes energy dissipation (it is the

only empirical parameter needed) and f is a Gaussian random variable

with zero mean that takes a different value each time the hot-atom

reverts its motion along the surface normal** (i.e., for vz5_z50). The

physical interpretation of the above equation is the following. Consider

the limiting case where the interaction is separable

VSðxÞ5Vkðx; yÞ1V?ðzÞ, i.e., where the motion along z can be treated

independently of the motion along the surface plane (x, y). The equa-

tion governing energy dissipation is then the 1D equation

m€z1
d
dz
f 12ða1fÞ _z

j_zj
� �

VrepðzÞ1VattðzÞg50

and describes dynamics on an effective potential

VeffðzÞ5 16ða1fÞ½ �VrepðzÞ1VattðzÞ

where the plus sign stands for the atom traveling toward the surface

(vz<0) and the minus for the opposite case. At each collision there is a

jump in the total energy, which though is substantial only at the inner

turning point, since Vrep is negligible at large z. For such vz<0! vz>0

collision the energy change reads as

de522ða1fÞVrepðztpÞ522ða1fÞ e2VattðztpÞ
11a1f

(where e is the incidence energy) and corresponds to energy trans-

ferred from the hot-atom to the lattice. This means that the average

energy change per collision is

hdei � 22ae

(for a; f� 1 and e	 VattðztpÞ). Similarly, ðdeÞ2 � 4ða1fÞ2e2, and the

average energy fluctuation per collision turns out to be

hDðdeÞ2i5hðdeÞ2i2hdei254hf2ie2

Comparison with Langevin dynamics determines the size of the fluctu-

ations hf2i in the random term. To this end, we notice that in the Lan-

gevin dynamics the energy fluctuations obey the equation

dhDe2i
dt

52 22chDe2i1hðe2heiÞvni	 

which, parallel to Eq. 46, can be obtained through simple manipulations

from the LE for a free-particle. Here, the second term on the r.h.s. can

be written explicitly with the help of††

hv3n ni5
3ðkBTÞ3

m
c3 12e22ct
� � hv2n i5 kBT

m
3 12e22ct
� �

(where vn5e2ct
Ð t
0 e

1csnðsÞds=m is the random component of the veloc-

ity), and we obtain the final result in the form‡‡

dhDe2i
dt

524chDe2i14ckBT3eð0Þ3e22ct12cðkBTÞ23 12e22ct
� �

Thus, at short times and for eð0Þ 	 eth, we find a simple relation

between the rate of change of the energy and that of its fluctuations

dhei
dt
� 22ce

dhDe2i
dt

� 4ckBTe522kBT
dhei
dt

which gives the desired width of the distribution of the random term

hf2i5 kBT
e

a � kBT
eð0Þ a

when the same relation is enforced in the quasi-Langevin description

outlined above. This shows that a alone determines the quasi-Langevin

equation Eq. 47 and this can be obtained either from exploratory

dynamical simulations involving the lattice or simply estimated (a21�
few ps typically).

7.4 | Dissociative chemisorption

Dissociative chemisorption is a particular sticking process in which a

molecule colliding with a surface is dissociated and adsorbed as two

separated fragments. In the past years, many useful concepts have

been developed to understand how the translational, the vibrational,

and the rotational degrees of freedom of the molecule come into play

in determining the outcome of the reaction (see, for instance, the

excellent reviews on the topic of Refs. 62–65). The complex interplay

of several factors makes difficult—if not impossible—to derive a simple

yet comprehensive model of dissociative chemisorption. Here, we just

focus on a specific aspect of the problem, the role that the surface pho-

nons play on the reaction. The latter have been the subject of recent

investigations that helped to shed light on general questions regarding

the role of surface motion in scattering problems.

From a general perspective, surfaces can be seen to exert two

different roles in chemical dynamics. Phonons may play a passive

role, in which they act as a large dimensional bath coupled to the

reaction coordinate that dissipates the energy of the system and

induces thermal fluctuations. In this case, their main effects can be

captured with simplified models, since the detail of the lattice

dynamics is not relevant and a statistical description suffices for

most purposes. At the opposite extreme, phonons may play an

active role: the motion of some lattice degrees of freedom, directly

coupled to the reaction coordinate, shapes a distortion of the reac-

tion potential which is crucial for the outcome of the process. Here,

the detailed coupling potential that determines the distortion would

be required, but most often the main effect come from few surface
** Both a and f are dimensionless.

††

To the aim of obtaining such results remember that, since n is Gaussian,

the correlation hnðt1Þnðt2Þi suffices to write high order correlations such as,

e.g., the term hnðt1Þnðt2Þnðt3Þnðt4Þi that appears when expanding hv3n ni.

‡‡

It follows that hDe2i5ðkBTÞ2=2 holds under equilibrium conditions, in

accordance with the standard result hDe2i5cVkBT2 where cV is the heat

capacity (cV5kB=2 in our case).
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degrees of freedom, i.e., from those “closest” to the reaction site

that are directly involved in the dynamics. Hence, under such cir-

cumstances, it is possible to include these effects with larger (but

yet attainable) dynamical models.

In general, the surface plays an active role when the dynamics is

activated and any tiny lattice deformation may show up in the reaction

probability. In this case, fortunately, the passive role of the surface

atoms can be neglected, and accurate reduced-dimensional models

including the most important surface degrees of freedom developed.

This occurs for example in the (activated) dissociative chemisorption of

light diatoms (e.g., H2 on several metal surfaces) since, as is evident

from the simple models presented in the previous sections, a large

mass mismatch between the projectile and the surface severely limits

any energy transfer process.

One of the simplest “active surface” models is the surface oscil-

lator model (SOM),[66,67] in which the molecular Hamiltonian is

coupled to a “surface oscillator” through the rigid surface (RS)

potential. Specifically, for a diatom AB with atom coordinates rA and

rB, atom momenta pA and pB and masses mA and mB, the SOM Ham-

iltonian reads as

H5
p2A
2mA

1
p2B
2mB

1VSðrA2Zẑ; rB2ZẑÞ1 P2

2MS
1
MSX

2
SZ

2

2
(48)

where VSðrA; rBÞ is the molecular potential comprising the interac-

tion of the molecule with the static surface, ẑ the surface normal,

and Z (P) is the height (momentum) of the “surface,” taken to be a

harmonic oscillator of mass MS and frequency Xs. The rationale

here is that the interaction of AB with the surface atoms mainly

depends on the relative position of the molecule with respect to

the average height of the topmost surface layer, i.e. the phonon-

molecule coupling is dominated by out-of-plane surface phonons

and this effect can be well captured by a single oscillator. The model

Hamiltonian of Eq. 48 has one additional degree of freedom, but

allows one to easily introduce surface temperature and barrier shift

effects.[68,69]

Two different limits are worth discussing in this context. One is for

X!1 where the surface oscillator becomes prohibitively stiff that it

does not take part to the dynamics. This is the trivial limit where the

dynamics comes back to that of the rigid surface case. The opposite

limit for X! 0 is more interesting, since in that case the surface oscil-

lator becomes “free” and plays a simple kinematic role in the dynamics.

In this limiting model (also known as surface mass model, SMM) the

effect of the additional degree of freedom is to convert collision ener-

gies e in energies of the relative motion erel, according to the mass cho-

sen to represent the surface and the initial speed vS of the oscillator.

As a consequence, the SMM probabilities are simple convolutions of

the rigid-surface ones (PRSs ),

PSMM
s ðe; mÞ5

ð
PRSs ðerelðe; vSÞ; mÞ gðvSÞdvS

where erel5 1
2lðvAB2vSÞ2 (with l is the reduced mass l215

ðmA1mBÞ211M21
S and vAB the COM speed of the molecule along z)

and m collectively labels the internal molecular states.

At a more accurate level, one can try to take the effect of some true

surface oscillators into account, e.g., for the above problem of the dia-

tomics, to consider the Hamiltonian

H5
p2
A

2mA
1

p2
B

2mB
1VSðrA; rBÞ1

X
k

p2k
2mS

1VLðqÞ1VIðrA; rB; qÞ (49)

in place of Eq. 48. Here, q5ðq1; q2; ::Þ [p5ðp1; p2; ::Þ] are the coordi-

nates [momenta] of the surface degrees of freedom, mS their mass,

and the total potential has been split into three terms: VS is the

above static surface potential, VL is the lattice potential, and VI is

the coupling between the molecule and the surface degrees of free-

dom. This is particularly useful when the phonon-molecule coupling

is weak and the motion of the projectile is faster than the vibrations

of the (heavy) surface atoms, since in this limit a diabatic approxima-

tion on the qk’s is possible. In other words, during a rapid scattering

process the slowly moving surface atoms cannot adjust their posi-

tion, rather remain essentially frozen in their initial arrangement.

Each given lattice configuration determines its own dynamics, and

appropriate averaging is needed to wash out such dependence, This

vibrational diabatic approximation is also referred to as “Sudden

Approximation,” and has long been known in gas-phase dynamics,

since the pioneering works by Bowman et al.[70,71] In the context of

gas-surface scattering is often referred to as Phonon Sudden

Approximation (PSA), and its application in classical dynamics is

straightforward: the initial position of the lattice atoms are sampled

from the equilibrium distribution and molecular trajectories are

integrated in accordance with the sudden Hamiltonian

HPSA5
p2A
2mA

1
p2B
2mB

1VSðrA; rBÞ1VIðrA; rBjqÞ (50)

where the vertical bar has been introduced in VI to emphasize that

the dependence of the potential on the qk’s is only parametric. In

other words, as mentioned above, the lattice coordinates are frozen

during the dynamics, with values chosen randomly from the appro-

priate distribution. This classical approach has been successfully

applied, for instance, in Ref. 72 to estimate the static effect of sur-

face temperature on the dissociative chemisorption probabilities of

H2 and D2 on Cu(111).

The above Phonon Sudden Approximation can be generalized to a

quantum setting, upon assuming that the coupling potential does not

affect the evolution of the lattice dynamics, i.e. that

HL;VI½ � � 0 (51)

approximately holds, HL5
P

k
P2k
2mS

1VLðqÞ being the lattice Hamiltonian.

Under these conditions, the scattering amplitude for the collisional

transition ðm; iÞ ! ðm0; fÞ between the m and m0 molecular states and the i

and f surface states (they are all multiindex) can be obtained by inte-

grating the PSA scattering matrix, namely from

SPSAðm0; f m; iÞ5hfjsPSAðm0  mjqÞjii (52)

where sPSAðm0  mjqÞ is the solution of the scattering problem defined

by the sudden Hamiltonian, Eq. 50, with the lattice coordinates fixed at

q. The full knowledge of sPSAðm0  mjqÞ, allows one to compute the

state-to-state scattering probabilities, which are the square of the
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scattering matrix elements, for any initial and final state, just by per-

forming the quadrature of Eq. 52.

In general, given the state resolved scattering amplitude Sðm0; f m; iÞ,
the initial-state-selected dissociative adsorption probability follows as

Psðm; iÞ512
X
m0;f
jSðm0; f m; iÞj2 (53)

where the sum runs over all internal state of the molecule and the

states of the lattice§§. Plugging the PSA scattering amplitude in the

above expression gives the corresponding probability in the phonon

sudden approximation

PPSAs ðm; iÞ512
X
m0;f
hijsPSAðm0  mjqÞ†jfihfjsPSAðm0  mjqÞjii

5hijpPSAs ðmjqÞjii5
ð
dFqjUiðqÞj2pPSAs ðmjqÞ (54)

where

pPSAs ðmjqÞ512
X
m0
jsPSAðm0  mjqÞj2

and UiðqÞ is a bath eigenfunction. Equation 54 is a simple statistical

average, since no phase factor is present in pPSAs . As a consequence, in

analogy with classical dynamics, the PSA dissociative chemisorption

probability is simply the average of the probability at fixed lattice coor-

dinates, weighted by an appropriate distribution jUiðqÞj2, a rather

physically sound result. We notice though that the manipulation lead-

ing to Eq. 54 is rather subtle since it implicitly assumes that the com-

puted scattering matrices are made non-unitary in practice (e.g., by

imposing absorbing potentials).

8 | APPLICATIONS

So far we have presented the general phenomenology of processes at

surface, along with those basic concepts that allow a “zeroth order”

description of the dynamics. We close this review with a brief overview

of real world systems, since recent years have witnessed a great pro-

gress in atomistic simulations that a close comparison with experimen-

tal findings has been possible in many cases. Such progress is the result

of a virtuous interaction between the availability of powerful computa-

tional resources and the development of accurate and reliable method-

ologies. The focus of this review is on the dynamics, but the advances

in electronic structure theory played such an important role that can

hardly be overemphasized. We just mention that Density Functional

Theory definitely emerged as a thoroughbred, and DFT methods have

been made available to compute interaction energies in the chemical

range (including the van der Waals realm) for systems of the typical

size necessary in many surface science problems. As for the dynamics,

the situation is less distinct and a large number of complementary

approaches have emerged from the variety of challenges presented by

surface science. They are schematically depicted in Figure 7, and briefly

introduced in the following.

The simplest and most straightforward approach is to treat the

projectile and a variable portion of the surface with classical molecular

dynamics. At this level, (mechanical) environmental effects can be

safely assigned to the lattice boundaries and thus described by Lange-

vin forces acting on the edge atoms only. The obvious advantage of

classical dynamics is the low cost of propagation that allows the intro-

duction of a large number of degrees of freedom or the use of high-

quality information on the interactions (such as on-the-fly ab initio

computation of the forces).

At the opposite extreme, there are approaches in which both

the scattering particle and the lattice are treated at a quantum level.

In this case, a “brute force” approach in which both are explicitly

considered in detail is out of reach because of the well known expo-

nential scaling of quantum dynamics. One viable route in this case

is to extract a primary system (called simply the system) that con-

tains the most relevant degrees of freedom (usually the projectile

plus possibly some strongly coupled lattice coordinates). If neces-

sary, the effect of the environment on the system can be incorpo-

rated at a fully quantum level with open-system quantum

techniques, e.g. master equations for the reduced density operator

of the system or system-bath unitary dynamics.

Between these two extremes, there lies a variety of models in

which ad-hoc approximations are exploited to study a particular aspect

of the scattering problem. In many “small quantum system” approaches,

the fully quantum description of the scattering dynamics is retained at

the expense of an arbitrary reduction (or even neglect) of the lattice

degrees of freedom. Two examples are the above mentioned Surface

Oscillator model and Phonon Sudden Approximation that aim at cap-

turing some specific aspects of the dynamical effect of the surface. On

the contrary, when the quantum nature of the lattice is preserved at

the expense of the scattering coordinates, we have methods based on

the Forced Oscillator Model, which was conceived to study with accu-

racy the energy transfer to the lattice.

Inclusion of e-h excitations, when needed, is straightforward only

if the system dynamics is treated classically and an electronic friction is

used, otherwise it requires ad hoc (modelistic) modification to the

above described approaches.

In this final section, we present a few examples of both quantum

and classical studies in the field of surface science, chosen to illustrate

some typical problems and the adopted theoretical approach. The list

does not claim to be exhaustive nor definitive, rather follows the inter-

ests and the expertise of the authors.

8.1 | Classical dynamics

We start our short examination from the molecular dynamics study by

Shalashilin and Jackson on H scattering from Cu(111),[61] who demon-

strated the efficacy of a combined use of standard trajectories and

advanced stochastic models. In this work, a large slab of 150 Cu atoms

was used to investigate the behavior of hot-atoms on a dynamic lattice,

and forces were computed with a reasonable analytical potential. The

§§ If needed, these quantities can be averaged over the thermal distribution

of the bath states to give the probability at given surface temperature,

Psðm; TÞ5
X
i

piðTÞPsðm; iÞ.
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formation of trapped hot species was analyzed in detail, as well as the

nature of their motion on the surface and their energy and momentum

dissipation. Furthermore, the results were scrutinized for a Fokker–

Planck description of the slow energy decay process, which was then

used to build a satisfactory “quasi-Langevin” description of the atom

dynamics based on the rigid-surface potential only. As mentioned in

section “Reactions—Hot Atoms,” the difference with the standard Lan-

gevin approach consists in the structure of the friction and fluctuating

forces, which were designed to describe the small energy transfer of

the light atoms to the surface. The model as such is in fact readily

extended to include electronic friction effects, which have been recently

found substantial in some hot-atom dynamics.[35] Adsorbate-induced

HA formation and (phonon mediated) stabilization of hot hydrogen

atoms were also investigated in Ref. [73], where a detailed comparison

of Eley–Rideal reaction and Hot-Atom formation was performed for

hydrogen atoms recombining on Ni(100). The authors of Ref. [73] used

an accurate Embedded Diatomics in Metal potential model [74]—a vari-

ant of the popular Embedded Atom Method[75,76]—and a large slab

(939311) to follow the dynamics of projectile H atoms fired on a previ-

ously covered Ni(100) surface. They found that hot-atom formation

cross-sections are much larger than ER ones, and that both the

adsorbate-induced corrugation and the enhanced energy transfer with

the (light) targets play a role in forming stable hot species already at the

first impact. Figure 8 shows an example of the simulation results which

is illustrative of the hot-atom properties: there is plotted the energy dis-

tribution of the trapped species after about 1 ps at a surface tempera-

ture of T5120 K, for different values of the collision energy (the curves

would slowly shift toward lower energy since HA relaxation was found

to occur on a time scale of � 4–5 ps).

Recently, the advent of large and fast supercomputing facilities has

opened the way to Ab Initio Molecular Dynamics (AIMD), with Density

Functional Theory forces computed on-the-fly. While this methodology

ensures that the forces are accurate and reliable, it requires a much

more expensive evaluation of the forces, when compared to standard

molecular dynamics. As a consequence, a tradeoff has often to be found

between the size of the simulation cell and the quality of the statistics.

Nevertheless, high quality results can already be obtained by judiciously

choosing the set up for running AIMD. Nattino et al.,[77] for instance,

investigated methane dissociative chemisorption on Pt(111) and used a

3 3 3 surface unit-cell slab with 5 atomic layers to model the surface.

These 45 platinum atoms were proven to be enough to capture the

active effects of the lattice motion which were most important in disso-

ciating the molecule. The authors of Ref. [77] investigated in detail a

number of issues, including the dependence of the reaction probabilities

on the initial vibrational state of the molecule, its rotational alignment,

and the temperature of the surface. They further performed a thorough

comparison with available experimental results at a quantitative level,

thereby demonstrating the power of this methodology.

AIMDwas also used to investigate relaxation of hot atoms resulting

from molecular dissociation, as mediated by both phonon excitation and

electronic friction.[35] The aim of the authors of Ref. [35] was to estab-

lish at what stage of the dissociation of a molecule e–h pair excitation

becomes relevant, in light of the contradicting evidences that an adia-

batic picture seems to work in most cases for dissociative chemisorption

but electron excitations are indeed observed during reactions, as e.g.

chemicurrents. The findings of Ref. 35 point towards a primary role of

e–h pair excitations in hot atom relaxation, a result that might be exag-

gerated by the rather crude description of the electronic friction (the

local density friction approximation, see “Energy Transfer—Electronic

friction”)*** but does prove the ubiquitous role of electronic excitations

when dealing with metal surfaces. Notice, further, that the hot-species

FIGURE 7 A cartoon illustrating several dynamical schemes adopted to handle gas-surface dynamical problems

*** Indeed, in LDFA the friction is entirely determined by the value of the

electron density at the atom position. Hence, also insulating surfaces would

be effective in providing such friction.
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formed in such a molecular dissociation process are sensitively slower

than those obtained when firing atomic species at a surface, hence the

HA energy distributions are colder than those shown in Figure 8 and

correspondingly the traveled are typically much shorter distances than

those mentioned above, at the beginning of this Section.

FIGURE 8 Energy distribution of hot hydrogen species formed on a Ni(100) surface at T5 120 K, pre-covered with H atoms, �1 ps after
the impact on an occupied (red) or empty (blue) adsorption site. The different values of the collision energies are indicated on the ordinate
axis and by the small vertical bars, and the zero of energy has been aligned with the desorption threshold. Reprinted from R. Martinazzo, S.
Assoni, G. Marinoni and G.F. Tantardini, J. Chem. Phys. 120, 8761 (2004) with the permission of AIP Publishing

FIGURE 9 Results of an AIMD investigation of the Eley–Rideal formation of H2 on graphite. Left panel: cross-sections for ER recombina-
tion from AIMD (dots with error bars) and from quantum calculations within the adiabatic (blue) and sudden (red) rigid, flat-surface models
(see the main text). Middle: partitioning of the reaction energy into surface degrees of freedom (blue), H2 translational energy (red), and H2

internal energy (black). The black line shows the total energy available (the reaction exothermicity plus the collision energy). Right panel:
average H2 vibrational (black) and rotational (red) quantum numbers as obtained through standard binning of the AIMD results (dots-full
lines) and from quantum calculations (dashed lines). Adapted with permission from S. Casolo, G. F. Tantardini and R. Martinazzo, J. Phys.
Chem. A (2016), in press (DOI: 10.1021/acs.jpca.5b12761). Copyright 2016, American Chemical Society
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AIMD was further used in cases of systems strongly coupled with

the lattice, such as the Eley–Rideal formation of H2 on graphitic/gra-

phenic surfaces. The coupling in this case arises from the fact the

adsorbed H atom forms a strong, covalent bond with one atom of the

lattice, and its breaking may leave substantial energy into the substrate.

In fact, since the C atom is sp3 hybridized and protrudes from the flat

surface, after reaction it can be found in a highly excited vibrational

state. This and other issues (e.g., the competing formation of dimers on

the surface) have been described by Casolo et al.,[78,79] who performed

a detailed comparison between classical and reduced-dimensional quan-

tum studies, and with available experimental data. The results of Refs.

[78,79] show that Eley–Rideal reaction dominates over dimer formation

at collision energies relevant for the chemistry of the interstellar

medium, thereby ruling out possible catalytic pathways in H2 formation

that involve dimers on the surface. They further show that reaction is

accompanied by substantial substrate heating: formation of a single H2

molecule may rise the surface temperature of a typical (lm-sized) inter-

stellar grain by 231024 K. Figure 9 shows some illustrative results of

these studies: reaction cross-sections, energy partitioning and (average)

rotational, and vibrational quantum numbers for the product H2

(obtained by standard binning of the trajectory results). One striking fea-

ture evident from this figure is the size of the cross-sections which,

despite the unfavorable 1
4 spin-statistical factor which had to be cor-

rected for, are much larger than �1 Å2 typical of Eley–Rideal recombi-

nation on metal surfaces, as discussed previously in section “Reaction—

Eley–Rideal.” Also evident in Figure 9 is the internal excitation of the

product molecules, a rather common feature that follow from the exo-

thermicity and the specific mechanism of the reaction (see Section

“Reaction—Eley–Rideal”); in particular, the opposite behavior of the

vibrational and rotational excitation vs. energy (right panel) signals the

competition between head-on and glancing collisions in determining the

reaction outcome.

8.2 | Quantum dynamics

Eley–Rideal H2 formation on graphene is also one of the most studied

quantum scattering problems. In this context, the description is often

simplified by invoking the rigid and flat surface approximation, i.e.

assuming that the lattice is frozen and neglecting the corrugation of

the atom-surface potential. As a consequence, the total momentum

parallel to the surface and the projection of the total angular momen-

tum on the surface normal are conserved quantities and the overall

description includes three degrees of freedom only.[80] In light of the

strong coupling between the previously adsorbed hydrogen and the

bonding carbon, the role of the substrate atom is often statically

included in the potential energy surface, considering two different

(opposite) limiting behaviors[81,82]: either with a sudden approximation

or with an adiabatic approximation. In the first case, the reaction

dynamics is supposed to be so fast that the C atom remains frozen in

its reconstructed configuration, whereas in the second case the sub-

strate atom relaxes instantaneously during the supposedly slow recom-

bination process. A comparison of the results obtained in these two

FIGURE 10 ER recombination probabilities from 2D collinear calculations with the adiabatic model, as a function of the collision energy in
both log (left panel) and linear (right panel) scales. In the right panel the thick lines are the results of the quasi-classical impulsive model
described in the main text, color coded as the quantum results

FIGURE 11 Dissociative chemisorption probability as a function
of the collision energy for state-selected H2 scattering off the Cu
(111) surface. The rigid-surface 6D quantum results (black) are
compared with exact 7D quantum calculations (thin blue and red
lines) and 7D calculations using the phonon sudden approximation
(dashed lines). n is the vibrational quantum number of the addi-
tional surface mode included in the 7D calculations
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limits is given in Figure 9, along with the AIMD results, where it is

shown that they provide reliable upper and lower bounds to the cross-

sections, at least in the regime where classical mechanics is valid. Sev-

eral aspects have been scrutinized on the quantum dynamics of H2 for-

mation on graphite—e.g., the internal excitation of the products, the

quantum effects at high energies and the cold collision energy dynam-

ics, the isotope effects, etc.—and novel methodologies developed to

overcome problematic issues.[58,83,84] The reader is referred to the orig-

inal literature[58,82,84–87] and review articles.[88] Here, we rather focus

on the simple collinear dynamics, which is illustrative of the concepts

developed in section “Reactions—Eley–Rideal.” Figure 10 shows that

the ER reaction presents a marked isotopic dependence in these head-

on collisions. At high energy, where the dynamics is classic, the behav-

ior of the probability curves is well-captured by the simple, quasi-

classical impulsive models described above. The only necessary adjust-

ment is in the target atom velocity distribution function: in this case

the impulsive limit does not strictly holds, since the target atom per-

forms few vibrations during the collision. To remedy this deficiency, we

can assume that the average kinetic energy increases by Deff due to

the interaction with the projectile while the momentum distribution

keeps the same shape and average. This amounts to replace the origi-

nal target frequency xS (determining the momentum wavefunction

/mðpÞ) with an effective frequency xeff5xS14Deff=�h. The results of

these quasi-impulsive models—shown in Figure 10 as full lines—capture

rather well the main aspects of the dynamics at a moderate-to-high

collision energies. At smaller (“cold”) energies, the reaction probability

shows a general decrease despite the absence of any reaction barrier,

but the detailed behavior is hardly rationalizable and likely bound to

the details of the interaction potential. This is the quantum regime

where quantum reflection and dynamical resonances play a primary

role.

The Phonon Sudden Approximation has been introduced and

tested by the authors of Ref. [89], who used the dissociative chemi-

sorption of H2 on Cu(111) as a testing ground for this approximation.

Here, an additional degree of freedom for the motion of a lattice coor-

dinate was added to the dynamical description that, in turn, became a

seven-dimensional model. Quantum wave-packet propagation was

used to compute reaction and state-to-state scattering probabilities.

FIGURE 12 Time evolution of the reduced density along the height of the hydrogen atom above the surface (zH, left bottom panel) and of
the average excitation number of the bath oscillators (right bottom panel) in a typical high dimensional quantum simulation. The average ini-
tial momentum was 7 a.u., corresponding to a nominal collision energy of 0.36 eV. The top panel on the left shows a contour plot of the
system potential aligned along zH, and the top panel on the right gives the spectral density JCðxÞ felt by the binding C atom, in correspon-
dence with the bath oscillator frequency. Reprinted from M. Bonfanti, B. Jackson, K.H. Hughes, I. Burghardt and R. Martinazzo, J. Chem.
Phys. 124704 (2015) with the permission of AIP Publishing
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For instance, in Figure 11 the sticking probability is shown as a func-

tion of the incidence energy of a molecule in the rovibrational ground

state m50, J50, for different states of the substrate. Because of the

small coupling between the molecule and the phonons of the surface,

the sticking curves for the vibrational ground state of the lattice coordi-

nate (n50) differ only slightly from the one with the static surface, i.e.

kept fixed in the equilibrium position. A significant increase of the reac-

tion probability at the threshold energy was found however when the

lattice was vibrationally excited (n59). The graph shows that for both

vibrational states the exact 7D calculations and the PSA results are in

excellent agreement. It has been established, in fact, that in H2 scatter-

ing off Cu(111) the role of the surface is almost perfectly captured

already at a static level, by taking into account the distortion of the

potential induced by the thermal fluctuations of the lattice atoms.

Vibrational relaxation was investigated within and beyond the

Fermi-golden-rule approximation described in Section “Vibrational

Relaxation.” Saalfrank and coworkers, for instance, investigated in

detail the relaxation dynamics of H atoms stuck on the Si(100) sur-

face, and the competition with laser-field excitation in producing

mode (state) selective products.[90,91] In a thorough analysis of the

HASi(100)22 3 1 system, they developed a microscopic model

describing SiAH bending and stretching, and their anharmonic cou-

pling to the Si lattice. Using the Fermi-golden-rule to compute the

vibrational lifetimes s and including one- and two-phonon decay

processes, as well as anharmonic coupling in the SiAH vibrations,

they rationalized the striking differences between the bending (s�
ps) and the stretching (s� ns) lifetimes.[90] They found that, even

though both vibrational modes have frequencies well above the

Debye frequency of the Si substrate, only the bending mode is capa-

ble of exciting two surface phonons and thus relax on a ps time-

scale. The stretching mode could only relax via anharmonic coupling

to the bending, i.e. through creation of two bending quanta for each

quantum put in the stretching mode. This study was later

extended[91] beyond the Markov regime implicitly assumed in adopt-

ing a rate description, and the fast relaxing bending mode explicitly

followed in real time with high dimensional wavepacket simulations

of the Multi-Configurational Time-Dependent Hartree (MCTDH)

type.[92–94] Interestingly, the effect of the surface temperature was

investigated via an efficient stochastic representation of the thermal

density operator[95] and found to substantially reduce the lifetime of

the vibrationally excited species adsorbed on the surface.[91]

To the best of our knowledge, the only numerically converged,

fully quantum study of a strongly coupled scattering problem, explicitly

including the lattice degrees of freedom, is our recent work on the acti-

vated dynamics of hydrogen sticking on a graphitic/graphenic sur-

face.[36,96] This has been possible upon exploiting the relation between

the independent oscillator models and the Langevin dynamics dis-

cussed in Appendix. We have devised and applied an elaborate strat-

egy which, starting from the development of a general technique to

extract information on the environmental forces acting on the sys-

tem[47] and the definition of a suitable dynamical model for a H atom

bound to graphene,[96] allowed us to investigate the sticking dynamics

in a fully quantum setting.[36]

Briefly, the model includes an accurate description of the hydrogen

atom and its bonding carbon atom that, in turn, is linearly coupled to a

bath of harmonic oscillators mimicking the graphene sheet. The inclu-

sion of the carbon in the primary system is motivated by the large

reconstruction that the surface undergoes during the sticking process.

This simplified yet faithful description was successfully studied with

converged MCTDH calculations,[92–94] with a focus on the collinear

scattering dynamics on a zero-temperature surface. An overview of a

typical dynamical simulation is reported in Figure 12, which displays the

time evolution of the probability density along zH, the height of the pro-

jectile H atom above the surface. The figure clearly shows that when

the scattering wavepacket approaches the surface a small fraction is

directly reflected while the largest fraction overcomes the barrier and

reaches the adsorption well. At a later time (in few tens of fs), a further

fraction is expelled and constitutes the inelastically scattered probabil-

ity. The rest of the wavepacket remains trapped in the adsorption well

and relaxes. The right panel of Figure 12 gives the corresponding time-

evolution of the bath excitation, represented as the average occupation

number of the oscillators (average number of phonons). Excitation first

involves the high frequency modes only but in a rather short time inter-

val spreads over the whole frequency range, as a consequence of the

strong coupling between the bath and the surface phonons.

By combining the energy resolved results of several wavepacket

simulations, we computed the quantum mechanical sticking probability

curve illustrated in Figure 13. For comparison, also reported are the

results of zero-temperature quasi-classical simulations of the dynamics,

which are seen to be in remarkably good agreement with the quantum

ones (except for the threshold region where tunneling dominates), in

sharp contrast with the purely classical results. This highlights the impor-

tance played by the zero point fluctuations of the lattice, which are nec-

essary to achieve a reasonable description of the sticking process.

FIGURE 13 H atom sticking probability on graphene from quasi-
classical (green) and quantum (red) calculations, compared with the
results of an impulsive model using the quantum distribution of the
surface atom velocities (dashed lines). See main text for details.
Reprinted from M. Bonfanti, B. Jackson, K.H. Hughes, I. Burghardt
and R. Martinazzo, J. Chem. Phys. 124704 (2015) with the permis-
sion of AIP Publishing
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Both quantum and quasi-classical curves shows the two contrast-

ing behaviors described in section “Sticking” for the impulsive model of

activated adsorption. At incidence energies around Eb (�0:2 eV in this

case), the process is limited by the probability that the projectile atom

overcomes the barrier, since any H atom that reaches the interaction

region is able to dissipate the small amount of energy in excess to get

trapped. As a consequence, in this regime Ps grows with increasing col-

lision energy. On the contrary, at higher collision energy the sticking

probability decreases. In this case the atoms have always enough

energy to reach the chemisorption well, but sticking only occurs if

energy relaxation is efficient enough to prevent the projectile to re-

cross the barrier and return to the gas-phase. This analysis is supported

also by a quantitative use of the impulsive approximation. Fitting the

quasi-classical model introduced in section “Sticking” to the simulation

results, we obtained quite a good representation of the sticking proba-

bility (see Figure 13, dashed line), with reasonable values of the model

parameters.[36]

9 | CONCLUDING REMARKS

We presented a simplified overview of some basic dynamical phenom-

ena involving atoms or molecules and solid surfaces, with an emphasis

on those models that elucidate the main physics governing the elemen-

tary processes. This allowed us to single out key dynamical factors and

to identify relevant regimes and appropriate length and time scales.

These concepts form the basis for understanding real-world dynamical

phenomena, which most often show a much richer behavior than the

one outlined here, thanks to the combination of molecular and surface

complexity, and to the pecularities of the gas-surface interactions. The

concepts developed here are though essential for extracting genuine

aspects of specific molecule-surface pairs and may be of help in unrav-

eling new dynamical behaviors.
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APPENDIX : LANGEVIN DYNAMICS AND
OSCILLATOR MODELS

In the main text we have seen that a number of oscillator models natu-

rally arise when considering a particle interacting with a surface. Their

popularity stems from the fact that, if properly defined, they relate a

microscopic (Hamiltonian) description to a reduced-dimensional (dissi-

pative) setting of the dynamics,[41] that provided by the Generalized

Langevin Equation of motion,[40,41,97]

m€zðtÞ1m
ðt
21

cðt2sÞ_zðsÞds1V0ðzðtÞÞ5nðtÞ (A.1)

and its memory-less limit, the Langevin equation

m€zðtÞ1mc_zðtÞ1V0ðzðtÞÞ5nðtÞ (A.2)

In Eq. A.1, a particle of mass m and coordinate z is subjected to a deter-

ministic force 2V0ðzÞ and to dissipative and fluctuating forces from the

environment. The latter are subsumed in a memory kernel cðtÞ
(cðtÞ52cdðtÞ to obtain Eq. A.2) and in a stationary stochastic process

nðtÞ, which are related to each other (fluctuation–dissipation theorem):

equilibrium is attained if fluctuating and dissipative forces balance each

other.[40,98] In formulas

hnðt1Þnðt2Þi5mkBTcðjt12t2jÞ (A.3)

holds in classical mechanics (the quantum version takes a slightly more

complicated form). The GLE provides a unified description of several

phenomena, and thus represents a successful microscopic model of dis-

sipation. For instance, when the point particle is subjected only to the

effects of the environment (V � 0), the GLE above describes free diffu-

sion at sufficiently long times; when V(z) is the periodic surface poten-

tial, or one of its cuts through neighboring sites, Eq. A.1 describes

particle escape from one adsorption site to the next one; similarly,

when V(z) is the adsorption profile, the GLE can be used to investigate

vibrational damping (in linear regime).

In the following, we briefly discuss the relationship between Eq. A.1

and the independent oscillator model (IOM),[97,99] since this sheds light

on the microscopic origins of dissipation and on the emergence of clas-

sicality. This is also instrumental for quantum applications (such as those

described in section Applications), which in many instances rely on such

a relation to describe quantum dissipation with a Hamiltonian dynamics.

In the IO model the point particle of coordinate z is subjected to the

potential V(z) and is bilinearly coupled to a set of harmonic oscillators

HIO5
p2z
2m

1VðzÞ1
XF
k51

p2k
2mk

1
mkx2

k

2
qk2

ck
mkx2

k

z

 !2
2
4

3
5 (A.4)

The particular form ofHIO (which “corrects” the potential actually act-

ing on the system, VðzÞ ! VðzÞ1dVðzÞ, where dVðzÞ5z2
P

k c
2
k=2mkx2

k )

guarantees the thermodynamic stability of the model[97]: if V(z) is a reason-

ably well-behaved potential supporting an energy spectrum bound from

below, so is the full Hamiltonian HIO (as is evident from the fact that the

“environment”—the sum over the IO modes—adds purely positive terms

only). The Hamiltonian of Eq. A.4 gives rise [in both the classical and the

quantum (Heisenberg) setting] to a GL-like equation in which cðtÞ and nðtÞ
are determined by the IO parametersmk;x2

k and the coupling coefficients

ck. This follows from the Hamilton’s equation of motion upon integrating

the oscillators degrees of freedom, and picking the bath initial conditions

(in the infinite past) from the appropriate equilibrium distribution.[41,98]

Conversely, given a GLE with some memory kernel cðtÞ one can

choose the IO parameters and the coupling coefficients in such a way

that HIO describes the same dynamics as the GLE. In other words, there

exists an equivalence between the Hamiltonian description of Eq. A.4

and the GLE of Eq. A.1. It holds for finite times only, t<tP, since beyond
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the so-called Poincar�e recurrence time tP, finite-size effects necessarily

show up in the Hamiltonian dynamics. tP is determined by the bath size

(more precisely, tP�1=Dx where Dx is the average frequency spacing)

and, in practical applications, needs to be set larger than any time scale

of interest in the dynamics.

The “translator” between the two descriptions is usually chosen to

be the spectral density of the coupling JðxÞ.[41] For the IO Hamiltonian

it is defined as

JðxÞ5 p
2

XF
k

c2k
mkxk

dðx2xkÞ (A.5)

whereas for the GLE it reads as

JðxÞ5mx<~cðxÞ ~cðxÞ5
ð1
21

cðtÞeixtdt �
ð1
0
cðtÞeixtdt (A.6)

where use has been made of the causality of the memory kernel

(cðtÞ50 for t<0). Causality is a key property, since it has important

implications for the analyticity of ~c: with the replacement x! z (=z>0)

the “Fourier-Laplace” integral in Eq. A.6 is indeed a very well-behaved

function of z, which means that ~c can be analytically continued to the

whole upper half complex-plane (uhp). In turn, analyticity can be

exploited to write down the celebrated Kramers–Kronig relations, and ~c

ðzÞ (for arbitrary z in the uhp) can be represented solely in terms of <~cð
xÞ; x 2 R (or, equivalently, =~cðxÞ). This shows why knowledge of JðxÞ
is equivalent to the knowledge of cðtÞ. Furthermore, since nðtÞ appearing
in Eq. A.1 is a Gaussian process, it is fully determined by the correlation

hnðtÞnð0Þib, hence by ~cðxÞ (by virtue of the fluctuation–dissipation the-

orem). As a consequence, JðxÞ alone fully defines the GLE of Eq. A.1 for

a given V(z), and this explains why the spectral density of the coupling

plays such a key role in the description of dissipative systems.

In closing this Appendix, we notice that using a densely set of uniformly

arranged frequencies xk5kDx (k51; ::;F) in Eq. A.5, we can write

JðxÞ5 pDx
2Dx

XF
k

c2k
mkxk

dðx2xkÞ � p
2Dx

ðFDx
0

c02
m0x0dðx2x0Þdx05 p

2
cðxÞ2

DxmðxÞx

hence the choice

ck5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkxkDxkJðxkÞ

p

r
(A.7)

defines a practical way to “sample” a given spectral density and, thus, to

map, in practice, a given GLE into an IO model.
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